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MONOTONE ITERATIVE METHOD FOR
CARATHEODORY SOLUTIONS OF
DIFFERENTIAL-FUNCTIONAL EQUATIONS

BARBARA ZUBIK-KOWAL

The paper deals with initial problems for differential-functional equa-
tions. The sufficient conditions for the existence of some monotone function
sequences {u,}, {v,} are given. The sequences are uniformly convergent to the
solution y of the given problem. For every n the functions u,, v, are the solu-
tions of some linear initial problems. The error estimation of the approximate
solutions is given. The Caratheodory solutions of the differential-functional
equations are considered. The differential inequalities technique is applied.

1. Introduction.

Let X € R be an interval. We will denote by C(X) the set of all functions
n : X — R continuous on X. Let AC(X) C C(X) denote the subspace of
absolutely continuous functions from X into R. For X = [a, b] we will denote
by L(X) the set of all functions n : X — R, R, = [0, +00), measurable on
[a, b] and such that fab n(t)dt < +o0.

Let us adopt the following notation: Iy = [—7,0], I =[0,a], I* = I, U1,
where 7 € R, and a > 0. For a given function 1 : [-7,a] — R and a given
point x € [0, a], we define the function n, : Iy — R in the following way
ne(®) = n(x + 1), t € I,. We denote by || - ||o the supremum norm in the space
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C(lp). We will need the definition of the inequality between two real functions
a, B X - R. Wesay that o < g if and only if a(x) < B(x) forevery x € X.

Suppose that f: I x R x C(ly) — R, wy € C(1p) are given functions. We
consider the following Cauchy problem:

(1) ¥y (x) = f(x,y(x), y,) forae. xel,
(2) y(x) = wo(x), x € Iy.

In this paper we consider the Caratheodory solutions of (1), (2). A function
y : [—=71,a0] & R,0 < a9 < a, is said to be the Caratheodory solution of
problem (1), (2) if

(1) y is continuous on [—1, a¢] and absolutely continuous on [0, ao],

(ii) y satisfies equation (1) for almost every x € [0, ag],

(iii) y satisfies initial condition (2).

It is required that f satisfies the following Caratheodory conditions.

Assumption Al.

19 £(-, p, w) is measurable for every (p, w) € R x C(Ip),

2% f(x, -, ) is continuous for almost every x €1,

3% for every fixed (%, p, W) there exist r > 0 and a function m € L([X —
r, X +r]) such that | f(x, p, w)| <mx) forpe(p—r, p+r), lw—wlp < r
and for almost every x € (X —r, X +1).

The following result is a special case of the theorem given in [5].

Proposition. If Assumption Al is satisfied and wg € C(ly), then there is 0 <
ap < a such that the solution y of problem (1), (2) exists on [—1, ag].

The theorems on the uniqueness and on the continuous dependence can be
found in [3].

In this paper we give sufficient conditions for the existence of two function
sequences {u,}o2 5, {Untoegs Un, Uy : [—7, a] — R satisfying the conditions:

(iv) forevery n =1, 2, . .. the functions u,, v, are the Caratheodory solu-
tions of some linear differential-functional equations,

(v) the sequences {u,}52, {Us}5o, are monotone:

Upy1 > Uy, Upg1 SV, forn=0,1,...

and lim,_, #, = lim, o v, = y uniformly on the interval [—z, a], where y
is the solution of problem (1), (2) on the interval [—1, a].

We will apply the theorems on differential and differential-functional in-
equalities. The classical theory of ordinary differential inequalities is described
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in the monographes [10], [8], [11]. Classical differential-functional inequalities
were considered in [9], [1]. Differential inequalities in the Caratheodory sense
were studied in [10], Theorem 16.2. In this paper we will apply the following
theorem on differential-functional inequalities in the Caratheodory sense which
can be easily derived from Theorem 5 [2].

Comparison Theorem. Let y € C(I*), y € AC(I) and satisfies the conditions
19 y(x) < wo(x), x €y,
20 v/ (x) < f(x, v(x), vx) almost everywhere in I.

Then we have
y(x) <o), xel”,

where w : I* — R is the maximal solution of the comparison problem

w'(x) = f(x,0(x), wy) fora.e x €l,

w(x) = wo(x), x € Iy.

The extremal solutions of differential-functional equations in the Caratheo-
dory sense were considered in [4], [2]. '

The approximation method of solving problem (1), (2) is considered in this
paper. The method is called the Chaplygin method and it was initiated in [6]. The
monographes [8], [10] contain the results. The essence of the method consists
in the consideration together with the differential equation another equation (or
equations) which is (are) obtained by the linearization of the first one. The solu-
tions of the linear equations approximate the solutions of the given problem.

The Chaplygin method for the classical solutions of the ordinary differen-
tial-functional equations is considered in [7], where only fragmentary lineariza-
tion of the right side of the equation is performed. The auxiliary equation for the -
Chaplygin method was obtained by the linearization with respect to the argument
representing the value of the function at the point. The linearization with respect
to the functional argument was not considered in the paper. It has an effect on
the error estimate of the method. The Chaplygin method studied in [7] is of the

first order.

In this paper we construct linear differential-functional equations, which so-
lutions satisfy conditions (iv), (v). We give the error estimate of the method. The
result of this paper is a generalization of the results in [10] (Theorems 31.1-31.3),
[8], [7] on the differential-functional equations and the Caratheodory solutions.

The result of this paper is new even for the classical solutions of the diffe-

rential-functional equations.
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2. Construction of monotone iterative sequences.
The following assumptions will be needed throughout the paper.

Assumption A2. Suppose that the function f satisfies the conditions

19 f is nondecreasing with respect to the functional variable,

20 there exist the derivatives D,f(x, p,w), Dy, f(x, p,w) for (p,w) €
R x C(lp) and for almost every x € I,

39 the functions D,f(x,-, ), Dy, f(x,-,-)are continuous on R x C(ly) for
almost every fixed x € I,

4% D, f(x, p, w) = 0 for (p, w) € R x C(Iy) and for almost every x € 1,
and the function D, f(x, -, -) is nondecreasing on R x C(lp) for almost every
fixedx el,

5° Dy, f(x, p,w)h > 0 for he C(Iy), h > 0, (p, w) € R x C(lp), almost
every fixed x € I, and if additionally w,w € C(lp), w <w, p,peR, p < p,
h e C(ly), h 2 0, then Dy, f(x, p,w)h < Dy f(x, p, W)h for almost every
fixed x el.

Assumption A3. Suppose that
- 1% the initial functions a, B € C (Ip) satisfy the inequalities @ < wy < B,
29 the functions u, v € C(I*), u, v e AC (I) satisfy the initial inequalities

(3) | u(x) < a(x) < wolx) < Bx) < vx), x€lo,
and the differential-functional inequalities

4) u'(x) < f(x,u(x),uy) forae xel,
B) | v'(x) > f(x,v(x),v,) forae xel.

For the given functions u, v satisfying Assumption A3 we define the func-
tions G(-, -, ;u), H(-, -, ;u,v) : I x R x C(ly) — R in the following way

G(x, p,wsu) = f(x,u(x), uy) + Dy f(x, u(x), uy)(p — u(x)) +
+ Dwf(xa u(x), u)(w — Uy)

H(x, p,w;u,v) = fx,v(x), vx) + Dp f(x, u(x), uy)(p — v(x)) +
+ Dwf(xa u(x), ux)(w - Ux)

forx el, p eR, w e C(ly). Moreover we define the operator Q*#, where o, B €
C (1) satisfy condition 1° of Assumption A3, as follows. If , v satisfy condition



MONOTONE ITERATIVE METHOD FOR. .. 315

20 of Assumption A3, then u, v € C(I*),u, v € AC(I) are the sowtions of the
problems

©) Y (x) = G(x, y(x),y; u) forae. xel,

y(x) = a(x), x €I,

y'(x) = H(x, y(x),ys; u,v) forae. xel,
y(x) = lB(x), X € IO)

respectively and we define Q*f[u,v] = [i, v]. If Assumptions A1-A3 are
satisfied, then there exist the (unique) solutions on I* of problems (6), (7).
We can now state the first result.

Theorem 1. Suppose that A1-A3 are satisfied and [u, v] = Q*P[u, v].
Then the inequalities

(7)

(8) u(x) ulx) <y(x) <vx) <v(x),xel,
(9) i'(x) < f(x,u(x), iy) forae xel,
(10) v (x) > f(x, v(x), V) fora.e xel,
hold.

Proof. Our proof starts with the observation that
u'(x) < G(x,u(x),uy;u)forae xel,
v'(x) > H(x, v(x), vy; u, v) forae x e 1.
Since i, U are the unique solutions of problems (6), (7) respectively, we can
apply the Comparison Theorem and get # < it, ¥ < v. In the same way, applying

(3), (4), (5) we check at once that u <y < v. It remains to prove the inequalities
u =y,y =< v. First we will prove (9). Applying the Hadamard Mean Value

Theorem we have
A1) flx,ux), ) — ' (x) = f(x, @(x), ity) — f(x, u(x), uy) —
Dy f(x, u(x), uy)(@(x) — u(x)) — Dy f(x, u(x), uy) (il — uy) =

1 .
/ Dy f(x,u(x) +s@(x) — u(x)), uy + s, — uy))ds@(x) — u(x)) +
0
1
f Dy fx, u(x) +su(x) —u(x)), uy + sy — uy))ds(it, —u,) —
0
1
fo Dy £ (r, (), 1)ds (@ (x) — ux)) —

1
/ Dy f(x,u(x), uy)ds(u, — u,) forae. x el.
0
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Sinceu < nands € [0, 1], itfollows that s(u(x)—u(x)) > Oand s(u,—u,) > 0.
From this, (11) and conditions 4%, 5° of Assumption A2 we conclude (9). Now
we should prove (10). Likewise,

(12)  fO,0(x), 00) = V'(x) = f(x, 9(x), V) — f(x, v(x), vx) —
Dy f(x, u(x), ux)(0(x) — v(x)) — Dy f(x, u(x), ) (Vx — vx) =

1
/ Dy £ G, v(x) + 5 (5() = v(x)), v + (s — v))dsBx) — v(x) +
0
1
/ D f(x, v(x) + S@() — v(x)), vs + (B — v))ds s — vy) —
Dy
1
fo Dy f (x, u(x), ux)ds(v(x) — v(x)) —

X _
/ Dy f(x,u(x), uy)ds(@, —v,) forae. xel.
0

Since ¥ < v and s € [0, 1], it suffices to show
(13) v+s5s(®—v) > u.

To prove (13) we will show

(14) n<v
Since (7), it is sufficient to prove
(15) ' (x) < H(x,u(x), iy, u,v) forae xel.

We have
H(x,u(x), uy; u,v) —it' (x) = f(x,v(x), vy) +
Dy f(x, u(x), ux)(@(x) — v(x)) + Dy f(x, u(x), uy) Uy — vy) —
O, u(x), uy) — Dy f(x, u(x), uz) (i(x) — u(x)) —
Dy f(x, u(x), uy) @ty —uy) =

1
/ Dy, f(x,u(x)+s(x) —ulx)), uy + sy —uy))ds(x) —ulx)) +
0
1
f Dy f(x, u(x) +s((x) —ux)), uy + sy — uy,))ds(vy — uy) —
0
1
/O Dy £ (x, u(x), u)ds(v(x) — u(x)) —

1
/Dwf(x,u(x),ux)ds(vx——ux) forae. xel.
0
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From this and from the inequalities u <y < v, s(v(x)—u(x)) > 0, s(v, —u,) >
0, we get (15) which, after applying the Comparison Theorem, gives (14). From
(14) we have (13) which together with (12) gives (10). Repeated application of
the Comparison Theorem enables us to deduce the assertion of Theorem 1.

Corollary (Monotone iterative sequence). Suppose that Assumptions A1, A2

are satisfied and
10 the functions ug, vo € C(I*) are such that uy, vy € AC(I) and

ug(x) < f(x,up(x), (o)) forae xel,

(16)
vo(x) = f(x, vo(x), (vo)y) fora.e. x €1,

2% (@, ¥}, is the sequence of the initial functions satisfying ¢,, ¥, €

n=0
C(1o), uo = @o on Iy, vo = Yo on Iy and

(17) Pn = Pnp1 S @0 < Yyt <Y, n=0,1,2,...

3%uy,, v, Yoo is the monotone iterative sequence defined as follows
(18) [Unt1, Vns1] = QEP [y, v ], n=0,1,...

Under the above assumptions we get the following inequalities

unfun+l_<.._)7.<_vn+lfvna n:Oa1’29---

The corollary is an immediate consequence of Theorem 1.

3. Error estimation.

We denote by || - || the norm in the space of all linear and continuous
operators I' : C(lp) — R. Now we state the following

Theorem 2. Suppose that

19 Assumptions Al, A2 are satisfied,

20 the sequences {u,}22 o, (V)00 {900}, (W), are defined by condi-
tions 1° - 3 of Corollary,

39 there is K > 0 such that

|Dpf(x, p,w)| < K, [Duf(x, p,w)| < K
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forae x el, peR, we C(ly) satisfying ug(x) < p < vo(x) and (ug)y <
w < (Vo)y, where K does not depend on x, p, w, '
49 there exists a constant H > O such that

|D, f(x, p, w) — D, f(x, p, 0| < max{|p — pl, [w — wllo},
|Dwfx, p,w) — Dy f(x, p, B < max{|p — pl + lw — Do},

Jor almost every x € I and for p, p € R, w, w € C(ly), satisfying uo(x) < p,
p = vo(x) and (up)x < w, w < (Vo)y,
59 the initial estimations

lgol’l('x) - 1[’/1(x)| S [22n+3aHe4aK]_19 X € IO, n = 1, 29 LR

are satisfied,
69 the starting functions vy, ug satisfy 0 < vo(x) —up(x) < (8aHe?2X)—1,

xel*.
Under the conditions stated above, the following estimations

(19)  |up(x) — v, (x)| < [2¥2aHe* X1 xel*, n=0,1,2,...

hold.

Proof. Set B = (8aHe* %)=, A, = BQ¥ - 25y~ pn = 1,2,...(19) is
easily seen to be satisfied for n = 0. Assume (19) for n; we will prove it for
n + 1. Since

Up 1 (8) = 1 (X) = H (X, V41 (x), Wn1)xs Uy Un) —
G, U1 (6), (g D)3 ) = £ (%, Va(2), (Wa)s) +
Dy £ (x, (%), ()x) Wap1 (¥) = va(x)) +
Dy G (), W))W )z = (U2)) — £, 0, (6), () ) —
Dy f(x, (%), (n)x) W (%) = 11 (x)) —

Doy £ (6, 1y (), ()2) Ut 1)x — ()) =
Dy f (X, 1y (6), (1)) W1 (8) = thyp1 (5)) —

1
|| Do), (s x) = o) +

Dy f(x, u,(x), Wn) ) (Wpg1)x — Mng)x) —
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1
/ Dy f(x, un(x), (Un))ds ((Vn)x — (Un)x) +
0
1
/ Dpf(Pn(X; u, U))ds(vn(x) - un(-x)) +
0

1
fo Do £ (P, 0)ds () — (i) =

Dpf(x, un(x)> (urz)x)(vn+1(x) - un+l(x)) +
Dy f(x, un(x), (@n)x) ((Vng1)x — (Uny1)x) +

1
/0 [Dp f (Pa(x; u, v)) — Dp f(x, un(x), (un)x)]1ds (Vn(x) — u,(x)) +

1
fo [Du f(Pu(x; 1, v)) = Dy f(x, un(x), n)x)1ds((Vn)x — (n)yx),

where P,(x; u, v) = (x, up(x) + s(Up(x) — un(x)), Un)x + s((Vn)x — Wn)x)),
it follows that

V)1 () = 1 (O] < 2K | (Wt — gD llo + 2H (W — ) [12.

From the inductive assumption we have

, , 2B\?
20) ol (%) =ty O] < 2Kt — tns))xllo + 2H (27> .

From condition 5° and (20), applying the Comparison Theorem, we get

’ 2B\? [~
01 () = et ()] < Apsre™ 7 + 2H (2_2-> / (2G5
0

B 4B?
5'2”2‘,T+T+

2B
20K
S " 2ale™h = o

and this is precisely the inductive assertion. This proves the theorem.

Remark 1. Condition 5° in Theorem 2 deals with the initial functions given on
the interval Iy. The condition is not restrictive and it is only a generalization. If
¢, = wy, Y, = wy on Iy, then the condition is easily satisfied.



320

BARBARA ZUBIK-KOWAL

Remark 2. If the assumptions of Theorem 2 are satisfied, then we have the
following error estimation

—)7 —u, < [22"+261H€2aK]_1,

— n —
Uy _y S [22 +2aHeZaK] 1’

where Y is the solution of problem (1), (2).

Remark 3. The results of this paper can be extended for the ordinary differen-
tial-functional systems with the Cauchy conditions:

y'(x) = F(x, y(x), y,) forae. x €1,

y(x) = wo(x), x €ly,

where F = (Fi,..., F,). The following quasi-monotone conditions are re-
quired in this case: foreach i,1 < i < m,if p < p and pi = pi, Where
p=(p1,---s Pm)s P = (P1,..., Pm), then F;(x, p, w) < F;(x, p, w).
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