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THE VORONOVSKAYA THEOREM FOR SOME
OPERATORS OF THE SZASZ-MIRAKJAN TYPE

LUCYNA REMPULSKA - MARIOLA SKORUPKA

We give the Voronovskaya theorem for some operators of the Szasz-
Mirakjan type defined in the space of functions continuous on [0, +c0) and
having the polynomial growth at infinity.

Some approximation properties of these operators are given in [2], [4].

1. Notations.

1.1. Let Ry := [0, +00), N := {1,2,...}, Ny := N U {0} and let wy (+),
g € Ny, be the weight function defined on R by the formula

(D) wy (x) =1, wy (x) = (1+xq)_1 if g>1.

Analogously as in [1], we denote by C,, g € Ny, the space of real-valued func-
tions f defined on Ry and such that w, f is uniformly continuous and bounded
function on Ry. The normin C, is defined by

1fllg := sup wy (x) [f () ].
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For a fixed g e Ny let

C;={fecC,: . eC,}.

1.2. In [2] were introduced the operators L, and U, of the Szasz-Mirakjan
type for functions f € C,, g € Ny,

0 2k

) Ly (f;%) 1= pus(x) f (—n—> ,
k=0

3) U (f; %) —ank<x>—/ @,

neN, x e Ry, where

1 (ax)*
coshnx (2k)! °

4) Pnk (x) 1= keNy,

sinh x, cosh x, tanh x are the elementary hyperbolic functions and

[2/( 2k +2
Ink =] -,
n n

:,, kGNo.

In [4] we have introduced the operators A, an B, in the space Cy:

0 X 2k +1
5 AGin=—LD Y g (~ni—> ,
k=0

1 + sinhnx

©  Bu(fixm=—tQ ankoc)—-/f(z)dt,

1+ sinhnx + sinh nx Ir,

n eN, x e Ry, where

1 (nx)2k+l
1 +sinhnx 2k + D!’

(7 Gnk (x) =

and

. [Zk-l-l 2k +3
In’k =

’ :,, kGNO.
n n
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It is clear that L,, U,, A, and B,, n € N, are a linear positive operators
defined on every space C,, g € Ny, and

(8) L, (l;x):Un (1;X)=A,, (1;x):Bn (1,)6)=1

for each x e Ry and n e N.

In [2] and [4] was proved that L,, U,, A, and B,, n € N, are a operators
from C, into C,. Moreover, in [2] and [4] some approximation properties of
these operators were given. In particular in [2] it was proved that if f € C,,
q € Ny, there exists a positive constant M (g) depending only on g and such that
for all x €e Ry and n € N holds

1
©) w, () Lo (f3 2) — f (0] < M(@) @ (f; a :: ) ,

where w(f; -) is the modulus of continuity of f,i.e.

o (fi1) = sup [+ —FO, .

O<h<t

The estimation (9) is true also for the operators A,, B, and U, ([2], [4]).

2. Auxiliary results.

In this section we shall give some properties of the above operators, which
we shall apply to the proofs of the main theorems. We set

sinh nx : coshnx
10 S = —— T I —
(10) (nx) 1+ sinhnx (nx) 1 +sinhnx

V (nx) :=1—tanhnx,

for n e N and x € Ry.
From (2) - (8) and (10), and by the elementary calculations, we obtain
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Lemma 1. For each x € Ry and n € N we have

L,(t—x;x)=—xV (nx),
2. = (2,2 _ % X
L, ((t——x) ,x)_ (Zx n) V(nx)+n ,

12x3 4x2
L,,((t—x)4;x)= 8x4——~x—+——f~—£— Vinx) +
n n? nl
3x? X
+—n’_2'+n_3s

1
U,(t —x;x) =—=xV(nx) + —,
n

3x X 4
U, (t—x);x)=(2x2-Z) v + -4+ —,
(( x)%; x) (x n) (nx) &~ + 2=
28x3  32x% 21
Un((t~x)4;x): 8x* — ad + x 22 Vinx) +
n n? n3
12x+16
n3  5n4’

(11)
At —x;x)=x(Tmx)—1),

An (=25 x) =2 (S () = 2T () + 1) + = T (o),
Ay (¢ —x)*; x) =x* (78 (nx) — 8T (nx) + 1) +

3 2
+ 1% (T (nx) — S(nx)) + % (78(nx) — 4T (nx)) + ,‘,lx? T (nx)

By (t = i) = x (T () = )+ - (ux)
B, ((t — x)*; x) = x*(S (nx) — 2T (nx) + 1) +
+ > (T (nx) — S (nx)) + —4;5 (nx) ,
n 3n*

4 4 28)63
B, ((t —x)*; x)=x* (78 (nx) — 8T (nx) + 1) + — (T (nx) =

2
— S (1) + 5 355 (%) — 32T (0)) + 2T (nx) .
n n

Applying Lemma 1, we shall prove two lemmas.
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Lemma 2. For every fixed xo € Ry holds

lim n L, (t — x0; x0) =0 = lim nA, (t — x¢: x0) ,
n—>o0

(12) " .
lim nU, (t —xp; x0) = 1= lim nB, (t — xp; xp) ,
n=>o0 n—>00
(L, ((t — x0)*; x0)
(13) lim n | = X

n—>00

Proof. We shall give the proof only for L,, because the proofs for U,, A, and

B, are analogous.
By Lemma 1 we get

—2nx
nLn(t—X;x)=mT,
4nx — 2
2. —
nL,,((t—x) ,x)-x(em_l_1 +1> ,

for x € Ry and n € N, which immediately yield (12) and (13) for L,.

Lemma 3. For every fixed xy € Ry there exists a positive constant My (xg),
depending only on xy, such that for each n € N holds

(L, ((t — x0)*; x0)
U, ((t — x0)*; xo)
An ((t = x0)*; x0
| B, ((t = x0)*; xo0

(14) < My (xo)n™2.

A

Proof. For example we shall give the proof for A,,.
From (10) we get forx > 0O and n,r e N

. 2x"e ¥ 2x" —
xX"|Snx)—T (nx)| = ApTTR—— < 7 1 <2r'n™",
2x" 2x”
X |1 =S (nx)] = u < <orin,
2+enx _e—nx enx +1
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and similarly
X" 1 =T (mx)| <2rln",

0 <Skmx) <1, 0 < Tmx) <1.
Using these inequalities, we obtain from (11)

An (0 = x0)* 5 x0) < x5 {71S (nx0) — T (nxo) |+ 1 = T (nxo) [} +

12x§ xg
+—n— |S(nxo) — T (nxo)| + = {7 1S (nxo) = T (nxo)| + 3T (nxo)} +

+23 T (nx0) < 16 (41n7) 424 (31n~*) + n~2 (28072 4 322) +
n
+xon3 < (3x§ + xo + 556) n?= M, (xg)n~2
for every fixed xo > 0 and n € N. Hence the prbof of (14) is completed.

The following lemma is proved in [4].

Lemma 4. For every fixed p € N there exist the positive coefficients ay ; and
bpr, 1 <k < [%—I] depending only on p, k and aymm = 1, bypiime1 = 1
Jor m € N and such that for all n e N and x € Ry holds

[5] 2% [5] 21
15) A, (17 x) = S(nx)Zapk —— + T (1) Z bk

where S(nx), T (nx) are defined by (10), [y] denotes the integral part of y.
(As usual we assume that Y |_. c, = 0 ifi > j, for each ¢y € R).

Remark. By the mathematical induction were proved the formulae similar to
(15) for B, (¢7; x) ([4]) and for L, (¢7; x) and U,, (¢t?; x) (I2D,n, peN, x € Ry.

The full formulae for a,, ; and b, ; given in (15) are not necessary for the

next properties of considered operators.
By Lemma 4 the following inequalities were derived in the papers [2] (for

L, and U, ) and [4] (for A, and B,).

Lemma 5. For every fixed q € Ny there exists a positive constant M,(q) de-
pending only on q such that for all x € Ry and n € N holds

t—x)? 1
(16) wq<x>Ln< ROR )
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g (=0
wq(x) n W,x

2
wq<x)An<“ a2 ) < it

.__________._.’ x
wy, (2) n

(t—x)*
wq(x)Bn (—wq(t—),x> ‘

Now, using Lemma 5, we can prove.

Lemma 6. Let xo be a fixed point on Ry and ¢ (-; x9) be a given function be-
longing to the space C,, with some q € Ny, and such that

lim ¢ (¢; xg) =0 (lim o (t;0) :O) .
t—>xp t—0+

Then
a7 lim L, (¢ (#; x0) ; x0) =0,
(18)  lm U, (p (6 x0)5 x0) =0 = lim 4, (¢ (1 %) ; x0) =

lim B, (¢ (¢; x0) ; Xo) .
n—>o0

Proof. We shall prove only (17), because the proof of (18) is .analogous.
By (2) we have for every fixed xo > 0 and n e N

ad 2
(19) wy (%0) Ln (¢ (£ X0) ; X0) = wy (X0) Y _ puk (x0) @ (—’;IE xo) -
k=0

Choose ¢ > 0. By the properties of ¢ (- ; xp) there exists a positive constant
8 = § (¢) such that |p (¢; x0) | < % if |t — xo] < § and ¢ > 0. Moreover, there
exists a positive constant M3 = M3 (g) such that

wq (1) o (¢; x0)| < M3 for +>0.

<2k )
@l —;X0
n

Hence we get from (19)

wy (%0) 1 La (@ (5 %0) ; X0) | < wg (x0) Y Puk (o) +

ke Qn,l
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(2k )
Yi{—:X
n

where 0, | := {keNo s -xO‘ < 5} and @0, := {keNo : [2n—k —xol > 8}.

n

Moreover, by (1) - (3) and by the above properties of ¢ (-; xy), we have

+wg (x0) Y Pk (%) =3+ 3,

ke Qn.Z

£ 00 £
o<z Zk:O Pnk (X0) = =,

26\ !
3 < M3wq (xo) ZkeQuz Pnk (¥o) (wq (7)) '

But if l% — xof > 8, then1 < 8§72 (zn—k — xo)2 and further we get

~ 26N\ 2k 2
3y < M36 2wq (x0) ZkeQ,,z P (X0) (wq (;‘)) <—’;‘ - xo)

t — 2
=< M38_2wq (x0) Ly <£"'_)£9‘)— X ) )

w, (1)

which by (16) yields =, < M3M, ()% forall n e N.
It is obvious that, for a fixed x¢, €, §, M2(g), M, there exists a natural
number ny = no (&, 8, xo, M2(q), M3) such that for all ny < n € N holds

X0+ 1 &
Mi M -
M 2(9) <3
Hence, .
2y < 5 for all n>ngp.

s

Summing up, we obtain
wy (x0) Ln (¢ (¢, x0) 5 x0) | <& for n > ng,

1.e.
ngrggo Wy (x0) Ly (¢ (25 x0) 5 x0) = 0.

From this and by (1) we obtain the desired assertion (17).
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3. The Voronovskaya theorems.

The Voronovskaya theorem for the Bernstein operator is glven in [3]. In
this part we prove the similar theorems for our operators.

Theorem 1. If f € C; with some q € Ny, then

(20) lim n{L, (f;x) = f(O)} =5 f”(X)

for every fixed x € Ry.

Proof. Let xo € Rq be a fixed point. Then, by the Taylor formula, we can write
forevery t e Ry

1
(21) f@) = f (xo) + f' (x0) (t — x0) + Ef” (x0) (¢ — x0)* +

+ 9 (85 x0) (t — x0)* ,

where ¥ (-; xo) is a function belonging to C, and such that
lim ¢ (¢; x9) = 0.
t—>Xp

From (21) and by (2) and (8) we get

(22) Ly (f(©); x0) = f (x0) = f' (x0) Ly (t — x0; x0) +

1
+ 517 (x0) Ly (¢ —x)%; x0) + Ly, (¥ (t; x0) (¢ — x0)%; x0)

for every n € N. By Lemma 2 follows

(23) hm nL,({—xo;x0)=0,
(24) Hm n Ly ((t = x0)%; x0) = X
n—0o0

By (2) and the Holder inequality we get for every n e N

25 | L (¥ (55 %0) (¢ = x0)%; x0)| <
< {Ln (¥* (5 x0); %0)}* {Ly (£ = x0)*; x0))

B —
Nl—
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Moreover, the function ¢ (¢; xg) = ¥2(t; x9), t > 0, satisfies the following
conditions: ¢ (-; xp) € Co, and

tlim o (t;x9) =0.
—> X0
From this and in view of Lemma 6 we get
(26) lim L, (¥ (#; x0); x0) = lim L, (¢ (t; %0) ; x0) = 0.
n—>00 n—0o0
Using (26) and (14) we obtain from (25)
27) lim nL, (¥ (¢; x0) (t — x0)*; x0) = 0.
n—oo
Now, applying (23), (24) and (27), we immediately derive from (22)
. X0 Ly
Jim Ly (f0):x0) = f (ko) | = 2277 o)

Thus the proof of (20) is finished.

Analogously, using Lemmas 2, 3 and 6 and by (21), we can prove the
following Voronovskaya theorem for the operators U,, A, and B,,.

Theorem 2. Let f € qu with some q € Ny. Then, for every fixed x > 0, we have
lim n{U, ; = f’ Z
Jim n{U, (@00 - £0)] = £+ 25w,
lim n{4, (f@); ) - f@)] = 2 /@)
15 00 n L] 2 s

lim n{B, (£ (1); %) - f@f =1+ %f”(x).
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