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ON THE EXISTENCE OF CYCLES OF EVERY EVEN
LENGTH ON GENERALIZED FIBONACCI CUBES

NORMA ZAGAGLIA SALVI

To the memory of Umberto Gasapina

A new topology for the interconnection of computing nodes in multi-
processors systems is the generalized Fibonacci cube.

It can be embedded as a subgraph in the Boolean cube and it is also a
supergraph of other structures. We prove that every edge of such a graph, but
few initial cases, belongs to cycles of every even length.

1. Introduction.

A new interconnection topology for parallel processors is the generalized
Fibonacci cube, which can be embedded, as graph, in the boolean hypercube.
The k-th order, k > 2, Fibonacci cube of dimension n, denoted by I'¥, is
the graph obtained by removing every vertex in the hypercube Q,_, that has k
or more consecutive 1’s in its binary address.
Hence I‘ﬁ is a subgraph of Q,_;; so it is a bipartite graph and all its cycles have
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even length.
Recall that the k-th order Fibonacci numbers, denoted by Fl¥1 are defined by

1 FO=F9 + FY 4+ 4+ F¥ | for ne> &,

and ' =0for0<i <k—2and F¥, = 1.

Thus each number in the sequence is the sum of the previous k numbers.
In general, if we consider k consecutive numbers either there is only one
odd integer (the first or the last) or there are two odd numbers and they are
consecutive.

The usual Fibonacci numbers are obtained when k = 2.

In the generalized Fibonacci number system [1], every nonnegative integer has
a unique representation as a sum of distinct k-th order Fibonacci numbers such
that no & consecutive Fibonacci numbers are used.

Now we introduce the generalized Fibonacci codes which enable us to give the
exact definition of generalized Fibonacci cubes.

Assume that n > k > 2. Let i be an integer where 0 < i < F¥]

The k-th order Fibonacci code (k— FC) of i, denoted by FC¥ (z) 1s a sequence

of n —k 0, 1 numbers (b,_x_1, ..., by, by), where
n—k—1
L > by B, =
j=0
2. bj-bj+1-'-bj+k_1=0,f0r0§j§n—2k.

For example, for k = 3 and n = 7, the number 5 is represented by the
sequence (0, 1,0, 1).
The k-FC of an integer i can be obtained by the followmg way: find the greatest
F that 18 less than or equal to 7, assign 1 to bit j — k, then proceed recurswely

oni — J ﬁnally, all unassigned bits are set to O'’s.

The Hamming distance between two binary strings ¢ and b, denoted by
H(a, b), is the number of bits where a and b differ.

Now we are able to present the definition of generalized Fibonacci cube, given
in [3].

Definition. The k-th order Fibonacci cube of dimension n, denoted by Tk
is a graph (V,{‘,Ek) where Vi = {0,1,..., F¥ — 1} and EX = (G, ) l

H(FCH(i), FC¥(j)) =1, 051,]' < F,gkl}.
Define I'f = (8, 0) for 0 <i <k -2, and T'*_, = ({0}, 9).
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For convenience we view each k-FC as a string. Let o and B denote two
strings: the concatenation of « and B is denoted by «. 8 or simply a8. Then
% represents the consecutive concatenation of i «’s, where i > 1. For a set of
strings §, define «. S = {«. B | B € S}.

In [3] it was proved that F,’f has a decomposition into I’
sented by the relation

k

k
n—1s -+ Ly, rEpIE-

) ré=rf Fré 4. 30k,

In this decomposition every vertex of I‘,’f_l is a string of length n — k whose first
bit is 0, while every vertex of F,’f_i is a string whose first { bitsare 1, ..., 1, 0,
withi — 1 1s..

Denote by G,_; the subgraph of I'¥ isomorphic to I'*_; in the decomposition
(2) and by H,,_; the subgraph induced by G,_;,..., G, 1 <i <k.

It is easy to see that every vertex of H,_; is adjacent to only one vertex of
Gn—i+1 .

The contrary does not hold; in fact, the vertices of the subgraph of G,_;,; iso-
morphic to I ,’:_i +1-¢ are not adjacent to vertices of H,_;. If v is a vertex of
. H,_; and v’ is the vertex of G,_;1; adjacent to v, we call v’ correspondent to
vin G,_;+1, while v is the correspondent of v’ in H,_;.

On the other side v’ belongs to H,_;;; then it is adjacent to only one vertex v”
of Gn—i +2-

This vertex v” is said the correspondent of v’ in G,_; 4, and v’ is the correspon-
dent of v" in H,_; ;1.

If vo is an edge of H,_; and v', o’ are the correspondent ones of v, w in
G—i+1, then v’ is adjacent to o’ and v'ew’ is called the edge correspondent of
vo in Gy_ji1. :

A cycle of Ty is maximal if it has length F¥) or FI¥) — 1, according to F*! is
even or odd respectively. :

We say that a graph G is even-edge-pancyclic (denoted e.e.-pancyclic) when
each edge of G belongs to cycles of every even length.

As T'¥ is bipartite, all its cycles are even. So this graph is e.e.-paracyclic when
every edge belongs to cycles of every possible length.

The main result of this paper (Theorems 1 and 2) is that I'* is even-edge pan-
cyclicforn > 7 whenk =2and n > k + 2, when k > 3. -

2. The Fibonacci cubes.

Let k = 2; in this case Fﬁ is denoted I',, and is called the Fibonacci cube
of dimension n.
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Figure 1

Itis easy to see that I'g is not e.e.-pancyclic, while I'; and I"g satisfy the property
(see in Figure 1 a drawing of these graphs). The decomposition (2) for the
Fibonacci cube is '), = G,,_;+G,,_,. '

Lemma 2.1. Let n > 8 and C a maximal cycle of G,_y. Then C contains at
least 3 edges having their correspondent ones in G, _».

Proof.  Denote by G/ _,, G, _, the subgraphs of G,_; with respect the decom-
position (2) and vy, v,, v3 three consecutive vertices of C ,where v, € G, _,.

If vi ¢ G,_,, then it belongs to G/ _,. It implies that vy € G, _,, because a
vertex of G, _, is adjacent to at most one vertex of G, _5. Thus vyv; is an edge
of G, _, and then has its correspondent one in G,,_,.

By the condition on #, |G,,_,| > 5; then C contains at least other four vertices

of G,’I_2 and hence other two similar edges. J
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Lemma 2.2. Letn > 9 and F, odd. If G,_,, G,_, are edge-pancyclic, then
also Ty, is edge-pancyclic.

Proof. 1f F, is odd, then exactly one of the two integers F,_; and F,_, is odd;
without loss of generality assume that F,_; is odd.

Let e be an edge of G,-,. By the assumption, it belongs to cycles of every
length in G, _,, in particular to an hamiltonian cycle C. Let xy be an edge of C
distinct from e and x”y’ its correspondent in G,_;. Also x’y’ belongs to cycles
of every length in G,_;. Let D; acycle of length 4 which contains xy’ with
4 < h < F,_1 — 1, then e belongs to the cycle xCyy’'x’'x of length F,_, + 2,
and to the cycle xCyy' D, x’'x of length F,,_, + h.

Thus e belongs to cycles of every length.

Now, let e be an edge of G,,—;. By the assumption, it belongs to cycles of every
length in G,_;: if C is a maximal cycle containing e, then, by Lemma 2.1, it
contains at least one edge xy # e having correspondent x’y’ in G,_,.

Using the above procedure, the result follows.

Finally, assume that e = xx’, where x € G,,_, and x’ € G,_,. Then x’ is
correspondent of x in G,_;; moreover if yadjx in G,_, and y’ is correspondent
of y in G,_, then x"adj y'.

Hence e belongs to the 4-cycle xyy'x'x. As xy and x’y’ belong to e.e.-pancyclic
subgraphs, the property follows. O '

Denote by G, _, and G,_, the subgraphs of G,_; with respect the decom-
position of type (2); moreover let L be the subgraph of I, induced by G,_, and
G, _,.

Lemma 2.3. Assume n > 9, F, even and G,_, e.e.-pancyclic, of odd order.
Then L is e.e.-pancyclic and for every edge e of L there exists an hamiltonian -
cycle of L which contains e and at least one edge distinct from e having the
correspondent one in G, _,.

Proof. 1If F, is even, then both of F,_;, F,_, are odd. Using the same
procedure of the Lemma 2.2, we obtain that every edge e of L belongs to cycles
of even length s, where 4 < h < F, — 2.

Now we prove that e belongs also to an hamiltonian cycle. Assume F,_, =
2t +1,¢ > 0. Lete € G,_, and C a maximal cycle which it belongs to.

Denote by vy, ..., vy the vertices of C and z the remaining vertex which we
can assume adjacent to vy, and to at least another vertex v,, where 1 < A < 2¢.
Let C' = {v},...,v),} and z’ be the correspondent ones in G, _,. Then e

belongs to the hamiltonian cycle:

(3) V) "‘UZtZZ/vét"'v;
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Figure 2

which contains all the edges of C and C’, but v1 vy, and v vy, (see Figure 2).

A similar result holds when e € G/,

When e = (vy, vy;) we can con31der the same cycle C where the vertices are in
the different order

4) Vhe1s Uh—2y ="+ UL, Uggy o v+ Up

and z is adjacent to vy,.

Consider, now, the case in which e connects a vertex of G,,_, with one of G;_z
Let C = (vi,vs,...,vy) denote again a maximal cycle of G,_;, z the
remaining vertex and C’, 7’ the correspondent ones in G, _,. If e = (z,2'),
then it belongs to the cycle (3).

Assume that e = (v;v)), 1 <i < 2¢.

It implies that e belongs to the following hamiltonian cycles

I /
&) ViVj V) Vigl - - V222 U V]V -
and
/ / / /
(6) ViVit1 Uy Vipg ** Vg TV VIV - VLY

in the case of i even, and

/ / / FA
(7) ViV -+ Vg, 2 ZU2 V[V Uy Vg -
and

/ [ / /
(8) ViVig Vg -+ - U222 Vo Uy U1 - - - U; Y
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in the case of i odd. Note that the cycles (5), - -, (8) alternate edges of C, C’
and (5), (6) as well (7), (8) contain all the edges C, C’. By Lemma 2.1, C’
contains at least three edges having their correspondent ones in G _,. Hence,
as the cycles (5) and (6) or (7) and (8) contain all the edges of C’, then at least
one of (5), (6) and of (7), (8) contains one edge, distinct from e, having the
correspondent one in G/, _,

When e = {vy, vj,), we repeat the same procedure by considering the cycle (4).
: ' 0

Theorem 1. For n > 7, every edge of the Fibonacci cube T, belongs to cycles
of every even length.

Proof. We proceed by induction, the cases n = 7, 8 being satisfied. So assume

that n > 9 and the result holds for every I'y,, when & < n. Let F, be odd. As by

assumption G,_; and G,_, are e.e.-pancyclic, then from Lemma 2.2 the result

follows.

Let F, be even. By Lemma 2.3, L is e.e.-pancyclic, and for every edge e € L

there is an hamiltonian cycle C of L which contains e and an edge xy ¢ e

having correspondent, say x'y’, in G/ _,.

As this subgraph is e.e.-pancyclic by assumption, then x’y’ belongs to cycles

Dy, of every even length i, where 4 < h < F,_3. Then e belongs to the cycles

xCyy'x'x and xCyy' Dyx’'x.

If e € G, _5, itis sufficient to note that every edge of G, _5 has correspondent in
" _,,thatisin L.

This completes the proof by induction. U

3. Generalized Fibonacci cubes.

In this section we assume k > 3. Clearly Fk, k+1<n<2k-1,i1s
isomorphic to the boolean cube Q,_.
Moreover a decomposition of a graph G into two subgraphs A and B is denoted
G = A+B, as in (2), when A and B are vertex-disjoint and every vertex of B
is adjacent to exactly one vertex of A, with the condition that never distinct
vertices of B are adjacent to a same vertex of A.

Lemma 3.1. For0 <i <2,

koo 2 k1
Topvi = Orvi-1 + Dy qyas -
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Proof. Recall that %, is obtained by assigning 0 or 1 before all the strings of
r lz‘k_] and deleting those with k consecutive 1s, that is those in F’z‘k_l having
k — 1 initial consecutive 1s.

We can represent this situation by writing
M =00k_1 + 1041 .

As Q1 contains only 1 string with k—1 1s, then 1Qy_; is isomorphic to Qy__;
minus a vertex. That is

1041 = 0(Qk—2) + 1012 = T3l
and Fl?fk = Qk—l :i:- Flzc(;l_l)
Moreover

Doeer = 0(Qko1 F 551 ) F 1001 T4 ) =
= O+ (051, +1r5.0, =
A k=1

= Ok + F2(k~1)+1‘

In a similar way we have I“’z‘k 2 |

Lemma 3.2. T¥, k+2 <n <2k +2, is e.e.-pancyclic.

Proof. Fork+2<n<2k—-1T,is 1somorphic to the boolean cube Q,_x
which is e.e.-pancyclic.

Now consider n = 2k + i, where 0 < i < 2. The cases for k = 3, in Figure 3
are clearly e.e.-pancyclic.

Consider the case i = 0; we proceed by induction on k.

From the condition that an hamiltonian cycle of Q,_; has at least two edges hav-
ing correspondent in F’z‘(;l_l), then with a proof similar to the one of Lemma 2.2,
the result follows.

The same consideration holds fori = 1, 2. O

Lemma 3.3. Let n > 2k + 3; every maximal cycle of G,_; has at least three
edges having correspondent one in G,_;_y, 1 <i < k.

Proof. Consider the decomposition G,_; = G, _._, —T—H,;_l._z; let C be a
maximal cycle of G,_; and vjv,v; three consecutive vertices of C, where
Uy € Gﬁz—i—l .

If vi ¢ G,,_;_,, then vy is the correspondent of v, in H _, .

/ /

It implies that v3 belongs to G/, _, , because every vertex of G, _;_ 1s adjacent
to at most one vertex of H, . ,. Thus w3 € G,_,_, and then has its

correspondent in G,,_;_;. As |G,,_;_{| =5, the result follows. N

Lemma 3.4. Assume that every subgraph G,_;, where 1 < i < k, is e.e.-
pancyclic and has order even, but at most one. Then also H,_; is e.e. -pancyclic.
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Figure 3

Proof. The proof is by induction on the value of i, the case i = k being satisfied

by assumption.
Because H,_; = G,_; + H,_;_;, then by Lemma 3.3 with a procedure similar

to the one of Lemma 2.2 we obtain the result. O
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Consider the decomposition G,_, = G,_,+G! ,+---+ G/ _,_,; more-
over denote by L the subgraph induced by G,_, and G,_, and by H/_, the
subgraph induced by G’ ., ..., G, 1

n=3?
Lemma 3.5. Assume that G,_, has odd order and is e.e.-pancyclic. Then also
L is e.e.-pancyclic and every edge e of L belongs to an hamiltonian cycle which
contains at least other two edges, distinct from e, having correspondent one, one
in H,_5 and the other in H ..

Proof. The proof is perfectly similar to the one of Lemma 2.3. [

Theorem 2. For k > 3 and n > k + 2, every edge of T X belongs to cycles of
every even length.

Proof. We proceed by induction, the cases k +2 < n < 2k + 2 being satisfied
by Lemma 3.2. So assume that n > 2k + 3.

Let F* be odd; then only one of the integers in the sum (1) is odd, say F,f_l. By
Lemma 3.4, the result holds.

Let F¥ be even. This implies that exactly two consecutive integers in the sum
(1) are odd; without loss of generality they can be F,f_l, F,f_z. By Lemma 3.4
H,_3 is e.e.-pancyclic; also H/_, is e.e.-pancyclic, because n —k — 1 > k + 2,
Moreover by Lemma 3.5 L is e.e.-pancyclic. The situation for T'* can be
represented by the drawing in Figure 4

L<——H,;

.

H,_,
Figure 4

where the arrow from one to another subgraph means that every vertex of the
first is adjacent to exactly one vertex of the second one.

Let e be an edge of H,_,. By Lemma 3.4, it belongs to cycles of every length
in such a subgraph. Let C be an hamiltonian cycle which contains e and xy an
edge of C distinct from e. Denote by x’y’ the edge correspondent of xy in L.
By Lemma 3.5 x'y’ belongs to cycles of every length. Let D be an hamiltonian
cycle which contains x'y" and at least another edge f having correspondent f’
in H,_3. By Lemma 3.4 f belongs to cycles of every length; then the result
follows.

It is easy to see that a similar situation holds also if e belongs either to H,_3 or

to L or connects vertices of two distinct subgraphs. This completes the proof.
J
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