THE VORONOVSKAYA THEOREM FOR SOME OPERATORS OF THE SZASZ-MIRAKJAN TYPE

LUCYNA REMPULSKA - MARIOLA SKORUPKA

We give the Voronovskaya theorem for some operators of the Szasz-Mirakjan type defined in the space of functions continuous on $[0, +\infty)$ and having the polynomial growth at infinity.

Some approximation properties of these operators are given in [2], [4].

1. Notations.

1.1. Let $\mathbb{R}_0 := [0, +\infty)$, $\mathbb{N} := \{1, 2, ...\}$, $\mathbb{N}_0 := \mathbb{N} \cup \{0\}$ and let $w_q(\cdot)$, $q \in \mathbb{N}_0$, be the weight function defined on \mathbb{R}_0 by the formula

(1)
$$w_0(x) := 1, \quad w_q(x) := (1 + x^q)^{-1} \quad \text{if} \quad q \ge 1.$$

Analogously as in [1], we denote by C_q , $q \in \mathbb{N}_0$, the space of real-valued functions f defined on \mathbb{R}_0 and such that w_q f is uniformly continuous and bounded function on \mathbb{R}_0 . The norm in C_q is defined by

$$||f||_q := \sup_{x \in \mathbb{R}_0} w_q(x) |f(x)|.$$

Entrato in Redazione il 29 agosto 1995.

AMS Subject classification: 41A36

Key words: Linear positive operator, Voronowskaya theorem.

For a fixed $q \in \mathbb{N}_0$ let

$$C_q^2 := \{ f \in C_q : f', f'' \in C_q \}$$
.

1.2. In [2] were introduced the operators L_n and U_n of the Szasz-Mirakjan type for functions $f \in C_q$, $q \in \mathbb{N}_0$,

(2)
$$L_n(f;x) := \sum_{k=0}^{\infty} p_{n,k}(x) f\left(\frac{2k}{n}\right),$$

(3)
$$U_n(f;x) := \sum_{k=0}^{\infty} p_{n,k}(x) \frac{n}{2} \int_{I_{n,k}} f(t) dt,$$

 $n \in \mathbb{N}$, $x \in \mathbb{R}_0$, where

(4)
$$p_{n,k}(x) := \frac{1}{\cosh nx} \frac{(nx)^{2k}}{(2k)!}, \quad k \in \mathbb{N}_0,$$

 $\sinh x$, $\cosh x$, $\tanh x$ are the elementary hyperbolic functions and

$$I_{n,k} := \left\lceil \frac{2k}{n}, \frac{2k+2}{n} \right\rceil, \quad k \in \mathbb{N}_0.$$

In [4] we have introduced the operators A_n an B_n in the space C_q :

(5)
$$A_n(f; x) := \frac{f(0)}{1 + \sinh nx} + \sum_{k=0}^{\infty} q_{n,k}(x) f\left(\frac{2k+1}{n}\right),$$

(6)
$$B_n(f; x) := \frac{f(0)}{1 + \sinh nx} + \sum_{k=0}^{\infty} q_{n,k}(x) \frac{n}{2} \int_{I_{n,k}^*} f(t) dt,$$

 $n \in \mathbb{N}, x \in \mathbb{R}_0$, where

(7)
$$q_{n,k}(x) := \frac{1}{1 + \sinh nx} \frac{(nx)^{2k+1}}{(2k+1)!},$$

and

$$I_{n,k}^* := \left\lceil \frac{2k+1}{n}, \frac{2k+3}{n} \right\rceil, \quad k \in \mathbb{N}_0.$$

It is clear that L_n , U_n , A_n and B_n , $n \in \mathbb{N}$, are a linear positive operators defined on every space C_q , $q \in \mathbb{N}_0$, and

(8)
$$L_n(1; x) = U_n(1; x) = A_n(1; x) = B_n(1; x) = 1$$

for each $x \in \mathbb{R}_0$ and $n \in \mathbb{N}$.

In [2] and [4] was proved that L_n , U_n , A_n and B_n , $n \in \mathbb{N}$, are a operators from C_q into C_q . Moreover, in [2] and [4] some approximation properties of these operators were given. In particular in [2] it was proved that if $f \in C_q$, $q \in \mathbb{N}_0$, there exists a positive constant M(q) depending only on q and such that for all $x \in \mathbb{R}_0$ and $n \in \mathbb{N}$ holds

(9)
$$w_q(x) |L_n(f;x) - f(x)| \le M(q) \omega \left(f; \sqrt{\frac{x+1}{n}} \right),$$

where $\omega(f; \cdot)$ is the modulus of continuity of f, i.e.

$$\omega\left(f;t\right) := \sup_{0 < h \le t} \left\| f\left(\cdot + h\right) - f\left(\cdot\right) \right\|_{q} .$$

The estimation (9) is true also for the operators A_n , B_n and U_n ([2], [4]).

2. Auxiliary results.

In this section we shall give some properties of the above operators, which we shall apply to the proofs of the main theorems. We set

(10)
$$S(nx) := \frac{\sinh nx}{1 + \sinh nx}, \qquad T(nx) := \frac{\cosh nx}{1 + \sinh nx},$$

$$V(nx) := 1 - \tanh nx,$$

for $n \in \mathbb{N}$ and $x \in \mathbb{R}_0$.

From (2) - (8) and (10), and by the elementary calculations, we obtain

Lemma 1. For each $x \in \mathbb{R}_0$ and $n \in \mathbb{N}$ we have

$$L_{n}(t-x;x) = -xV(nx),$$

$$L_{n}((t-x)^{2};x) = \left(2x^{2} - \frac{x}{n}\right)V(nx) + \frac{x}{n},$$

$$L_{n}((t-x)^{4};x) = \left(8x^{4} - \frac{12x^{3}}{n^{2}} + \frac{4x^{2}}{n^{2}} - \frac{x}{n^{3}}\right)V(nx) + \frac{3x^{2}}{n^{2}} + \frac{x}{n^{3}},$$

$$U_{n}(t-x;x) = -xV(nx) + \frac{1}{n},$$

$$U_{n}((t-x)^{2};x) = \left(2x^{2} - \frac{3x}{n}\right)V(nx) + \frac{x}{n} + \frac{4}{3n^{2}},$$

$$U_{n}((t-x)^{4};x) = \left(8x^{4} - \frac{28x^{3}}{n^{2}} + \frac{32x^{2}}{n^{2}} - \frac{21x}{n^{3}}\right)V(nx) + \frac{12x}{n^{3}} + \frac{16}{5n^{4}},$$

$$A_{n}(t-x;x) = x(T(nx) - 1),$$

$$A_{n}((t-x)^{2};x) = x^{2}(S(nx) - 2T(nx) + 1) + \frac{x}{n}T(nx),$$

$$A_{n}((t-x)^{4};x) = x^{4}(7S(nx) - 8T(nx) + 1) + \frac{12x^{3}}{n}(T(nx) - S(nx)) + \frac{x^{2}}{n^{2}}(7S(nx) - 4T(nx)) + \frac{x}{n^{3}}T(nx),$$

$$B_{n}(t-x;x) = x(T(nx) - 1) + \frac{1}{n}S(nx),$$

$$B_{n}((t-x)^{2};x) = x^{2}(S(nx) - 2T(nx) + 1) + \frac{2x}{n}(T(nx) - S(nx)) + \frac{4}{3n^{2}}S(nx).$$

$$B_{n}((t-x)^{4};x) = x^{4}(7S(nx) - 8T(nx) + 1) + \frac{28x^{3}}{n}(T(nx) - S(nx)) + \frac{x^{2}}{n^{2}}(35S(nx) - 32T(nx)) + \frac{17x}{n^{3}}T(nx).$$

Applying Lemma 1, we shall prove two lemmas.

Lemma 2. For every fixed $x_0 \in \mathbb{R}_0$ holds

(12)
$$\lim_{n \to \infty} n L_n (t - x_0; x_0) = 0 = \lim_{n \to \infty} n A_n (t - x_0; x_0) ,$$

$$\lim_{n \to \infty} n U_n (t - x_0; x_0) = 1 = \lim_{n \to \infty} n B_n (t - x_0; x_0) ,$$

(13)
$$\lim_{n \to \infty} n \begin{cases} L_n \left((t - x_0)^2; x_0 \right) \\ U_n \left((t - x_0)^2; x_0 \right) \\ A_n \left((t - x_0)^2; x_0 \right) \\ B_n \left((t - x_0)^2; x_0 \right) \end{cases} = x_0.$$

Proof. We shall give the proof only for L_n , because the proofs for U_n , A_n and B_n are analogous.

By Lemma 1 we get

$$nL_n(t-x;x) = \frac{-2nx}{e^{2nx}+1},$$

$$nL_n((t-x)^2;x) = x\left(\frac{4nx-2}{e^{2nx}+1}+1\right),$$

for $x \in \mathbb{R}_0$ and $n \in \mathbb{N}$, which immediately yield (12) and (13) for L_n .

Lemma 3. For every fixed $x_0 \in \mathbb{R}_0$ there exists a positive constant $M_1(x_0)$, depending only on x_0 , such that for each $n \in \mathbb{N}$ holds

(14)
$$\begin{cases} L_n \left((t - x_0)^4 ; x_0 \right) \\ U_n \left((t - x_0)^4 ; x_0 \right) \\ A_n \left((t - x_0)^4 ; x_0 \right) \end{cases} \leq M_1 (x_0) n^{-2}.$$

$$B_n \left((t - x_0)^4 ; x_0 \right)$$

Proof. For example we shall give the proof for A_n . From (10) we get for $x \ge 0$ and $n, r \in \mathbb{N}$

$$x^{r} |S(nx) - T(nx)| = \frac{2x^{r} e^{-nx}}{2 + e^{nx} - e^{-nx}} \le \frac{2x^{r}}{e^{nx} + 1} \le 2r! n^{-r},$$

$$x^{r} |1 - S(nx)| = \frac{2x^{r}}{2 + e^{nx} - e^{-nx}} \le \frac{2x^{r}}{e^{nx} + 1} \le 2r! n^{-r},$$

and similarly

$$x^{r} |1 - T(nx)| \le 2r! n^{-r},$$

 $0 \le S(nx) \le 1, \qquad 0 < T(nx) \le 1.$

Using these inequalities, we obtain from (11)

$$A_{n}\left((t-x_{0})^{4};x_{0}\right) \leq x_{0}^{4}\left\{7|S\left(nx_{0}\right)-T\left(nx_{0}\right)|+|1-T\left(nx_{0}\right)|\right\} + \frac{12x_{0}^{3}}{n}\left|S(nx_{0})-T\left(nx_{0}\right)|+\frac{x_{0}^{2}}{n^{2}}\left\{7|S\left(nx_{0}\right)-T\left(nx_{0}\right)|+3T\left(nx_{0}\right)\right\} + \frac{x_{0}}{n^{3}}T\left(nx_{0}\right) \leq 16\left(4!n^{-4}\right) + 24\left(3!n^{-4}\right) + n^{-2}\left(28n^{-2} + 3x_{0}^{2}\right) + \frac{x_{0}}{n^{3}}T\left(nx_{0}\right) \leq \left(3x_{0}^{2} + x_{0} + 556\right)n^{-2} \equiv M_{1}\left(x_{0}\right)n^{-2}$$

for every fixed $x_0 \ge 0$ and $n \in \mathbb{N}$. Hence the proof of (14) is completed.

The following lemma is proved in [4].

Lemma 4. For every fixed $p \in \mathbb{N}$ there exist the positive coefficients $a_{p,k}$ and $b_{p,k}$, $1 \le k \le \left[\frac{p+1}{2}\right]$, depending only on p, k and $a_{2m,m} = 1$, $b_{2m+1,m+1} = 1$ for $m \in \mathbb{N}$ and such that for all $n \in \mathbb{N}$ and $x \in \mathbb{R}_0$ holds

(15)
$$A_n\left(t^p;x\right) = S\left(nx\right) \sum_{k=1}^{\left[\frac{p}{2}\right]} a_{p,k} \frac{x^{2k}}{n^{p-2k}} + T\left(nx\right) \sum_{k=1}^{\left[\frac{p+1}{2}\right]} b_{p,k} \frac{x^{2k-1}}{n^{p-(2k-1)}},$$

where S(nx), T(nx) are defined by (10), [y] denotes the integral part of y. (As usual we assume that $\sum_{k=i}^{j} c_k = 0$ if i > j, for each $c_k \in \mathbb{R}$).

Remark. By the mathematical induction were proved the formulae similar to (15) for $B_n(t^p; x)$ ([4]) and for $L_n(t^p; x)$ and $U_n(t^p; x)$ ([2]), $n, p \in \mathbb{N}, x \in \mathbb{R}_0$.

The full formulae for $a_{p,k}$ and $b_{p,k}$ given in (15) are not necessary for the next properties of considered operators.

By Lemma 4 the following inequalities were derived in the papers [2] (for L_n and U_n) and [4] (for A_n and B_n).

Lemma 5. For every fixed $q \in \mathbb{N}_0$ there exists a positive constant $M_2(q)$ depending only on q such that for all $x \in \mathbb{R}_0$ and $n \in \mathbb{N}$ holds

(16)
$$w_q(x) L_n\left(\frac{(t-x)^2}{w_q(t)}; x\right) \le M_2(q) \frac{x+1}{n},$$

$$w_{q}(x)U_{n}\left(\frac{(t-x)^{2}}{w_{q}(t)};x\right)$$

$$w_{q}(x)A_{n}\left(\frac{(t-x)^{2}}{w_{q}(t)};x\right) \leq M_{2}(q)\frac{x+1}{n}.$$

$$w_{q}(x)B_{n}\left(\frac{(t-x)^{2}}{w_{q}(t)};x\right)$$

Now, using Lemma 5, we can prove.

Lemma 6. Let x_0 be a fixed point on \mathbb{R}_0 and $\varphi(\cdot; x_0)$ be a given function belonging to the space C_q , with some $q \in \mathbb{N}_0$, and such that

$$\lim_{t \to x_0} \varphi(t; x_0) = 0 \quad \left(\lim_{t \to 0+} \varphi(t; 0) = 0\right).$$

Then

(17)
$$\lim_{n\to\infty} L_n\left(\varphi\left(t;x_0\right);x_0\right) = 0,$$

(18)
$$\lim_{n \to \infty} U_n (\varphi (t; x_0); x_0) = 0 = \lim_{n \to \infty} A_n (\varphi (t; x_0); x_0) = \lim_{n \to \infty} B_n (\varphi (t; x_0); x_0).$$

Proof. We shall prove only (17), because the proof of (18) is analogous. By (2) we have for every fixed $x_0 \ge 0$ and $n \in \mathbb{N}$

(19)
$$w_q(x_0) L_n(\varphi(t; x_0); x_0) = w_q(x_0) \sum_{k=0}^{\infty} p_{n,k}(x_0) \varphi\left(\frac{2k}{n}; x_0\right).$$

Choose $\varepsilon > 0$. By the properties of $\varphi(\cdot; x_0)$ there exists a positive constant $\delta \equiv \delta(\varepsilon)$ such that $|\varphi(t; x_0)| < \frac{\varepsilon}{2}$ if $|t - x_0| < \delta$ and $t \ge 0$. Moreover, there exists a positive constant $M_3 \equiv M_3(q)$ such that

$$w_a(t) |\varphi(t; x_0)| \le M_3$$
 for $t \ge 0$.

Hence we get from (19)

$$w_q(x_0) | L_n(\varphi(t; x_0); x_0) | \le w_q(x_0) \sum_{k \in Q_{n,1}} p_{n,k}(x_0) \left| \varphi\left(\frac{2k}{n}; x_0\right) \right| +$$

$$+w_q(x_0)\sum_{k\in Q_{n,2}}p_{n,k}(x_0)\left|\varphi\left(\frac{2k}{n};x_0\right)\right|:=\Sigma_1+\Sigma_2,$$

where $Q_{n,1} := \{k \in \mathbb{N}_0 : \left|\frac{2k}{n} - x_0\right| < \delta\}$ and $Q_{n,2} := \{k \in \mathbb{N}_0 : \left|\frac{2k}{n} - x_0\right| \ge \delta\}$. Moreover, by (1) - (3) and by the above properties of $\varphi(\cdot; x_0)$, we have

$$\sigma_1 < \frac{\varepsilon}{2} \sum_{k=0}^{\infty} p_{n,k} (x_0) = \frac{\varepsilon}{2},$$

$$\Sigma_2 \leq M_3 w_q(x_0) \sum\nolimits_{k \in Q_{n,2}} p_{n,k}(x_0) \left(w_q\left(\frac{2k}{n}\right) \right)^{-1}.$$

But if $\left|\frac{2k}{n} - x_0\right| \ge \delta$, then $1 \le \delta^{-2} \left(\frac{2k}{n} - x_0\right)^2$ and further we get

$$\Sigma_2 \le M_3 \, \delta^{-2} w_q (x_0) \, \sum_{k \in Q_{n,2}} \, p_{n,k} (x_0) \left(w_q \left(\frac{2k}{n} \right) \right)^{-1} \left(\frac{2k}{n} - x_0 \right)^2$$

$$\leq M_3 \delta^{-2} w_q(x_0) L_n\left(\frac{(t-x_0)^2}{w_q(t)}; x_0\right),$$

which by (16) yields $\Sigma_2 \leq M_3 M_2(q) \frac{x_0 + 1}{n\delta^2}$ for all $n \in \mathbb{N}$.

It is obvious that, for a fixed x_0 , ε , δ , $M_2(q)$, M_1 , there exists a natural number $n_0 \equiv n_0$ (ε , δ , x_0 , $M_2(q)$, M_3) such that for all $n_0 < n \in \mathbb{N}$ holds

$$M_3 M_2(q) \frac{x_0+1}{n\delta^2} < \frac{\varepsilon}{2}.$$

Hence,

$$\Sigma_2 < \frac{\varepsilon}{2}$$
 for all $n > n_0$.

Summing up, we obtain

$$w_q(x_0) |L_n(\varphi(t; x_0); x_0)| < \varepsilon$$
 for $n > n_0$,

i.e.

$$\lim_{n\to\infty} w_q(x_0) L_n(\varphi(t;x_0);x_0) = 0.$$

From this and by (1) we obtain the desired assertion (17).

3. The Voronovskaya theorems.

The Voronovskaya theorem for the Bernstein operator is given in [3]. In this part we prove the similar theorems for our operators.

Theorem 1. If $f \in C_q^2$ with some $q \in \mathbb{N}_0$, then

(20)
$$\lim_{n \to \infty} n \{ L_n(f; x) - f(x) \} = \frac{x}{2} f''(x)$$

for every fixed $x \in \mathbb{R}_0$.

Proof. Let $x_0 \in \mathbb{R}_0$ be a fixed point. Then, by the Taylor formula, we can write for every $t \in \mathbb{R}_0$

(21)
$$f(t) = f(x_0) + f'(x_0)(t - x_0) + \frac{1}{2}f''(x_0)(t - x_0)^2 + \psi(t; x_0)(t - x_0)^2,$$

where $\psi\left(\,\cdot\,;\,x_{0}\right)$ is a function belonging to C_{q} and such that

$$\lim_{t\to x_0}\psi(t;x_0)=0.$$

From (21) and by (2) and (8) we get

(22)
$$L_{n}(f(t); x_{0}) - f(x_{0}) = f'(x_{0}) L_{n}(t - x_{0}; x_{0}) + \frac{1}{2} f''(x_{0}) L_{n}((t - x)^{2}; x_{0}) + L_{n}(\psi(t; x_{0}) (t - x_{0})^{2}; x_{0})$$

for every $n \in \mathbb{N}$. By Lemma 2 follows

(23)
$$\lim_{n \to \infty} n L_n (t - x_0; x_0) = 0,$$

(24)
$$\lim_{n \to \infty} n L_n \left((t - x_0)^2; x_0 \right) = x_0.$$

By (2) and the Hölder inequality we get for every $n \in \mathbb{N}$

(25)
$$\left| L_n \left(\psi \left(t; x_0 \right) (t - x_0)^2; x_0 \right) \right| \leq$$

$$\leq \left\{ L_n \left(\psi^2 \left(t; x_0 \right); x_0 \right) \right\}^{\frac{1}{2}} \left\{ L_n \left((t - x_0)^4; x_0 \right) \right\}^{\frac{1}{2}}.$$

Moreover, the function $\varphi(t; x_0) := \psi^2(t; x_0), t \ge 0$, satisfies the following conditions: $\varphi(\cdot; x_0) \in C_{2q}$ and

$$\lim_{t\to x_0}\varphi\left(t;x_0\right)=0.$$

From this and in view of Lemma 6 we get

(26)
$$\lim_{n \to \infty} L_n \left(\psi^2 (t; x_0); x_0 \right) \equiv \lim_{n \to \infty} L_n \left(\varphi (t; x_0); x_0 \right) = 0.$$

Using (26) and (14) we obtain from (25)

(27)
$$\lim_{n \to \infty} n L_n \left(\psi (t; x_0) (t - x_0)^2; x_0 \right) = 0.$$

Now, applying (23), (24) and (27), we immediately derive from (22)

$$\lim_{n\to\infty} n\Big\{L_n(f(t);x_0) - f(x_0)\Big\} = \frac{x_0}{2}f''(x_0).$$

Thus the proof of (20) is finished.

Analogously, using Lemmas 2, 3 and 6 and by (21), we can prove the following Voronovskaya theorem for the operators U_n , A_n and B_n .

Theorem 2. Let $f \in C_q^2$ with some $q \in \mathbb{N}_0$. Then, for every fixed $x \geq 0$, we have

$$\lim_{n \to \infty} n \left\{ U_n(f(t); x) - f(x) \right\} = f'(x) + \frac{x}{2} f''(x),$$

$$\lim_{n \to \infty} n \left\{ A_n(f(t); x) - f(x) \right\} = \frac{x}{2} f''(x),$$

$$\lim_{n \to \infty} n \left\{ B_n(f(t); x) - f(x) \right\} = f'(x) + \frac{x}{2} f''(x).$$

REFERENCES

- [1] M. Becker, Global approximation theorems for Szasz Mirakjan and Baskakov operators in polynomial weight spaces, Indiana Univ. Math. J., 27 (1) (1978), pp. 127-142.
- [2] B. Firlej L. Rempulska, Approximation of functions of several variables by some operators of the Szasz Mirakjan type, Fasciculi Mathematici (in print).
- [3] P.P. Korovkin, Linear operators and Approximation Theory, Moscow, 1959 (Russ).
- [4] L. Rempulska M. Skorupka, On approximation of functions by some operators of the Szasz Mirakjan type, Fasciculi Mathematici (in print).

Institute of Mathematics, Poznań University of Technology, Piotrowo 3A, 60-965 Poznań (POLAND)