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A CONTRIBUTE TO THEORY OF FRACTIONAL
INTEGRAL OPERATORS FOR CERTAIN
CLASSES OF GENERALIZED FUNCTIONS

HASAN M. YMERI

Lowndes has defined the new operators of fractional integration which
generalize the operators due to Erdelyi and Kober. The purpose of this paper,
is to develop a theory of these fractional integral operators given by Lowndes
for a certain classes of generalized functions.

1. Introduction.

In [6] Lowndes has defined the new operators of fractional integration
which generalize the operators due to Erdelyi and Kober [2], [5]. The purpose
of this paper, is to develope a theory of these fractional integral operators given
by Lowndes for a certain classes of generalized functions. It is expected that the
solution of certain dual integral equations involving special functions of applied
mathematics, applied physics and engineering sciences can be obtained by the
application of such operators to generalized functions which have applications
in electromagnetic theory. The resulting fractional integrals also have applica-
tions to the Hankel transformation, to some singular differential operators and
to certain integral equations of the first kind.
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2. Fractional integral operators.

The Riemann-Liouville integral of order o > 0 of a function f € L0, o0]
is defined by

1 P
@.1) ) = o /O (=Y F O dy, x>0,

If o is an integer, this is simply the a-times repeated integral of f with lower
limit O.

The Weyl integral of order « which, for @ > 0 and f € L;,(0, co) with
suitable behaviour at infinity, is defined by

1 o0
2.2) K@) = s / v — 0% £(y)dy.

Riemann-Liouville integrals (of fractional order) of distributions can be
obtained from the convolution theory of distributions whose support is bounded
on the left [4]. It is more difficult to define Weyl integrals of distributions; and
multiplication by powers of the variables or integration of fractional order with
respect to a power of the variable, both of which occur in applications are not
feasible in distribution theory. An alternative approach is based on the remark
that the operator of Riemann-Liouville integrals and that of Weyl integrals are
adjoint to each other and which is based on the formula for fractional integration
by parts.

By formal computation (which can be justified under appropriate conditions
by Fubini’s theorem) we have

/0 I f (1)g (x) dx = /0 FKg(x) dx.

This can be written as
(2.3) (If, 8) = (f, K%)

and exhibits /¢ and K“ as adjoint operators in some sense.
We shall adhere to this adjoint operator approach in our present work.
Erdelyi and Kober investigated the properties of the fractional integral

x—n—a-H
I'(a)

(2.4) / x(x =0 f (0 de, (o> 0,1 > 0)
0 |
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which is obviously a generalization on the Riemann fractional integral (2.1) and
the integral

(2.5)

r()/ (t —x)* 7 £ (1) dt, (a>on>0)

which is generalization of Weyl integral (2.2).
We define the Erdelyi-Kober operators [8] form > 0, Ren > 1 / m—1 and

Rea > 0 as under

@0 I =" [ et f a,

(27) K,’:af(x) / (u m)a—lu—mn—-ma+m.——1f(u) du.

F()

These operators are simple modifications of (2.1) and (2.2). If we let « tend to
zero in equations (2.6) and (2.7) and make use of the results 1 = [, K* = [

[8], it is easy to see that
(2.8) 1'"0 =1, K’"O =1

where I is the identity operator.
In a similar fashion, we shall define slight extension of the generalized

Erdelyi-Kober operators defined by Lowndes [6] form > 0, Rea > 0, Ren >
1/m —1and Re§ > 1/m — 1 in the forms

(2.9) L'(n, @) f(x) = mZa“lx_’""_m“/ ymitm=1
0

L = ymyalz=12y [k\/(xm ~ um)] fw) du

1
— 2a—1x——ma/2+m/2k1—a/ ym"(l _ ym)a/?.—l/2 .
0

oo [kx’"/ 2/ - y’")] fxy)dy™,

o0
(210) K]Zn(g, a)f(X) — mzol—lxmé'kl—-a/ u—m&—ma+m~1(um __xm)a/2—1/2 .
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. Ja—l [k /(um _ xm):l f(u) du = za-lx—ma/2+m/2kl—a .
/ y-m$~ma(ym _ 1)0{/2—1/2‘]&__1 [kx;)z/Zm] f(xy) dym

1

and the operators /7 (n, @) and K (&, a) by the above equations when J,_; is
replaced by 1,_; i.e.

(2.11) 1", o) f(x) = o=l ~ma/24m/2 1~
1
l/J”Vl—yﬂw*”%_4@fW%K1~yM]f&de1
0

(212) Kln;cl(é, Cl)f(X) — 2a—lx—-ma/2+m/2kl—a .

, / ymEmmeym _ qye/2-1/2y [kx’"/z\/(y’" - 1)] fxy)ay”

1

where J,,(z) and I,,(z) are Bessel function and modified Bessel function of order
v, respectively. :

If we let k tend to zero we see that these operators are related to the Erdelyi-
Kober operators 1;, and K", through the formulae

(2.13) I'@e) =17, K{'(, ) =K', .
Letting « tend to zero and using (2.8) we have the equations
(2.14) Iy, 0)=1, KiE¢0=I

where [ is the identity operator.
It follows from (2.3) that I]"(n, &) and K ¢ (&, ) are adjoint if

(2.15) E=n+1-—m"
We shall now introduce the spaces of generalized functions for which 17,

Ky and I}, K} can be defined, using freely the conventions, many of the nota-
tions, and some of results developed in [9], [3].
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3. The spaces.

Fora e R, ¢ € C*(0, 00) we define the seminorms

B1) A, (d) Zsup {xl—“+’ ¢(r)(x)l:x > 0} L r=0,1,2,...

where A, o is a norm; and for / > 0 we define a space of testing functions,
(3.2) gas 2 {¢:¢> € C®(0,00), p(x) =0 for x> 1,

Aar(P) < 00, r =0, 1,2,_..}.

With the topology by {Aa,r: r=0,1,2,.. } , 8a.1 18 a complete countably multi-
normed space, and

[o0)
A
(3.3) ga=|_J Jasi/1
I=1

is a complete countable union space which contains D(0, oo) as a dense sub-
space. For details of the spaces see Erdelyi [3].

4. Fractional integrals.

In order to define I;"(n, ) on g’, we must consider first K;"(£, &) and
K; (&, a) on g. For ¢ € g, we have, for some ¢ > g, and [ > 0,

@.1) 6D @) < A @2, x> 0; ) =0, x > L.

It follows from (2.10) and (2.12) that K;*(§, o) and K[} (§, o) exist forRea > 0
and Reé > 1/m — 1 and are smooth functions since the integrals are finite
integrals, and differentiations under the integrals signs are permissible in the

second form of (2.10) and (2.12).
For simplifications we make use of the results

xometmi2y [xm/zk\/(—y—m_—T)] = ka-lpl=a(ym _ q)ya/2-12,

mk2 m__ 1
- Ho; [x 22 =0, na - a,'1>] ,
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(z/2)"
I'(1+n)
where n is not a negative integer, and some differentiation formulae of H-
function [7] which is defined as a Mellin-Barnes type integral and is discussed
in details by Braaksma [1]. It is obvious that

L(2) = ()™ J,3iz) = oFi [—; 1+ n; 2%4]

r

d\’ i
(E) Kp @ pe =3 (7w [ yromeomem - et

n=0
. gLt [xmkz(ym - 1)l 0, m)
1,3 4 0, DA -, 1)(r —n,m)

J @™ (xy) dy™.
Then assuming
(4.2) a<c<mRek+1

we have

<21y (1) 2en@®) -
n=0

00
/ ly~m$—ma+c—l(ym _ l)a—l .
1

i [xmkz(ym —1 (0, m) ], Ay
BT 0 DU —a Do —nm ]| P

and as the integral is convergent under the condition (4.2) we have

d r
‘(E) Kl (&, a)p(x)

“3) hor [KPE 9] < C Y (1) Aen(®

r
n=0 n

for some ¢ > 0. Also [K[* (€, a)¢(x)] = 0 if x > [ showing that, under (4.2),
K}' (&, o) maps each g.; and hence maps also g, into itself. The map is clearly
linear and by (4.3) it is also continuous.

Similarly we can show that

her [KE €8] <€D (1) 2en)
n=0

for some ¢ > 0 under the condition a < ¢ < m Re & +1, showing that K &, )
maps each g, and hence maps also g, into itself. Hence the map is linear and

continuous.
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K" (&, ) is analytic function of « for Rea > 0, in the sense that
1 m m a m
’ [Kk &, a+h)p— K| (&,a)cf)] — 5EK" ¢,a)p, ash —> 0

in the topology of g,. Similarly, K} (¢, ) is analytic function of o forRe o > O.
We shall now to show how K}"(§, a)¢ can be continued analytically.
For Rea > 0, we have from the second form of (2.10)

SKME, a4+ 1o = K&, a0 + 1)6¢
d . . :
where § = x‘-a—,—— , and by integration by parts this becomes
x

(mé& +ma)K*(§, 0 + D)o —m K*(§, a)9,

so that .
K{'G o) = (s +o— #) K a+1)

and more generally

-1

(4.4) K?(é,a):ﬂ<§+a+j—%a)K,;"(g,a+1), [=1,2,....
j=0

Similarly for K7} (§, @) in which case k is to be replaced by ik in above. This
makes it possible to extend the definition of K’ (¢, @) and K[} (§, o) toRe o >
—! and since [ is arbitrary positive integer, ultimately to all complex numbers
. For fixed o, K} (€, «) and K} (€, &) are continuous linear maps of g,, with a
condition satisfying (4.2), intoitself. K" (§, o), K[} (&, o) are an entire functions
of a in the sense that its derivatives with respect to « exist for all « as a limit in
the weak topology of continuous linear operators on g,,.
In particular,

1 1
K§'(€, 0)¢(x) = K3 (€, 1) (s - ;a) ¢ () = K (5 - ;1_5> b (x)
=" / ) 1 (mgp (1)~ y 2o () ) dy = 5" f TS pe0))d
; Yy 3y . dy y ygay,

so that

(4.5) Ky(¢.00p =9
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and similarly

(4.6) K&, —me=[](&-7~—8) K¢ +n 0.
j=l1

Similar results are true for K -

The addition theorem

4.7) K€ +a, K& a)p = K (E + o, O)KG(E, o)

=K§"’:La+€¢9 ¢Ega

can be proved under the condition
4.8) a<1l+min{mReé& mRe (£ +a)}.

It follows from (4.7) in particular that under (4.8) K" (£, @) and K (&, a) are
automorphisms of g, with inverses K/} (£ +«, —a) and K" (¢ + o, —a) respec-
tively since K gfa +c9 €8, for ¢ € g, [3].

We are ready to define I}" (n, ) f and I[}(n, o) f for f € g/ with

(4.9) a<mRen+m

by

(4.10) (I, ) f, ) = (f, K (€, )9), pE€ga
and

(Lx(m, o) f, ¢) = (f, Kjz(§, 0)9), ¢ €8,

where n and £ are connected, as always by (2.15) so that (4.2) holds. For fixed
o, I*(n, &) is a continuous linear operator on g/, as a function of « it is an entire
function. For regular elements of g/ generated by conventional functions of the
kind as described in [3], and for Rea > 0 fractional integration by parts shows
that (4.10) and (2.9) are in agreement.

4.11) Iy'(n,0) f = f,

@12)  IEO+e O (e f = [0 +a, OI0,00f =17 f,



A CONTRIBUTE TO THEORY OF FRACTIONAL ... 345

provided
(4.13) a <m+min{mRen, mRe (n+a)};

and under this latter condition ;" (n, @) is an automorphism of g/ with inverse
I (n+ a, —a) since I, .. f € g, for f €g, [3].
Also

l

1
(4.14) 1,1"(77,05)=H(77+a+j+’—7—15> o+, [=1,2,....
j=1

Here we have used the fact that the adjoint of —§ is ' = 1 + § and in particular

n—1

A
@15 I, -m =] <77—J + ;;8) I'n,0), n=1,2.
j=0

All of these results follow directly from (4.10) and the properties of K" (§, «)
on g, by the known properties of the adjoint operators. Similar statements are

true for 17 (n, a).

5. The Spaces k and fractional integrals on &’.

For b e R and [ > 0, we consider the space of testing functions
1
(5.1) ky s = {¢;¢ec°°(o, %), (1) =0 for x <7,

dpr(@) <00, r=0,1,2, ... } .

With topology determined by {A,, : r = 0,1, 2, ...}, k;; is a complete count-
ably multinormed space, and

o0
(5.2) ks = | ko171
=1

is a complete countable union space which contains D(0, oo) as dense subspace.
For details of the spaces k and &’ see Erdelyi [3].

For ¢ € k, and Rea > 0, (2.10) can be used to define 1} (n, a)¢. With this
definition (4.15) is valid and make it possible to extend the definition of I (1, a)
to all complex values of «. For ¢ € k, we have for some ¢ < b and !/ > 0,

(5.3) 6P| < Aoy @), x> 0; 9(x) =0, x < 1/L.
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It follows from (2.9) and (2.11) that I"(n, o) and I]} (n, a) exist for Rea > 0
and Ren > 1/m — 1 and are smooth functions since the integrals are finite and
differentiation under the integral signs are permissible in the second form of (2.9)

and (2.11).
It is easy to see that

r

r 1
(%) Ilgn(n’ a)p(x) = Z (;) xn—rA yn—’rm”(l _ ym)a-1 }

n=0
H [x’"kz(l i) | ©,m)
AN 4 ©, DA — o, )(r —n, m)

] o™ (xy) dy™.

Therefore
| (%) o0 523 (M) ran@

n=0 ’
1 2

. c+m"—1 1 mya—1 pyl,1 x"k*(1 — y™) 0, m) :l m

/o ’ 1=y H“[ 4 ‘(o, (1 —a, 1) —n, m) ldy

under the condition

(5.9) b>c>1—m-mRen.
Hence
“o/r
(5.5) her [, )8] < €Y (T ) (@)
n=0 n

for some ¢ > 0.

Also, I'(n, a)¢p =0if x < 1/1, showing that under (5.4), I' (n, o) maps each
kp,; and hence maps also &, into itself. The map is clearly linear and by (5.5) it
is also continuous, and it is an entire function of . The equations (4.11) (with

J replaced by ¢ € k;,) and (4.15) hold and if
(5.6) b>1—m—min{mRen, mRe (n+ a))

then also (4.12) (with ¢ € k; in place of /) holds. Under the condition (3.6),
I7*(n, «) and I} (n, «) are automorphisms of &, with inverses I + o, —a)
and I"(n + o, —a) respectively since 17 (n, @) also maps k;, into itself which
can be proved in the similar manner.
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For ¢ € ky, f € ky and b > —m Reé&, K;'(§, ) and K (£, &) can be
defined by

(57) <K]:¢n(§’a’)f7 ¢> = <f’ I/Zn(n»a)(rb), ¢€kb,
and
(5.8) (KigG o) fod) = (£, I (n, )9), peky,

with 7 and § connected as in (2.15). This definition is in agreement with (2.10) in
case both apply. K;"(§, «) is continuous injection of k;, into itself, it is an entire
function of a, it satisfies (4.4), (4.5) and (4.6) (with f € ky replacing ¢), if

(5.9) b > —min {mRe &, mRe (€ + )}

then it also satisfies (4.7) and under (5.9) it is an automorphism of ky with
inverses K/} (§ +a, —a). Similar statements are also true for K7 (£, @) f, f €ky.

6. The spaces m, m’ and fractional integrals on them.

We shall consider certain testing function space [9] which can be envis-
aged as vector sums of g,; and kp;. The operators I'(n, ), I7(n, ) and
K/, a), K[;(&,a) can be defined under appropriate conditions, on the dual

spaces.
ForaeR,beR,r=0,1,2,...

6.1) Babr (@) = sup {177 (1 + x)* 1O (x)]: x > 0}
defines seminorms, with w, , ¢ a norm, and
(6.2) Nap = {#:¢ € C¥(0, 00), g, (¢) <00,r =0,1,2...}.

With the topology induced by the seminorms, (i, 5, is space of testing functions

which is a complete countable multinormed space. If ¢ > g and d < b, then

Ne.d C Na,b @and the topology of 7. 4 is stronger than that induced on it by 7, .
For —oc0 < a < +ooand —00 < b < +ooleta, | aand b, 1 b as

n — 00. Then

o0
(6.3) T’(a, b) = U nanybn
n=1
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defines a countable union space of testing functions which is independent of the
sequences a, and b,. For details see Erdelyi [3].
Letting Re o > 0,

(6.4) max(a, b) < mReé& + 1.

We can form K} (&, )¢ for ¢ €1y p.
Also (1 4+ xy)/(1 + x) is between 1 and y for all x > 0,

14+xy\"™ b
< max(1, y"79),
<1+x> - Ly™

and by a computation similar to that leading to (4.3)

r o0
o [KE L )d] < D7 (1) ann(@) /1 [yrmometat max (1, ybe)
n=0
HL] [xme(ym - 1) ! (0, m) Jl ",
. 4 O, DA —-a, )(r—n,m)
The integral is convergent by virtue of (6.4), and it follows that X (&, a) is
a continuous map of 7, into itself. The extension to all «, and the formal
relationships (4.3) to (4.8) follow as in Section 4, (4.8) being replaced by

(6.5) max(a, b) < I'+ min{Re&, Re (§ + «)}.

The results are the same for K (€, &) (k is to be replaced by ik) also. Similar
statements hold for ¢ € n(a, b).

With ¢ € n(a, b), (4.10) now defines 1} (n, «) and I} (n, &) on n'(a, b)
provided that

(6.6) max(a, b) < mRen +m,
and the results of Section 4 will hold except that (4.13) must be replaced by
(6.7) max(a, b) < m + min{mRen, mRe (n + a)}.

We can similarly consider 1;" (n, «) and I (n, o) on n;’ b
In the same way, (5.7) and (5.8) with ¢ € n(a, b) define K" (&, o) and
K7 (&, a) on n'(a, b) provided that

(6.8) min(a, b) > —mReé&
and the results of Section 5 will hold that (5.9) must replaced by
(6.9) min(a, b) > —min{mRe&, mRe (£ + a)};

and analogous results hold for K" (¢, o) and K7 (&, a)on 77(’1, b
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