MEASURES WITH RELATIVELY NORM COMPACT RANGE AND ∞ - NUCLEAR OPERATORS

DUMITRU POPA

We prove that measures with relatively norm compact range corresponds to the ∞ -nuclear operators and that to a p-Bochner integrable function (resp. to a p-Pettis integrable function) correspond a p-nuclear operator (resp. a q-nuclear operator).

Let S be a set, Σ be a σ -field of subsets of S, X be a Banach space $G:\Sigma \longrightarrow X$ a countably additive vector measure, $\|G\|(S)$ the semivariation of G, $B(\Sigma)$ the Banach space of all scalarly totally measurable functions under the supnorm. Recall also, see [2], that given $1 \le r \le \infty$ with r^* the conjugate of r, i.e. $\frac{1}{r} + \frac{1}{r^*} = 1$, an operator $U \in L(X, Y)$ is called r-nuclear operator if U has a representation of the form: $U = \sum_{n=1}^{\infty} \sigma_n x_n^* \otimes y_n$ with $(\sigma_n) \in l_r$, $(\text{resp.}(\sigma_n) \in c_0 \text{ for } r = \infty)$, $(x_n^*) \in w_\infty(X^*)$, $(y_n) \in w_{r^*}(Y)$ and the r-nuclear norm of U is $: N_r(U) = \inf l_r(\sigma_n) w_\infty(x_n^*) w_{r^*}(y_n)$ where the infimum is taken over all possible representation of U as above. As is well known the class of all r-nuclear operators is a normed ideal of operators with respect to the r-nuclear norm denoted by (Nuc_r, N_r) (see also [2]). For all notations and notions used and not defined we refer the reader to [1], [2].

Entrato in Redazione l'8 gennaio 1996.

Theorem 1. Let $G: \Sigma \longrightarrow X$ be a countably additive vector measure and $U: B(\Sigma) \longrightarrow X$ be the operator $U(f) = \int_S f dG$. Then G has relatively norm compact range if and only if U is a ∞ -nuclear operator. In this case:

 $N_{\infty}(U) = ||G||(S)$. In particular, G has a representation of the form:

$$G(E) = \sum_{n=1}^{\infty} \sigma_n \lambda_n(E) x_n, E \in \Sigma, \text{ where } (\sigma_n) \in c_0, (\lambda_n) \in w_{\infty} (B(\Sigma)^*),$$

$$(x_n) \in w_1(X).$$

Proof. \Longrightarrow There exists a probability measure $\mu: \Sigma \longrightarrow [0,1]$ such that $G << \mu$ ([1], p. 263). Let $f = \sum_{j=1}^k y_j \chi_{E_j}$ be a simple function, $F : \Sigma \longrightarrow X$, $F(E) = \int_E f d\mu$ and $V : B(\Sigma) \longrightarrow X$, $V(g) = \int_S g f d\mu$. Then $V = \sum_{j=1}^k \lambda_j \otimes y_j$, where $\lambda_j(g) = \int_{E_j} g d\mu$, $g \in B(\Sigma)$. We have evidently $\|\lambda_j\| = \mu(E_j)$, hence $V \in Nuc_{\infty}(B(\Sigma), X)$ and $N_{\infty}(V) \leq w_1(y_j\mu(E_j)) =$ $||f||_{Pettis} = ||F||(S)$. Let now $V = \sum_{n=1}^{\infty} \sigma_n \nu_n \otimes x_n$ be a ∞ -nuclear representation of V. Then $y_j \mu(E_j) = V(\chi_{E_j}) = \sum_{n=1}^{\infty} \sigma_n \nu_n(E_j) x_n$ and thus for each $x^* \in X^*$ we have $\sum_{j=1}^{k} |x^*(y_j)| \mu(E_j) \le \sum_{n=1}^{\infty} |\sigma_n| \sum_{j=1}^{k} |\nu_n(E_j)| |x^*(x_n)| \le \sum_{n=1}^{\infty} |\sigma_n| \|\nu_n\| |x^*(x_n)|.$ This implies that $||f||_{Pettis} \leq N_{\infty}(V)$. Hence $N_{\infty}(V) = ||f||_{Pettis}$, for f a simple function. If G has relatively norm compact range then: $\|G_{\pi} - G\|$ $G\|(S) \longrightarrow 0$ where $G_{\pi}(E) = \int_{E} g_{\pi} d\mu$ and $g_{\pi} = \sum_{E \in \pi} \frac{G(E)}{\mu(E)} \chi_{E}$ (see [1]). Let U_{π} be the operator associated to g_{π} as above. Then U_{π} is a ∞ -nuclear operator and $N_{\infty}(U_{\pi}) = \|g_{\pi}\|_{Pettis} = \|G_{\pi}\|(S)$. Since $U_{\pi_1} - U_{\pi_2}$ is the operator associated to $g_{\pi_1}-g_{\pi_2}$ we have again $N_{\infty}(U_{\pi_1}-U_{\pi_2})=\|g_{\pi_1}-g_{\pi_2}\|_{Pettis}=$ $||G_{\pi_1} - G_{\pi_2}||(S) \longrightarrow 0$, i.e. $(U_{\pi}) \subset Nuc_{\infty}(B(\Sigma), X)$ is a Cauchy net for the ∞ -nuclear norm. Since $(Nuc_{\infty}, N_{\infty})$ is a normed ideal of operators then, there exists $T \in Nuc_{\infty}(B(\Sigma), X)$ such that $N_{\infty}(U_{\pi} - T) \longrightarrow 0$. As evidently $U_{\pi} \longrightarrow U$ with respect to the operatorial norm we must have U = T, i.e. U will be a nuclear operator. Since $N_{\infty}(U_{\pi}) \longrightarrow N_{\infty}(U)$ and $N_{\infty}(U_{\pi}) =$ $||G_{\pi}||(S) \longrightarrow ||G||(S)$ we obtain also $N_{\infty}(U) = ||G||(S)$. Conversely if U is a ∞ -nuclear operator then U will be a compact operator hence, as G(E) = $U(\chi_E)$, the range of G will be relatively norm compact. The last part of the theorem is clear.

Corollary 2. Let $\mu : \Sigma \longrightarrow R_+$ be a countably additive measure. Then the injective tensor product $L_1(\mu) \otimes_{\varepsilon} X$ coincide with $Nuc_{\infty}(L_{\infty}(\mu), X)$.

Proof. It is well known that $L_1(\mu) \otimes_{\varepsilon} X = K(\mu, X) = \{G : \Sigma \longrightarrow X \mid G \text{ countably additive with the relatively norm compact range and <math>G << \mu\}$ (see [1]). By Theorem 1, $K(\mu, X) = Nuc_{\infty}(L_{\infty}(\mu), X)$.

In [3] for a unconditionally norm convergent series $\sum_{n=1}^{\infty} x_n$ in X is defined the countably sum of segments:

$$\sum_{n=1}^{\infty} \left[-x_n, x_n \right] = \left\{ \sum_{n=1}^{\infty} \alpha_n x_n \mid (\alpha_n) \in l_{\infty}, \|\alpha_n\| \le 1 \right\}.$$

Using Theorem 1 we obtain also the following result which is proved in [3], Prop. 1.4 with a different proof.

Corollary 3. Let $G: \Sigma \longrightarrow X$ be a countably additive vector measure with relatively norm compact range. Then there exists an unconditionally norm convergent series $\sum_{n=1}^{\infty} y_n$ in X such that $G(\Sigma) \subset \sum_{n=1}^{\infty} [-y_n, y_n]$.

Proof. By Theorem 1 there exists $(\sigma_n) \in c_0$, $(\lambda_n) \in w_\infty$ $(B(\Sigma)^*)$, $(x_n) \in w_1(X)$ such that $G(E) = \sum_{n=1}^\infty \sigma_n \lambda_n(E) x_n$, $E \in \Sigma$. Then the series $\sum_{n=1}^\infty y_n$ where $y_n = \sigma_n \|\lambda_n\| x_n$ is unconditionally norm convergent in X and $G(E) \in \sum_{n=1}^\infty [-y_n, y_n]$ for each $E \in \Sigma$.

In the following theorem, which completes the above results, for a (S, Σ, μ) a finite measure space and $1 \leq p < \infty$ we denote by $P_p(\mu, X)$ the space of all functions $f: S \longrightarrow X$ μ -Pettis integrable for which $x^*f \in L_p(\mu)$ for every $x^* \in X^*$ which is a normed space when endowed with the so called p-Pettis norm $\|f\|_{pPe} = \sup_{\|x^*\| \leq 1} \left(\int_S |x^*f|^p \right)^{1/p}$ and by $I_p(\mu, X) \subset P_p(\mu, X)$ the subspace of $P_p(\mu, X)$ formed by those functions $f \in P_p(\mu, X)$ such that there exists a sequence (f_n) of simple functions such that $\|f_n - f\|_{pPe} \longrightarrow 0$. By $L_p(\mu, X)$ we denote the space of all p-Bochner integrable function.

Theorem 4. Let $1 \le p < \infty$, $f: S \longrightarrow X$ be a Pettis integrable function and $U_f: L_\infty(\mu) \longrightarrow X$ be the operator $U_f(g) = P - \int_S gf d\mu$.

- a) If $f \in L_p(\mu, X)$ then U_f is a p-nuclear operator.
- b) If $f \in I_p(\mu, X)$ then U_f is a q-nuclear operator. (here q is the conjugate of p, i.e. $\frac{1}{p} + \frac{1}{q} = 1$).

Proof. a) Let $f = \sum_{i=1}^n x_i \chi_{E_i} \in L_p(\mu, X)$ be a simple function. Then we have $U_f = \sum_{i=1}^n \lambda_i \otimes x_i$ where $\lambda_i(g) = \int_{E_i} g d\mu$, $g \in L_{\infty}(\mu)$ and hence $U_f = \sum_{i=1}^n \sigma_i \alpha_i \otimes y_i$ where $\sigma_i = \|x_i\| (\mu(E_i))^{\frac{1}{p}}$, $\alpha_i = \frac{\lambda_i}{\mu(E_i)}$, $y_i = \frac{x_i}{\|x_i\|} (\mu(E_i))^{\frac{1}{q}}$; thus U_f is p-nuclear and $N_p(U_f) \leq l_p(\sigma_i) w_{\infty}(\alpha_i) w_q(y_i) = \|f\|_p(\mu(S))^{\frac{1}{q}}$. Let $f \in L_p(\mu, X)$ and (f_n) be a sequence of simple functions such that $\|f_n - f\|_p \longrightarrow 0$; hence $\|f_n - f_m\|_p \longrightarrow 0$. We have $N_p(U_{f_n} - U_{f_m}) = N_p(U_{f_n - f_m}) \leq \|f_n - f_m\|_p(\mu(S))^{\frac{1}{q}}$ and hence (U_{f_n}) is a Cauchy sequence with respect to the p-nuclear norm. Since $U_{f_n} \longrightarrow U_f$ in operatorial norm and (Nuc_p, N_p) is a normed ideal of operators we obtain that U_f is a p-nuclear operator.

b) If $f = \sum_{i=1}^{n} x_i \chi_{E_i} \in I_p(\mu, X)$ is a simple function then $U_f = \sum_{i=1}^{n} \lambda_i \otimes x_i$. As $l_q((\mu(E_i))^{\frac{1}{q}}) = (\mu(S))^{\frac{1}{q}}$, $w_\infty\left(\frac{\lambda_i}{\mu(E_i)}\right) = 1$, $w_p(x_i(\mu(E_i))^{\frac{1}{p}}) = \|f\|_{pPe}$ we obtain that U_f is q-nuclear and $N_q(U_f) \leq \|f\|_{pPe}(\mu(S))^{\frac{1}{q}}$. From this point the proof of b) is similar with that of a) so we omit it.

REFERENCES

- [1] J. Diestel J.J. Uhl, Vector measures, Providence R.I. A.M.S., 1977.
- [2] A. Pietsch, Operator ideals, Veb. Deutscher Verlag der Wiss., Berlin, 1978.
- [3] C. Pineiro L. Rodriguez-Piazza, Banach spaces in which every compact lies inside the range of vector measure, Proc. Amer. Math. Soc., 114 (2) (1992), pp. 505-517.

Department of Mathematics, University of Constanta, Bd. Mamaia 124, 8700 Constanta (ROMANIA)