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ON THE CR STRUCTURE OF THE
TANGENT SPHERE BUNDLE

ELISABETTA BARLETTA - SORIN DRAGOMIR

We adopt the methods of pseudohermitian geometry (cf. [16]) to study
the tangent sphere bundle U (M) over a Riemannian manifold M. If M is an
elliptic space form of sectional curvature 1 then U (M) is shown to be globally
pseudo-Einstein (in the sense of J.M. Lee, [12]).

1. Introduction.

Let M be a Riemannian manifold and U (M) its tangent sphere bundle. The
natural almost complex structure J of T (M) induces an almost CR structure
on U(M) (as a real hypersurface of T'(M)). Although J is rarely integrable (in
fact, only when M is locally Euclidean, cf. P. Dombrowski, [5]) H may turn out
to be a CR structure. For instance, if M is a space form then H is integrable (cf,
Section 3). We establish the following:

Theorem. Let M be a n-dimensional Riemannian manifold and H the natural
almost CR structure of U(M). The following statements are equivalent:
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i) (UM), H) is a strictly pseudoconvex CR manifold (of CR dimension
n — 1) whose Webster connection has a vanishing pseudohermitian torsion.

ii) M is an elliptic space form M"(c) of sectional curvature ¢ = 1.
Moreover; the natural pseudohermitian structure of U(M™(1)) is globally pseu-
do-Einstein (i.e. the Ricci tensor of the Webster connection is proportional to
the Levi form). In particular U(M" (1)) has positive pseudohermitian scalar
curvature and the first Chern class of its CR structure H vanishes.

As a corollary, the first statement in our Theorem yields a short proof of a
result by Y. Tashiro, [14] (the contact vector of U (M) is Killing iff M = M"(1)).
We employ the methods of pseudohermitian geometry (cf. S. Webster, [16])
rather those of contact (Riemannian) geometry (cf. D.E. Blair, [2], pp. 131-
138). The proof of the second statement in the Theorem relies on a result by
E.T. Davies & K. Yano, [4].

2. The Webster connection.

Let (X, T1 (X)) be a nondegenerate CR manifold of CR dimension m
(where T o(X) C T(X) ® C denotes its CR structure).
Let H(X) = Re{T1,0(X) & Ty,1(X)} be the maximally complex distribution of
X. Here Ty,1(X) = T1,0(X) and overbars stand for complex conjugation. Then
H (X) carries the complex structure Jy givenby Jx(V+V) = i(V—V), forany
V €T o(X), wherei = ~/—1. Assume X to be orientable and let 6 be a contact
I-form on X (i.e. 6 A (d0)™ # O everywhere on X) so that Ker(9) = H(X).
Let T be the characteristic direction of df (i.e. T |d® = 0) normalized so that
6(T) = 1. Then T is transverse to H(X). Let gg be the Webster metric of
(X, 0), givenby go(V, W) = (dO)(V, JxW), go(V,T) =0and go(T, T) = 1,
forany V, W € H(X) (cf. also (2.18) in [16], p. 34). By a result of S. Web-
ster, [16], there is a unique linear connection V on X (the Webster connection
of (X, 6)) determined by the following axioms 1) H (X) is parallel with respect
toV,2) VJx =0, Vgy = 0, and 3) n . Ty(V, W) = 0 forany V € T} o(X),
WeT(X)®C,whereny : T(X)® C — T (X) is the natural projection (asso-
ciated with the direct sum decomposition 7(X)® C = T o(X)® To,1 (X)® CT)
and Ty denotes the torsion tensor field of V. Cf. also N. Tanaka, [13]. The
pseudohermitian torsion t of V is given by tV = Ty(T, V) forany V € T (X)
(cf. also (1.20) in [16], p. 28). Then t is a trace-less self-adjoint (with respect
to go) endomorphism of 7(X). The Levi-Civita connection V¢ of the semi-
Riemannian manifold (X, gy) is related to the Webster connection by:

(1) VIW = Vy W + (Q(V, W) — AV, W)T +
+T(V)O(W) +6(V)IxW +0(W)JxV
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forany V, W € T(X), cf. Theorem 1 in [6]. This corrects the identity (A.6) in
[7] (the 1/2 factor should be omitted there). Here Q4 (V, W) = go(V, JxW) and
AV, W) = go(V, tW). Note that VT = 0 (by axiom 2). Hence:

2) ViV =1V +LrV

forany V € T (X). Here £ denotes the Lie derivative. On the other hand, axiom
3 yields:

3) toJy+Jxyotr=0.
Using (2) - (3) we may conduct the calculation:

0= (VpJx)V =V JxV — IxV;V =
= ‘L’Jxv +£TJXV - Jx‘CV — JxﬁTV =
= -2JxtV + (LyJx)V

so that to get (as t is H(X)-valued):

1
4) T:"szO(»CTJX)o

3. The tangent sphere bundle.

Let (M, G) be a n-dimensional Riemannian manifold. Let D be the Levi-
Civita connection of (M, G). Then D gives rise to a nonlinear connection (in
the sense of W. Bartel, [1]) N on T'(M). Precisely, there is a distribution N :
veT(M)— N, C T,(T(M)) so that:

®) T,(T(M)) = N, & Ker(d, IT)

forany v € T(M). Here I1 : T(M) - M is the natural projection. Let (U, x%)
be a local coordinate system on M and (IT"1(U), x, y') the naturally induced
local coordinates on 7(M). Let I‘; « (x) be the coefficients of D (with respect to
(U, x*)) and set:

0 j 0

oxi axt Loyl

where: . _
Ni(x,y) = Ti(x)y".
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Then {§/8x'} is a local frame of N (on IT~!(U)). For each v € T(M) let

By : Ty(M) — N, be the horizontal lift (i.e. the inverse of d,1T : N, — T,(M))
where x = I1(v). Locally:
0 )

'Baxi Cosxi
The vertical lift y, : T, (M) — Ker(d,II) is given by:

() = 2 0)
w) = —
Vv g7
for any w € T,(M). Here C : (—e,&) — T.(M) is the curve given by
C(t) =v+tw, |t| < ¢. Locally:
0 0

Yoxi T ay’

so that y is a bundle isomorphism. Let Q, : T, (T (M)) — Ker(d, 1) be the nat-
ural projection (associated with (5)). The Dombrowski map K, : T,(T (M)) —
T.(M) is givenby K = y~! o Q (cf. also [5]). Locally:

Next, we shall need the Sasaki metric § on T (M) given by:
gV,W)=GKV,KW)+ G(I1,V, [1,W)

for any V, W € T(T(M)). This is a Riemannian metric on 7 (M) and the
distributions N and Ker(I1,) are orthogonal (with respect to 2).

Set UM), = {veT,(M) : G.(v,v) = 1}. The disjoint union U (M)
of U(M), for all x € M is a compact real hypersurface of T (M) (and the total
space of a §"~!-bundle 7 : U(M) — M). The portion of U (M) over U is given

by the equation:
(6) gij()y'y =1
where g;; are the components of G (with respect to (U, x')). Note that:

N, C T,(U(M))

Ker(d,m) = T,(U(M)) N Ker(d,I)
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forany v € U(M). Let J be the natural almost complex structure of 7(M) given
byJ ,B——yandJoy_-—ﬁ Locally:
J

Sxt Byt

ay! Sxi

Set:
T1,0(U (M), = T'(T (M), N [T,(U (M) ® C]

where T1%(T(M)) C T(T(M)) ® C is the eigenbundle of J corresponding to
the elgenvalue i. Then H = T, o(U(M)) is an almost CR structure on U M 1)
(.e. HNH = 0). By aresult of P. Dombrowski, [5],if D is flat then (T (M), J )
is a complex manifold so that 7 follows to be integrable. For instance U (R") is
a CR manifold (of CR dimension n — 1).

Let P = o K. Then P, : Ker(d,IT) — N, is a linear isomorphism. We

shall need the following:

Lemma 1. The maximally complex distribution H(U(M)) of the almost CR
manifold (U(M), H) is given by:

HU(M)), = Ker(d,m) & [P,Ker(d,r)]

forany veU(M).

Proof Let E(z) — U (M) be the normal bundle of : : U(M) C T(M). Set
v=1y'9d/ By Then visa (globally defined) unit normal (vv eFE (z) yon U(M).

Set&’ = —Jv. Then &' is tangent to U (M). Locally &' = y'5/8x’. Let n’ be the
real 1-form on U (M) givenby n'(V) = g'(V, &), forany V € T (U (M)), where
g’ = 1*g is the metric induced on U (M) by the Sasaki metric § of T (M). Note
that H(U(M)) = Ker(n'). Also Ker(r,) C Ker(n). Set y; = g;¥/. Then
n'(8/8x') = y;. At this point Lemma 1 follows from the fact that a vertical
tangent vector X = B'd/dy' is tangent to U (M) iff g;; B'y/ = 0 (by taking
into account (6)).

Set U = {yn # 0} C w~1(U). The portion of Ker(r,) over U is the span
of {Y,},1 <a <n-—1, where:

3 3
Ay Ay =22

Y, = .
R Yn

Set pV = tan{fV} for any V € T(U(M)). Here tan, : T,(T(M)) —
T, (U (M)) is the natural projection associated with the decomposition:

T(T(M)) =T,(U(M)) ® E@),
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for any v € U(M). The restriction J of ¢ to H(U(M)) and the complex struc-
ture Jy ) of H(U(M)) (cf. Section 2) actually coincide. Note that J X, = Y,

where:
) )

sx* T %exn’
Thus (by Lemma 1) H = T1,0(U(M)) is (locally) the span of {T,} where
Ty, = Xy —iY,. Let R]’-k,Z be the components of the curvature tensor field R

of D (with respect to (U, x*)). Set:

Xy =

Rlie = leey

Note that:

§ 4 a
7 LI B
™ [(Sx’ 8xJ:, Y gyk

(so that the Pfaffian system dy’ + N (x, y)dx/ = 0 is integrable iff Rf, =0).
We establish the following:

Lemma 2. The almost CR structure H on U (M) is integrable if and only if:
(8) Ris+ AqRy, + AgR., =0

onU , for any local coordinate neighbourhood (U, x') on M.

Proof. The generators X,, Y, satisfy the commutation formulae:

8
[Xo, Xg] = (Xﬂ(Aa)—,Xa(Aﬂ))E; — (Rig + AoRL, + AgR! a) 5y

[Y‘x’ Yﬂ] = (Yﬂ(Aa) - Ya(Aﬂ)) F

P) ) ; i 0
[Xa, Y] = Yﬂa Xa(A,g)W+(Y,3(Na)—AaY,g(N,l))5—l

These follow from (7) together with the identities:

5 8 I A
2 == | L Lo
Sxi’ 9yl Tayk L oyt oyl |

A straightforward calculation shows that:

Xa(Ap) = Xp(Aa), Yo (Ap) = Yp(As),
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Yo(NE) — ApYe(ND) = Yp(NL) — AgYp(NY)

so that:
. . d
9 [Taa Tﬁ] = - ( ;,‘3 + AaR;in T Aﬁerza) ay,

Finally, from (9) and from:

) 0 ) a
Ta ' Aa - i
ox¢ By"‘ Sx”" ay"

we see that [T, T3] € M iff (8) holds on U.

Let X be areal (2m + 1)-dimensional manifold. Let (¢, &, n) be an almost
contact structure on X (in the sense of [2], pp. 19-20). The restriction of ¢ to
Ker(n) is a complex structure. Extend ¢ to Ker(n) ® C by C-linearity and set
Ty o(X) = Eigen(i). Then T1,9(X) is an almost CR structure (of CR dimension
m)on X. If (¢, &,n) is normal (in the sense of [2], p. 48) then (by a result
of [10]) Ty,0(X) is integrable. Going back to X = U(M), set £ = 2&’ and
n = (1/2)n’. Then (¢, &, n) is an almost contact structure on U (M). Next, set

= (1/4)g’. Then (¢, &, n, g) is a contact metric structure on U (M) (in the
sense of [2], p. 25). By aresult of Y. Tashiro, [14],if M = M"(1) (i.e. (M, G)
has constant sectional curvature 1) then (¢, &, n, g) is a Sasakian structure on
U(M). In particular it is normal so that, by applying the theorem of S. Ianus
cited above, we may conclude that U(M"(1)) is a CR manifold. Our Lemma
2 may be used to indicate examples of Riemannian manifolds M (other than
those covered by Tashiro’s theorem) for which U (M) is CR. We recall (cf. e.g.
[15]) that (M, G) is a Riemannian mamfold of quasi-constant curvature if its

curvature tensor field is given by:

(10)  Rf, = c{6gu — 8¢8ji} + b{(8 v — 8;v)vi + (vj gk — vegji)v*}

for some real valued functions ¢, b € C*° (M) and some unit tangent vector field
V = v'9/0x' on M. If this is the case we set M = M?, (V). See also [9]. We

obtain the following:

Proposition. Let M be a n-dimensional Riemannian manifold. Then:

(11) Rkyl+Rk[y]+szyk O

on U(M), is a sufficient condition for the integrability of the natural almost CR
structure H of UM). If M = M , (V) then (11) holds if and only if either n = 2
orn >3 and b = 0. In particular U(M"(c)) is CR for any space form M"(c).
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Proof. Clearly (11) yields (8) so that the first statement in the Proposition fol-
lows from Lemma 2. Next (by taking into account (10)):

Rfk)’i + Riy; + Rfj)’k = bfj}f'k
where:
ij’k = 5fyivk — 8 yivg + 8 vy — 5]{[}%01‘ + 8Eyivi — 8Eviv;
and f : U(M) — Ris f = v;y'. Note that:

T+ T = T + Ty = T+ T¢; = 0.

J

Clearly n = 2 or b = 0 yield (11). Viceversa, assume (11) holds. Then:
bfT ' =0

or
(n—2)bf (for —y) =0,

If n > 3 then b = 0. Indeed, if b(x) # O for some x € M then one may choose
u € U(M), so that {u, V,} span a 2-plane and G, (u, V;) # 0. Then f(u) # 0
and f(u)v'(x) — u’ s 0, a contradiction.

4. Proof of the theorem.

Let X be a manifold carrying the contact metric structure (¢, £, 17, g). Set
T = —& and & = —n. By the contact condition (dn = ® where ®(V, W) =
g(V,pW)) one has T |d® = 0. Assume T;o(X) = Eigen(i) (cf. section
3) to be a CR structure on X. Again by the contact condition gg = g so that
(X, T1,0(X)) is a strictly pseudoconvex CR manifold. Let V, V¢ be respectively
the Webster connection and the Levi-Civita connection of (X, g). By axiom 2)
one has VT = 0 so that (1) leads to:

(12) ViegE=—¢p-r1.

In particular, the almost contact metric structure (@, &, n, g) of X = U(M) sat-
isfies the contact condition (cf. [2], p. 133) so that the considerations above may
be applied to compute the pseudohermitian torsion T of (U (M), ). Precisely,
we establish:
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Lemma 3. Assume H = T o(U(M)) to be a CR structure. Then:

3 d

13 — = Hf (6 — wy") — ,
3 8
14 — = H—
(14 r8y’ P oxk

where:
k _ pkoj 4 ok sk
H = Ry’ +y:y" = §

Proof. Let us use (4) (with X = U(M)). Then (13) - (14) may be gotten from
the following identities:

[g’ V] - -—g ’
E(yp) = 2y'y*|jk, i,

3 . o 9
n(557) = 60 5z

where £ = 2y'§/8x' and v = y9/9y".
At this point we may prove the Theorem. Assume ii) holds. Then (11) holds
on U (M) so that (by the Proposition) U (M) is a CR manifold. On the other hand

M = M"(1) yields:

(15) Riy = 8f — yiy*

so that (by Lemma 3) t = 0. Viceversa, assume i) holds. Then Lemma 3
yields (15). Let x € M and X,v € T,(M) two unit tangent vectors so that
G.(X,v) = 0. Set X = X‘3/0x'. Let us apply (15) at v and contract with
X' in the resulting identity. This procedure leads to:

Réfij(x)Xivjve = X*

(as X'v; = 0) or:
R.(X,vyv=X
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which (by taking the inner product with X) yields constant sectional curvature 1.

Let us show Tashiro’s theorem (cf. [14]) follows from the first statement in
our Theorem. Indeed, if M = M"(1) then (with the arguments above) it makes
sense to consider the Webster connection and r = 0 yields normality by a result
in [6]. Thus U (M) is Sasakian (and any Sasakian structure is in particular K -
contact). Viceversa, if the contact structure (¢, &, n, g) of U(M) is K -contact
then V?& = —¢ (by (8) in [2], p.64) which together with (12) yields 7 = 0 and
the Theorem applies.

Since U (M" (1)) is (by the Theorem) a compact strictly pseudoconvex CR
manifold it follows (by a result of L. Boutet de Monvel, [3]) that U(M"(1)) is
locally embeddable (as a CR hypersurface of C"). In view of [12] it is natural to
ask whether U (M" (1)) is globally pseudo-Einstein.

Let K be the Ricci tensor field of the Sasakl metric g on T (M). By aresult
of E.T. Davies & K. Yano, [4], one has:

(5 & 1
(16) K <'S';7’ 5‘;;) = [jg + Zy {Rr erm + RLL jrm} ’

~ (3 5 1
(17) K<-£7,W)—2y {v Rigj + Ry o (1og~/_)}

~( 0 a 1
(18) K (’é; 5‘})‘,;) 4RfrkREszrys

where R;; denotes the Ricci curvature of (M, G) and A = det[g;;]. Seealso [8].
We need the Gauss equation (cf. [11], vol. II, p. 23) of U(M) in (T (M), g):

(19) R(X,Y,Z,W)=R(X,Y,Z, W)+
+¢'(X,a,2)g'(Y, a,W) — g'(X,a,W)g'(Y, a,Z)

forany X,Y,Z, W € T(U(M)). Here a, is the shape operator of :. Taking
traces in (19) leads to:

20) K°(X.Y) =KX, V) + g @X.a,¥) — g (X, a,V)l|ul = R(X, v, ¥, v)

where K is the Ricci curvature of (U (M), g") and w is the mean curvature
vector of 1. At this point, a calculation based on the identities (2) in [2], p. 130,

shows that: -
R(X,v,Y,v)=0
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forany X, Y e T(U(M)). Next (by taking into account:
8
a‘,g = O, avX = —X

for any X € Ker(r,), cf. [2], p.132) we obtain:

o3 S\ _#(5 @
Sxi’8xi ) Sxi’ 8xJ )’

1) KX, Y) =KX, Y)+ 1+ lnhg' (X, Y),

) ~
KX, —|=K|[X, O
Sx/ oxJ
for any X, Y € Ker(m,). Note that g(X,, Xg) = 2h,z where h; is the Levi
form of (U(M), 0). If M = R" then (16) - (18) and (21) lead to:
6 _ _
K5 =201+ [nlDhys
where K’ ;= K%(T,, T3). Recall (cf. ii) of Theorem 9 in [6]) that:

1
0 _ 1 . _
| Koug = Kap = Fhap
where K, ; is the (pseudohermitian) Ricci tensor (of the Webster connection of
(U(M), 9)). Thus U (R") is globally pseudo-Einstein. Similarly, if M = M"(1)
then (16) - (18) may be written as:

~f 6 ) 2n —3 n—2
K( )= gik — Vi Vi s

SxJ’ §xk 2 2
~{ 0 0 1
K= —)=sGr—mw,
<8y1 8yk> Z(g]k " Vi)
~ ( 0 ) 1 . .0 —
K e ey - = ‘g —61 "—‘—'1 A

(on U (M"(1)) which together with (21) furnish:

K05 =201+ |z
Thus (again by ii) of Theorem 9in [6]) R = 2n(n+|||])+n/2 > 0 (where R is
given by (2.17)in [16], p. 34). Let ¢; (H) € H*(U(M™(1)); R) be the first Chern

class of H. As U(M"(1)) is globally pseudo-Einstein we may apply a result of
J.M. Lee, [12], to conclude that ¢; () = 0.
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