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GLOBAL SOLUTION OF REAL VISCOUS
COMPRESSIBLE TRIPOLAR HEAT CONDUCTIVE
FLUID ON FINITE CHANNEL

SARKA MATUSU-NECASOVA

The global existence of a weak solution of viscous compressible real
tripolar heat conductive fluid of initial boundary problem is proved.

1. Introduction.

In the classical Navier-Stokes theory, the viscosity of fluids is modelled by
the dependence of stress on the first spatial gradients of velocity. Itis well-known
that the corresponding mathematical theory contains a number of unsolved prob-
lems, in particular there is no existence theory for the global solution of com-
pressible fluids for the full system, only for the isentropique case (see [4]), and
no uniqueness theory. There are many results of the existence and uniqueness of
the classical solution but only under the assumption of smallness of data or for
small time (see Matsumura-Nishida [6], [7], Valli [18], Solonnikov, Kazhikov
[16], Tani [17], Zajaczkowski [19]).

From experimental results it follows that we can consider a stronger mech-
anism of dissipation than the one proposed by Stokes. The fundamental pos-
tulate assumes that the dependence of stress on higher order gradients of ve-
locity has to occur in flows of viscous fluids. These problems have led Necas,
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§i1hav§/ and Novotny to study the physical background and mathematical aspects
of the dynamics of multipolar fluids. In the paper [12] by Ne&as, Silhavy an ax-
iomatic theory of viscous multipolar fluids is described. Further works by Nedas,

Novotny, Sllhavy, see for example [11], NeCas, Novotny [9] and Ne&as [13], are
devoted to the study of the problem of adequate existence theory and qualitative
properties of equations (regularity, uniqueness, etc.). In compressible motion the
pressure p is not an unknown but a known function which can be determined by
p = p(p,0). A change in pressure will promote thermal molecular agitation.
From the axioms of thermodynamics we know that

, (g1 —0n)

p=p 0

where 7 is the specific entropy, ¢, is the internal energy and 6 is the temperature.
The pressure of ideal fluids is governed by the state equation

p = Rpb.
For more realistic fluids the state equation has the form
P = Rpb + Bi(p)p* + By(p)p* +....,

where B, B, are virial coefficients which are functions of density. We consider
the state equation in the easier form

(1.1) - p = Rp + B p?,

where B; is a virial coefficient, p is density, 6 is a temperature and R is a gas
constant and assume that B is a constant. We recall the equations governmg the
general motion of compressible multipolar fluids

ap
1.2 — 4+ —(pv) =
(1.2) m-+ax(pv)

) 3 )
(1.3) Eg@w%+aawww+pULm&r—m)=pE,

8 3 v 920
1.4 — 0) + —(c,p0v;) + RpO—L — ) =
( ) a7 (Cvp ) + axj (C P Uj) + Rp axj axj axj
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k—1 P 0™ v;
=7 (e (W) + ) — |t i O,
L (e (v) ; o ( TNIOF o .._axi)

(1.5) p(x, 0) = po, v(x, 0) = vp, 0(x, 0) = 6,

(1.6) v=0 ondQ x I,

(1.7) ' 2—?;:0 ond2 x I,

(1.8) [[v, w]] =00ndQ x I, forevery we V N W*2(Q, RY),

where 2 c RV, Q is a sufficiently smooth bounded domain (N = 2, 3), ¢,
(specific heat at constant volume) and A (heat conductivity) are positive con-
stants and F denotes the density of external forces. We solve this problem in
Or =Qx(0,T).(V,[[.,.]] will be specified later, k = 3).

The aim of this paper is to prove the existence and the uniqueness of multi-
polar fluids for one type of “real” fluids. The article is divided into several parts.
Section 2 deals with the formulation of the problem. Section 3 is devoted to a pri-
ori estimates. In Sections 4 and 5 we prove the existence and the uniqueness of
the weak solution for homogeneous and nonhomogeneous Dirichlet conditions.

2. A formulation of the problem.

We are interested in compressible heat conductive tripolar real fluids. We
consider a standard stress tensor 7;; where

(2.1) Tij = —pdij + T
and higher order stress tensors

(2.2) Tiriggy 1 SM k=1 k=3 and 7 j; =0.
The tensors ri‘;., filfl...i,,, I 1 <m < k—1, depend linearly on the spatial gradients
of velocity up to order 2k — 1; the coefficients of linear dependence are real
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0 .
constants such that T r". ; are symmetric and t;; , . are symmetric in

Ij 8 [230)
[1...0y. Dueto the Clausms—Duhem inequality [12] we suppose that
) Bmvi >0
(2.3) 7/ (V)e;; (v) + Z (W )m > 0.

Let V = W, *(£2, RV)N W"'z(Q, RN ). We assume that there exists a symmetric
bilinear V -coercive form ((v, w)) such that

k
M v; " w;
2.4 ) = Al : j dx,
( ) ((v w)) /;2 <Z Lfitedm i Jm axil L. Bxi,,, Xjp oo 3ij)

=1

(2.5) (v,v)) > a“v”%Vk.Z(Q’RN), o >0,
and that for v, w € V. N W%*2(Q, RY) we have |
d
2.6) () == [ == (20) widx + (1, w),
Q 0X;j
where

8771wl
v, w]] —Z/ Ty (V) gy dS.
I im

We define
ami
@7 (v, w) = <v>e,,<v>+Z ( ,,,,]<v).——‘—”——).

6x,-, NN 8x,~m

From (2.3) it follows that the form ((v, w)) includes derivatives of v and w

respectively at most of order k.
The weak formulation of (1.3), (1.4) reads

9 T
I | v dxdi + | .onar
Or Or 0 ,

——/ RpO¢; ; a’xdt—/ Blngo,-,i dxdt:/ pFE; dxdt;
Or Or Or

0 96 0
(2.9) —cy / ,0(9—72 dxdt — c, / pobon (0) dx + k/ Z dxdt
Or ot £ or 9%; x;
ij 377 ,
—~R 00 —~ndxdt — c, POV, — dxdt = ((v, v))ndxdt
or 9% or 0% r

for every n € C*(Qr), n(T) =0,9eC®Qr), ¢(T) =0, ¢t) € W(),
n@®)ewh2(Q),tel.
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3. Modified Galerkin method.

The orthogonal basis { w’ }::Xf in V is given by solving the following eigen-
value problem

3.1 (v, wh)) = A,/ v w! dx

9)

forevery ve V(0 < A; < Ay <...). From the regularity of the elliptic systems
(see [10]) we obtain

(3.2) w" e C®(0,RY).

Lety = (y1,...,v) €CYI,RY) (n = 1,2,...) and put

(3.2) VI 0 =Yy Ow

r=1
Let
(3.3) 00€CY), po>0 in Q,d=1,2,...,
(3.4) v € C(0r),
(3.5) OoeL?(R), 6>0 ae in £,
(3.6) FeL®(Qr, RY).

We refer to [9] that there exists a solution
— M : n
p"eCl(Qp), p">0 inQr, v"=> %Ow, ¥y =0..... 1
r=1

y € CYI,RM), 6" € C'(Qr) N CU,C%*Q)), 6" > 0in Qr, satisfying the
equations

80" 9
3.7 —(p") =0;
(3.7) rval ox, (p"v}) ;
(3.8) D 0" + 2oy — 2
| or - F ox; 0N T Vaxeny T

n

v
= —Rp"0" =L+ (0", "))
J
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(3.8) can be written in the equivalent form

d 1 0 1
’ npon n n 2 ngn..n n n |2 n
(3.8) 3 (cv,o 0" + —p" | v" | >+ T j (cp,o 0"v; + —2,0 [ v" | v]>

+ 0 (B 2) d V( n) n + i v ( n) amvl{l
—_— VvV, — ——{ T..(v ) T, . (v")————
| axi 1P, ) Vi axj ij i P ligodm] axil o axim

29"

=2 + p"Fvp

ij 8xj
and

navtn n nav? 0 nan 2 H r
(3.9) / ;0‘57-!-,0 Uj‘a*)'c‘—‘f‘a—_{R,O@'“i‘Ban}(Sij"PE w; dx =
Q J J

=—(", W), r=1,...,n.

We have the following initial conditions

(3.10) P"(0) = po,
30"
(3.11) 6"(0) =6, —— =00ndQx I,

where 6} € C*(0), 6 > 0in Q, 39} /8v = 0 on 3R, 67 — 6 strongly in
L%(Q),

(3.12) / v (Ow] dx = fUOiw{ dx.
Q 0

We solve the continuity equation by the method of characteristic to have

t 3
(3.13) p"(t, x) = po(x) exp (— / 5—vf(r, x”(r))dr>,
0o 0X

J

where x = x"(0), y = x"(¢); the characteristic x*(t) are solutions to the
problem

(3.14) () =" (t,x" (1)), T€(0,T),x"(0) = x €.
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- x — x"(t) is a diffeomorphism from  onto Q (for more details see [9]). Now,
integrating (3.7) over Qr, using (1.6) we get

(3.15) / p"dx =/ podx.
Q- Qo
Multiplying (3.7) by p, we obtain
(3.15) / (0")? =~ / 0"V
Q Q

(i) We multiply (3.9) by y;, add from r = 1 to n and integrate over I = (0, T').
(ii)) We integrate (3.8) over Q7.
Adding (i), (ii), using (3.15)’ it follows that

1 1 r
(3.16) —/ p”lv”lzdx——/ polvolzdx+/ (", o) dt +
2 Jg, 2 Ja, 0

Xi

av?
+BI/ p,%dx—-BI/ ,ogdx-—/ (R,o"é?”)—vi dxdt=/ p" Fiv! dxdt.
Q /2 or dx; or

Integrating (3.8)" over Qr, using (3.15), we have

1
(B.17) | c,p"0" — f copy 05 + By / pr — B / P + f ~p" V" * —
o Qo - Je Q Q 2

—-/ p”lv”l2=f p" Fivl.
Q0 t

From (3.15), (3.16), (3.17) we get the following estimates

(3.18) lp" 10" Pl < K2 K2 >0,
(3.19) 10"0" Lo, L1y < K1, K1 >0,
(3.20) o Lo iy < K3, K3z >0,
(3.21) NVl 2, wea @y < K2,

(3.22) 0" |, 2@y < K.

Similarly as in [9] we obtain
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Lemma 3.2. Letk =3, 1 < g < 400 (N =2),1 < g < 6 (N = 3),
0 <« < 1/2 and let (3.3) - (3.6) be satisfied. Then

(3.23) 0" | Loocr. wra)y < Ks,
a n

(3.24) L < Ks.
Ot |l L2z, o)

(3.24) 16" gouq wiaoyy < Ks, 0 < < 1/2.
Also,

(3.25) 0" >0 a.e. in QT

holds.

Proof. See [9].

Now we assume that vy € W52(2, RV )NW,* (22, RV). Using ¢ = dv" /a1
as the test function in (2.8) we obtain

n

a h_ .n a n a n fl ll n n
(3.26) 3 P V)= Bt s (0" vj'v} + plp”, 0")8;; — 7 (v ))
:f pnFiav{l‘

Or dt

v v’ duP B dun 8 "
3.27 Rp"6™)—L + — (B p?) —_
( )/QT Y o g ROV (Bl

From (3.26) it follows that

ot oax;
+/T <(vn avn)> _/< F 8'0”
0 FTIV AR L TR
0 v’ , 00" 0 ap™ vl
/--(Rp”@n)—}i =R/ v +/ R__'O__Qn___;ui_,
Q 8xi ot Q 8x, at Q 8xi at

1/6

300 9yn 6 1/3
/pgn (s / (/19”3) 8/
Q 0x; ot Q Q Q

nl2
i

at

ap”
axi

b

!
)
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/ o 06" ov;
Q 8x,~ ot
/ 20 222U
Q ax,- dt

/‘ nvnav v}
Qp 7 ot 8

And thus we have

o |2
1

np2
= g”g leZ(Q) + C&1

k4

Lo (£2)

av”
ot

0" Lo @ lo" w2y |
L2()

n

ot

v llwrzg) -

< 1p" L@ V" lwe2 )

LX)

v ||?

(3.28) »

+ sup ((v*(1), v"(1))) < Ks(1 + l|9n“L2(1 le(sz))) .
LY2(Qr RNy  tel0,T]

From the regularity of the elliptic system we get

(3.29) 10" 2wy < Ks(L+ 10" 2wy

Remark. This estimate plays an essential role in the proof of the uniqueness.

Lemma 3.3.

(3.30) Henllizg,wl,z(g)) + 110"l L2, 22)) < K6, K6 = 0.

Proof. We multiply (3.8) by 6" and integrate over 2.

d d . 9%o"
(3.31) / — (¢, p"0")0" + —(c, p" 0" vHO" —/ A o"
Q ot d J Q

X 0x;0x;

2 0V
:/ Rprl(en) _.+‘/'<(vn,vn)>9n'
Q ij Q

We rewrite the left-hand side of (3.31). We obtain

n 30" d(p"v}) aen
/(cv p + ¢, p" 0”+ cp———L2(0™)? + G”p”vj’-’) dx
a6" 06" (3.7 1 / 0
A, d en 9”
+f s ( — (0" + cop] = <>)

ag" an" a0 96"
+[ dx———fc"”O”zd +/A-— dx .
Q BxJ ij Q ij ij
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Thus we obtain

d (1 90" 39"
3.32 — | =¢, (0™)2d A/ d
( ) dt <2C AP ( ) .?C) T Q aJCj ij o
ov?t
= R/ p”——i(G”)zdx+/((v",v"))9"dx.
Q 8.)6]' Q

We known that the first term on the right-hand side is bounded by 167 iz @ The
term fQ ({(v", v"))0"dx is more complicated. We use the relation

(3.33) " ey < €1V lwaraa myy + K1) V" |20, m

for every 1 > 0(K(g1) > 0), see [3].

12
(3.34) ( {((v", ’U")>2dx) 1671 L2
Q,
< &1V () llwe2 V" @O | w22 16" || 12 + K 2(e)]10™ 112, ¢2, K2(g1) > O.

Hence, due to (3.29) and the Young inequality, (3.34) on the right-hand side is
bounded by

(3.34) KD Olpallo™ 172 + 11071312 + K (1), K (1) > .

Now we use Gronwall’s lemma and obtain (3.30).

Thus we have
Lemma 3.4. Let vg € W2(Q, RV) N WX (Q, RY). Then

907 |12
(3.35) = + sup((v", ")) < Ky
i |2 mmy .7
(3.36) vl L2, w2 @ rVy) < K16, K6 > 0.
Lemma 3.5.
0
(3.37) —(p"6") < K7,
ot L2, W-12(9,RNY)

(3.38) 10760 " |2 wie@ rMy < K17, K17 > 0.
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Proof. The estimate (3.38) is a consequence of Lemma 3.3 and (3.23). (3.37)
follows from (3.8).

Lemma 3.6. Let 6y € W12(Q). Then

(3.39) + 10" 7o wragy < K1s,  Kis > 0,

L*(Q7)

|5

(3.40) 10" | 21 w22y < Kis-

Proof. Let us choose a sequence 0 € C*(Q), 0y > 0,65 — 6 strongly in
Wl2(Q), 86} /dv = 0 on 9S2. Multiplying (3.8) by 96" /3¢ and integrating over
0, =0,1) xQ,tel, we get

36"\ A [ 90" 36
(3.41) cv/ o" < ) dxdt + —/ —ndx =
Or E)t 2 Q Bx] 8xJ

a9" 06" av; 3o”"
—cv/ Joia Vi dxdt —[ Rp"@”——’ae dxdt +
Or ij at Qr ij ot

a6" A a0y 065
+/ ((v",v”))—dxdt+—/ 0 90 dx.
r ot 2 Q0 ax]' ax]'

R 8071
The right-hand side of (3.41) is bounded by Ko (1 + “ =~

N )’ K20 >
L2(Qr) "

0. We use the same technique for the estimate of the term ({v", v"))—é—t— as in

Lemma 3.3. Applying Young’s inequality we verify (3.39). (3.40) is a conse-
quence of the regularity properties to elliptic equations.

4.1. The global existence of a weak solution.

Lemma :1.1. Let Eo, B , El be Banach spaces, Eo, El reflexive such that Eo CcC
B C By(CC is a compact _imbedding), let 1 < po,p1 < +oo. Then
LP(I,B) CC{g; gel™(l, By),dg/dte L' (1, By)}.

Proof. See [3].



226 'SARKA MATUSU-NECASOVA

Lemmad4.2. Let the assumptions (3.2)-(3.6), vo € W*2(Q, RY)nw 2(Q2, RM)
be satzsﬁed Then one can choose a subsequences of {(p", v" , 0") )2, (denoted
{(p", V", 0™)} again) such that
(i) p" — p strongly in LP(Qr1), 1 < p <400, p > & > 0a.e in Or;
(ii) v* — v strongly in L2(I, WH*-12(Q, RMY),
v" — v strongly in LP(I, W*12(Q, RV)),
D'v" — D'v weakly in LX(Qr,RY) (i = 1, ..., 2k);
(iii) D'0" — D'0 weakly in L*(Qr);
(iv) 6 > 0 a.e. in O7,
p"0" — p0O strongly in L>(Qr);
apn

ot
av”

— 5@ weakly in L>(Q7r):

(v)
i) 2 0 eakiy in L2(07)
Vi — wea n ,
or o MY !
(vii) p"v" — pv strongly in L*(Q7r);
aU ij
(viii) p"6"—- — p"0" —L weakly in L*(Qr);
axj ij
(ix) p"vivi — pv;v; weakly in L2(Q7);

(x) | (", v"))pdxdr — | ((v, v))pdxdr, ¢ € C'(Op).
Or Or
Proof.

(i) this assertion follows from Lemma 4.1, where we put EO = WS B =
L?, By = L% 1 < p < +oo, po~p,p1—21<q<6(N-3)
1 <g <40 (N =2);

(if) the first two assertions follow from Lemma 4.1 with By = W2 , B =
WZk12 Bl——L2 pPo = p1—2andBo sz B Wk L2 BI Lz,
pPo = p, p1 = 2 respectively; the last assertion of (ii) follows from the
boundedness of {v"}%°, in L2(I, W%2(2, RM));

(i1i) is a consequence of Lemma 3.3;

(iv) we obtain that p"6" — a (we use Lemma 4.1 with B = L2, B, = W-12,
By = W2 py = p; = 2) and that ¢ = = pf we get form (i), (iii), ﬁrst
assertion of (iv) holds due to (3.25);

(v) is a consequence of (3.24);

(vi) is a consequence of (3.35);

(vii) is a consequence of (i) and (ii);

(viil) is a consequence of (ii) and (iv);

(ix) follows from (ii), (i), (vii);

(x) follows from (ii).
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Due to Lemma 4.1 we can pass to the limit in (3.7), (3.8), (3.9) to obtain the
following theorems

Theorem 4.1 (weak solution). Let py € CQ),d = 1,2,....,p0 > Oin

0,00 € LX), 6y > 0ae in v e W2(Q,RY) N W *(Q,RY). Let

1 <g<+4+c0(N=2)orl <gqg <6(N =3),0 < a < 1/2 then there

exists (p, v, 0) such that _

@41 pel®d, W Q)NC% U, L1(Q)), p > € a.e. in Qr for some ¢ > 0,
K]

(4.2) 8—’: e L®(I, L4(R)),

(4.3) v e L®(I, Wh2(Q, RY) N W2, RY)) N LA, W22(Q, RV)),

(4.4) ‘3—’; e L*(Qr,R"),

(4.5) 0 € L®(I, L)) N L2(I, W'2(Q)),0 > 0 a.e. in Qr,

such that (1.2),(1.3) holds a.e. in Qr and (2.12) is fulfilled; if d > 1 then
(4.6) p e LI, Wri(Q)) N Co* (I, wr=he(Qy),

(4. 7) - P e L1, wrta (),

where p = min(d, 4).

Theorem 4.2 (strong solution). Letthe assumptions of Theerem 4.1 be satisfied
and let 0 € WH2(Q). Then there exists (o, v, 6) satisfying (4.1)-(4.5) and
(4.8) 0 € L2(1, W22(Q)) N L=, W2(Q)),
a0
(4. 9) ar € L*(Qr),
such that the equations (1.2)-(1.4) are satisfied a.e. in Q.

4.2. Uniqueness.

Theorem 4.3. Let the assumptions of Theorem 4.1 with d > 2 be satisfied. Then
in the class (4.1)-(4.9) there exlsts at most one solution (,0 v, 0) satisfying (1.2)-
(1.4) a.e. in Q7.

Proof. Let(p,v,0), (5,7, 0) be two _solutions with the same initial conditions.
Then (&, w, n) = (,o 0,v — U, 0 — 0) satisfies

(4.10) —f + T(S ;) T (pw,) =0 e in Qr,

ow; 0y, aw; ov;
4.11 00— —— 0
S T R e

- m((*, () +
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d J _ d _ av; .
R—@E0) + R—(@n) + Bi—(p* —p") +£— =&F, ae.in O,
ax; 0Xx; ax; 0t

_an 96 _ 9ny _ 236
“4.12) Cop— v, — + ¢, pv,— +¢ 0—w; —
Tor T T ey T ey T oy,

8%n dv;

3 .
Ro—Ln + R5g Y R9~——f
dx;0x, | P, TRV TROGET

+coé—=(v,v)) - ((v,V)) ae.in Q.

From (4.10) one obtains the estimates

0 —
(413) 'a'_t ”E(t) ”%{/1.2(9) =< K(El)al (t) ”‘E(t) ”%VI,Z(Q) + &1 “W(f) “%Vk,z(Q,RN)’
K4(g1) > 0, where

ar = (1 + flwllwe2 @ ,r¥) + o1l wasiy)?
for every g1 >0,a; € L*(I). From (4.11) we obtain

d
(414) a_t' (/ I w I2 dx) + ”w(t)uwkZ(Q RN) =

< K(©a®) (1§02 + 132 + 172y ) 21100 e

(K(e;) > 0) forae. t €I and every ¢; > 0, where

p

=(1+]5

a ( + o7
_ v

: (1 + [Vl wee o, r¥y + V]l wazq myy + ”5—

T L2(Q,RY)
— 2
“ LR, ]RN)> ( + “9”W12(Q) + HHHWI'Z(Q)> ’

hence a € L1(I). From (4.12) after some computation we get the estimate

0
“.15) 2 ( f pn‘dX> Va2 <

Ka(e)a@UIEO gy + 1w ©) 22w, + 170)13) +

+er(lw® g rry + 1V0@1122)

forae. t € I and every &; > 0. From (4.13)-(4.15), after applying Gronwall’s
lemma, we obtain & = O,bw=0,n=0ae.in/.

2
+Bllws + lolwise )
. ollwise) ”p”W‘ﬁ(Q)>
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5. Non-homogeneous condition.

Now we are interested in the case of non-homogeneous boundary condi-
tions. We consider that €2 is a finite channel, where Q2 = Finp U Tout UT.
Besides the initial conditions

G.1 p(0) = po, v(0) = vo, 6(0) = 6y
we consider the following boundary conditions:

(52) ’ UV =17y 0n Fiﬂp U Fout,
v=0onl,,

/ vy > 0,
I

mp

/ vy < 0,
r

out

where v is the outer normal,

p = po ont Iy,

o> 0.

Further, we consider that 6, > 0; and that there exist constants m and M such
that ‘

(5.2 0<m=0(x,)<M on dQxI (seel5].

We consider that vy is such a function that there exists the extension to the entire
cylinder. The function is denoted again vy. Sc.we can write v = vy + z. (This
means z = 0 on 92 x I) Moreover, we assume the boundary conditions

(5.3) [[z,w]]=0 on adQx [, foreveryweV N w2, RY).
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5.1. The formulation of the problem.

We consider the system (1.2)-(1.4). We state the weak formul.mon of the
problem as follows

9 dgp
(5.5) f L / P00 0(0) + / (o, 0)22 4
or t Q Oy ax;

r |
+/ ((v,ca)):/ plip,
0 Or

o(T) =0, e C®(Qr), ¢ =00 3L x I, o) € W>2(Q);

an T
6o [ apll- | combn@ + R
Qr dt Qr 0 Joq

an dv; ’ a8 9y
— | cbpvi—+ | Rpb—n +/ he——=[ ({v,w))n,
Or ox;  Jor  0x or 0% 9x;  Jo,

n(T) =0,n€C(Qr), nt) e W-(Q).

We apply the Galerkin method, we take the same orthogonal basis as in Sectlon 3
and we solve the eigenvalue problem

(5.7) ((z, w")) = )¢,/ v;w! dx
- Ja

forevery ze V = Wk2n W01,2<0 <A < Az-g ...). From the regularity of the
elliptic system (see [10]) we obtain

(5.7) w" e C®(Q, RMY.

Let

(5.8) c=(1,....,c) eC'T,RYY (n=1,2,..)
and we put

(5.9) Vi (x, 1) = Y e w () +v°

=1
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and let

(5.9) W eC3(0r).

Let (3.4)-(3.6) be satisfied and

(5.9)" oy €C(Q), pi > 0.

Then there exists a solution satisfying (5.8), (5.9), p" € C(Qy) N WL (Q7),
o" >0in Qr, 6" eC(—Q—T) NC(,C*Q)), 0" > 0in Or satisfying equations

(3.7)-(3.12). We solve the continuity equation by the method of characteristics
and obtain

(5.10) p"(t,x) = po (t —1, x”(f)) exp <—/ 56—1)1" (t -1, x"(t)) dt> ,
o .

Xj
where x = x"(0), y = x"(f); the characteristics x"(t) are solution to the
problem
(5.10) ") =—=v"@t-1,x"(x)), 1€, T), x"(0)=xeQ.

(7 denotes the time which we achieve when going from the point [x, ¢] to the
point which lies in €29 or I'jyy). Forevery T € I, [; = (0,7),7 > 0, x — x"(7)
is a local diffeomorphism of Q onto €. More precisely see [8]. We integrate
(3.7) over Q7 to have

' T
(5.1D) / o" 5/ p”—/ / POV} V; -
Q Q0 0 JTinp

From (3.8)’ after integrating over Q7 and using the continuity equation we get

1
(5.12) [ cwrer s [ o= [ i<
QT 2 QT ' QT
_ ! nonn.,. 1 np,ng2on. r 2,.n
= CpPoGy Vo Vj + 710 |[v*] ViV + BlanOivi
0 rinp ~ 0 r

out
3/ﬂ%w+/«mw»
Or Or
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Now we put ¢ = z" in (5.5). So we obtain

1 8 av 0\
5.13 = ny,mn 2 / i n n_n=- Ut
(5.13) Z/QTplzlJrQT(p 8tz+ﬂv,,a>

g 2 2 2 2‘9”9 :
+/ / Bip Uivj+f pn—-/ pn+/ Buon—i—f p" Fivf
o Jag Or 2 Or oxi  Jo,
T
—-/ (", 7))
0

(5.14) NV 2, wez (o) =< ki,

Thus we obtain

(5.15) o™ | Leo(r L2y < ka-
From (5.14) and (5.10) we obtain
(5.16) 10" | Lo (1, wea ) < ks,

(N=2,1<g=<+00,N=3,1<¢g<6,p=k—2)
and

ap”

< k4.
3t =™

L2(1,Wp-1a(Q))

5.17)

Now we use dv" /9t as the test function in (5.5) and we obtain (3.28), (3.29).
Analogously as in Lemma 3.3 we obtain (3.30), (3.37), (3.38).

Theorem 5.1. Let the assumptions (3.2) - (3.6), (5.9), (5.9)",
vo € Wo2(Q, RY) n whi(Q, RY)

be satzsﬁed Then one can choose a subsequence of {(p", v" , 0" ( denoted
{(p", V", 6™)} again ) such that
(i) p" — p strongly in LP(Q7),1 < p < +00, p>e>0inQr;
(ii) v* — v strongly in L*>(I, WH*-12(Q, RMY),
v" — v strongly in LP(I, W*=12(Q, RY)Y),
D'v" — D'v weakly in L*(Qr,RN) (i = 1, ..., 2k);
(iti) D'6"™ — D0 weakly in L2(Qr);
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(iv) 8 > 0 ae. in O,
p"O" — pb strongly in L*(Q7);
() 2T 9P ey in L3(Or)
1% —_ ’
FTT Y d
v v
; — weakly in L? ;
(vi) ™ — Y weakly in L“(Qr)

(vii) p"v" — pv strongly in L*(Qr);
n

8vj 8vj
(viii) p"0"—L — pO—L weakly in L*(Qr);
ax; ax;
(ix) p"v!v} — pv;v; weakly in L*(07);
(x) (", v"))pdxdt — | ((v,v))¢dxdt, p €C'(Qr).
Or Or
Due to Theorem 5.1 we can pass to the limitin (3.7), (3.8), (3.9). We obtain
the following theorem

Theorem 5.2. Let the assumptions of Theorem 5.1 be satisfied andlet 1 < g <
+00 (N =2)orl1 <gq <6 (N =3). Then there exists (p, v, 0) such that
(5.18) pe L®, WH4(Q)), p > & a.e. in Q for some & > 0,

d
(5.19) 5’; e L¥(I, LY()),
(5.20) v € L®(I, W:(22, RY) N W, 2(2, RV)) N L3I, WH2(Q, RV)),

0
(5:21) 5~ € LAQ1), R),

(5.22) 6 € L®(I, L*()) N L2(I, WH2(Q)), 6 > 0 a.e. in O,
such that (1.2), (1.3) holds a.e. in Qr and (2.12) is fulfilled.

Remark. When we repeat all steps of Section 4 we obtain uniqueness as well.
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