
LE MATEMATICHE
Vol. LXIII (2008) – Fasc. I, pp. 85–105

USING ÆTNANOVA TO FORMALLY PROVE THAT THE
DAVIS-PUTNAM SATISFIABILITY TEST IS CORRECT

EUGENIO G. OMODEO - ALEXANDRU I. TOMESCU

This paper reports on using the ÆtnaNova/Referee proof-verification
system to formalize issues regarding the satisfiability of CNF-formulae
of propositional logic. We specify an “archetype” version of the Davis-
Putnam-Logemann-Loveland algorithm through the THEORY of recur-
sive functions based on a well-founded relation, and prove it to be correct.
Within the same framework, and by resorting to the Zorn lemma, we de-
velop a straightforward proof of the compactness theorem.

1. Introduction

ÆtnaNova, aka Referee (see [2, 11, 12]), or Ref for short, is a broad gauge
proof-verification system based on set theory; its design and implementation
evolved hand-in-hand with the development of a fully formalized proof scenario
which will culminate in a proof of the Cauchy integral theorem on analytic
functions [5, 7]. One virtue of Ref is that the syntax of proofs is very close to
natural mathematical notation: this ensures readable and reusable proofware.1

Entrato in redazione 27 novembre 2007
AMS 2000 Subject Classification: 03E75,03F07,03-02,03C62,03E30
Keywords: Proof checking, program-correctness verification, set theory, computable set theory,
cumulative hierarchy, satisfiability decision procedures, proof modularization.
Research partially funded by the INTAS project Algebraic and deduction methods in non-
classical logic and their applications to Computer Science, and by the Italian MUR/PRIN project
Large-scale development of certified mathematical proofs n. 2006012773.

1Proofware [8] is the peculiar scripting code used to specify in absolute rigor proofs and proof
schemes. Its primary application is not to describe algorithms.

86 EUGENIO G. OMODEO - ALEXANDRU I. TOMESCU

Formal methods of algorithm verification are a natural yield of proof check-
ing and automated deduction. Algorithms have often been examined formally
with systems such as Isabelle/HOL [6, 10] or Coq [9], but the experience on
which we will report is the first verification of an algorithm carried out with
Ref. Although Ref does not, up until today, encompass specific programming
notation, this paper suggests that an integration of such notation with Ref’s log-
ical notation is easy to conceive.

We will formalize the notion of model for a formula in conjunctive normal
form, and will introduce an “archetype” version of the Davis-Putnam-Loge-
mann-Loveland procedure, DPLL. To encapsulate the relevant concepts in the
Ref system, we will use the THEORY mechanism [12]. Like procedures in a
programming language, theories have lists of formal parameters. Each theory
requires its parameters to meet a set of assumptions. When applied to a list of
actual parameters that have been shown to meet the assumptions, a theory will
instantiate several additional output set, predicate, and function symbols, and
then supply a list of theorems initially proved explicitly (relative to the formal
parameters) by the user inside the theory itself. These theorems will generally
involve the new symbols. Roughly speaking, the assumptions met by the formal
parameters can be regarded as preconditions, while the theorems supplied in the
“theory” are postconditions. By the term interface we refer to the list of formal
parameters of a THEORY, the assumptions they meet, and the statements of the
theorems proved within the THEORY.

M. Davis and H. Putnam [4], and later M. Davis, G. Logemann, and D.
Loveland [3], proposed an algorithm for determining whether a propositional
formula given in conjunctive normal form is satisfiable or not. A vast literature
has evolved from this seminal paper [4] — before it, researchers in the Auto-
mated Deduction field thought they had to reduce ground sentences to equiva-
lent disjunctive normal form to be tested for validity [14], whereas nowadays
reduction to conjunctive normal form and satisfiability test have become rather
standard steps (see, e.g. [1]).

The version of DPLL underlying our work is best specified in rather con-
ventional imperative terms, like those seen in Figure 1 where the programming
language used is SETL [15]. But, in order to comply with the Ref notation, we
must formalize DPLL in purely logical, set-theoretical terms, as will be shown
and explained at due time.

This paper is organized as follows. In Section 2 we discuss how to create,
out of a given set of so-called “atoms”, a set of affirmative and negative literals
(i.e., sets which can act conveniently as pure symbols) of which the affirmative
ones are equi-numerous with the atoms. Section 3 introduces CNF-formulae
along with the pertaining notions of model and satisfiability. It also states lem-

CORRECTNESS OF DPLL 87

mas on how to reduce a CNF formula S, relative to a literal X occurring within
it: this reduction either produces a single CNF S′, simpler but equi-satisfiable
with S, or it produces two simpler CNFs, S′ and S′′, such that S is satisfiable if
and only if either S′ or S′′ is satisfiable. In Section 4, the algorithm DPLL is
specified and shown to be correct. The specification is provided in such terms
as to ensure termination, but grossly, in the sense that no criterion is indicated
for selecting the literal X relative to which the CNF-formula S will be reduced
(such a criterion, in fact, would have a bearing on efficiency but is immaterial
as far as correctness is concerned). The variant of DPLL which discards, at
the outset, all tautological clauses from the input formula is also shown to be
correct. In Section 5 we briefly report on how the compactness theorem about
propositional logic was proved with Ref.

The issues discussed in Sections 2, 3, 4, and 5 reflect into three Ref theories.
As these consist of 1161 lines of code altogether, we cannot afford discussing
in full the various constructions and proofs which support our mathematical
discourse: only the interfaces of the theories will be shown, in a dedicated Ap-
pendix. Notwithstanding, we will provide examples and stress sensible points
of the proof of correctness.

The interested reader should turn to [11], [12] and [16] for syntax, basic
terminology and features of Ref.

2. Representing literals via a global “toggle switch”

The signedSymbols theory, whose interface is shown in Appendix A, receives
via its formal parameter a set atms not subject to any assumption. Out of this
set, it creates a set litsΘ whose elements shall be regarded as literals.2 Internally,
this theory defines an injective affirmation operation, e.g.

affΘ(X) =Def {{X}} ,

converting every element x of atms into a positive literal. A negation operation,
e.g.

negΘ(X) =Def

(
X\{ /0}

)
∪

(
{ /0}\X

)
,

is also defined internally. Thus, if we regard each negΘ(affΘ(x)) as a negative
literal and stick to the above definitions, the collection litsΘ of all positive and
negative literals constructed inside the signedSymbols theory turns out to be

litsΘ =Def

{
b ∪ {{x}} : b⊆ { /0} ,x ∈ atms

}
.

2The Θ subscript is attached to formal output parameters of a THEORY, to be actualized
whenever the THEORY will be invoked (by means of the construct named APPLY, cf. [12]).

88 EUGENIO G. OMODEO - ALEXANDRU I. TOMESCU

Figure 1: A procedural specification of the “archetype” DPLL algorithm
procedure dp0(s)

-- s is a finite (conjunctive) set of disjunctive clauses of literals

t := {c: c in s, h in c | neg(h) in c};
-- tautological clauses within input conjunction
m := dp1(s - t);
-- analyze the rest; if unsatisfiable, propagate {fail},
-- else enlarge its model
return

if fail in m then {fail}
else m + {arb({h,neg(h)}): c in s, h in (c - m) | neg(h) in (c - m)} end if;

procedure dp1(s);
-- s is a finite set of disjunctive non-tautological clauses
-- the model of s under construction will be
-- enlarged repeatedly, and s will be simplified
-- until s is either satisfied or blatantly false

if s = {} then return {} end if; -- obvious
if {} in s then return {fail}; end if; -- absurd

h := selectLiteral(s);
-- if the selected literal appears in a singleton clause,
-- apply the unit literal rule

if {h} in s then
-- the literal h was chosen within a unit clause
return dp1({c - {neg(h)}: c in s | h notin c}) + {h};

end if;

-- otherwise, proceed either to pure literal rule
-- or to splitting rule

if (FORALL d in s | neg(h) notin d) then
-- include the pure literal h in the model
return dp1({c in s | h notin c}) + {h};

end if;

-- split
m1 := dp1({c - {neg(h)}: c in s | h notin c}) + {h};
return

if fail notin m1 then m1
else dp1({c - {h}: c in s | neg(h) notin c}) + {neg(h)} end if;

end dp1;

procedure selectLiteral(s);
-- Here we are assuming that s is a non-null set of non-null clauses
-- we pick a literal in one of the clauses of s, and return it
return arb(arb(s)); -- refined selection criteria can enhance efficiency

end selectLiteral;

end dp0;

CORRECTNESS OF DPLL 89

{rk(x) : x ∈ litsΘ} ⊆ {rk(falseΘ)}
〈∀n ∈ N ∪ {N} |n ∈ rk(falseΘ)〉
〈∀x | rk(x) /∈ rk(falseΘ)→ rk

(
negΘ(x)

)
= rk(x)〉

Figure 2: Addendum to the interface of the signedSymbols theory

Along with affΘ(), negΘ(), and litsΘ, the signedSymbols theory returns a des-
ignation for falsehood, e.g.

falseΘ =Def /0 ,

such that the pair falseΘ, negΘ(falseΘ) of complementary truth values does not
intersect litsΘ. Note that the theorems externalized by this theory include

〈∀x |negΘ

(
negΘ(x)

)
= x & negΘ(x) 6= x〉 ,

stating that the global function negΘ is a GALOIS CORRESPONDENCE.

We remark in passing that the above-shown precise definitions of affΘ(),
negΘ(), litsΘ, and falseΘ, are devoid of interest outside the theory we are con-
sidering and, as such, do not deserve appearing explicitly on the theory interface.
Speaking in general, a theory should be designed in such a way that reworking
of its internals does not propagate outside the theory in question, to other theo-
ries that make use of it.

Actually, a second-release implementation of the signedSymbols theory—
motivated by the authors’ desire to make signedSymbols more widely usable,
e.g. for the development of a theory of freely generated groups—insists on the
fact that all of the syntactic entities in the collection

{x : x ∈ litsΘ} ∪ {falseΘ, negΘ(falseΘ)}

have the same, transfinite, set-theoretic rank (see Figure 2).
It may be worth recalling here that the global rank function (intuitively

speaking, a measure of how deeply nested every set is) has the recursive def-
inition

rk(X) =Def

⋃{
rk(y)∪{rk(y)} : y ∈ X

}
.

The new constraint about rank (entailing, among others, that falseΘ can no
longer equal /0), as well as the modest changes needed inside the theory to meet
this constraint, have no bearing whatsoever on the exploitation of signedSym-
bols discussed in the ongoing.

90 EUGENIO G. OMODEO - ALEXANDRU I. TOMESCU

3. Modeling propositional CNF-formulae

Any CNF-formula
S = c1∧ c2∧·· ·∧ cn

of propositional calculus, where each clause ci is a disjunction

ci = hi,1∨hi,2∨·· ·∨hi,#ci (#c being the cardinality of c)

of distinct literals, is conveniently represented as the set

S =
{
{h1,1,h1,2, . . . ,h1,#c1}, . . . ,{hn,1,hn,2, . . . ,hn,#cn}

}
.

In what follows, as we think of a “CNF-formula” in these set-theoretical terms,
we shall say that the set M is a MODEL of S if and only if:

i) M is not contradictory (i.e., M contains no complementary literals h, vh),
ii) every set in S shares at least one literal with M.

We say that a formula S is SATISFIABLE iff there exists a model of S.
The cnfModels theory (see Appendix B) receives a global Galois correspon-

dence h 7→vh, and introduces the notions of model and satisfiability of a CNF-
formula as just explained:

Is cnfModelΘ(M)↔Def{h ∈M |vh ∈M} = /0 ;

Has cnfModelΘ(S,M)↔Def Is cnfModelΘ(M) & {c ∈ S |M ∩ c = /0} = /0 ;

Is cnfSatΘ(S)↔Def 〈∃m |Has cnfModelΘ(S,m)〉.
The main purpose of this theory is to prove various lemmas enabling the

reduction of an instance of the satifiability/modeling problem for formulae in
conjunctive normal form to a simpler instance of the same problem.

Relative to a CNF-formula S, when c is a clause in S and h is a literal in c,
we shall say that

• c is a TAUTOLOGICAL CLAUSE iff

〈∃h′ ∈ c |vh′ ∈ c〉 (tautological clause)

• c is a UNIT CLAUSE and h is a UNIT LITERAL iff

c = {h} (unit clause, unit literal)

• h is a PURE LITERAL iff

〈∀c′ ∈ S |vh /∈ c′〉 (pure literal)

CORRECTNESS OF DPLL 91

Let us now examine the algorithm in Figure 1. The wrapper procedure
dp0(s) receives in input a CNF-formula s represented as mentioned at the be-
ginning of this section. It will return a model for s, if any exists, and will return
the unsatisfiability indication { f ail} otherwise. It first builds the set t of all tau-
tological clauses in s and calls the recursive function dp1 on the input formula
deprived of these tautologies, in order to get a model m for it. If this simpler
formula is unsatisfiable, the same holds for the original s; otherwise, m gets
extended into a model for s by addition, for each clause in t, of one of the com-
plementary literals which render it tautological, unless either already belongs to
m.

The backtracking function dp1(s) begins by picking a literal h in s; then it
judges whether to put h in the model of s. If not, it tentatively adds first h and
then—if needed— vh to the model, simplifying s accordingly, and recursively
checking whether either simplified formula has a model.

More precisely: if the literal h was taken from a unit clause (and hence must
belong to any model of s), or is a pure literal (and hence its insertion into the
model is unproblematic), then h simply goes into the model. Otherwise, s gets
simplified in two ways, reflecting the possible truth-value assignments for h:

{{h}} ∪ {c\{vh} : c ∈ s |h /∈ c} , {{vh}} ∪ {c\{h} : c ∈ s |vh /∈ c} .

If either of these is unsatisfiable, an empty disjunctive clause {}will eventu-
ally appear during its recursive treatment, and will serve as a base case to close,
with a failure, a branch of the recursion. On the other hand, if the parameter s
becomes {} along any branch of the recursion, then it is satisfiable (because it
has the model {}); this will indicate that the s given at the outset is satisfiable as
well.

To support the claims which we will provide as explanations during the
analysis that follows, we will produce the statements of various theorems whose
proofs have been written and verified with Ref; note that variables written in
upper case within such statements are, by convention, universally quantified. To
be short, we denote by

⋃
S the union-set {x : y ∈ S,x ∈ y}, and by arb(X), where

X is any set, an arbitrary member of X (conventionally, arb(/0) = /0).3 Relative
to S, c, and h as above, we must consider the following cases:

(i) Both h and vh belong to c, and hence c is a tautological clause. In this
case, if M is a model for S\{c} then if M contains h or v h, it is a model for S
as well. If it does not contain h or v h, then adding either of h,v h will make

3Technically, arb() originates from Skolemization of the sentence

〈∀x∃y∀v |
(
v ∈ x→ (v /∈ y & y ∈ x)

)
&

(
v ∈ y→ y ∈ x

)〉 ,
which is a version of the regularity axiom of the Zermelo-Fraenkel set theory.

92 EUGENIO G. OMODEO - ALEXANDRU I. TOMESCU

M into a model for S. To state this, one can introduce the following theorem:

THEOREM. Has cnfModelΘ(S,M)→Has cnfModelΘ(S ∪ {c : c ∈ S0,h ∈ c |
vh ∈ c},M ∪ {arb({h,vh}) : c ∈ S0,h ∈ c\M |vh ∈ c\M}).

(ii) h is a unit literal. Using the definition of Has cnfModelΘ, we have that
h belongs to any model M of S. Therefore, any model of the simplified formula
{{h}} ∪ {c \ {vh}: c ∈ s | h /∈ c} will also be a model of S.

THEOREM. {H} ∈ S & Has cnfModelΘ(S,M)→H ∈M & vH /∈M;
THEOREM. Has cnfModelΘ({{H}} ∪ {c\{vH} : c ∈ S |H /∈ c} ,M)→

Has cnfModelΘ(S,M).

(iii) h is a pure literal. By the theorem below, establishing the satisfi-
ability of S amounts to establishing the satisfiability of the reduced formula
{{h}} ∪ {c ∈ S |h /∈ c}. This formula, stripped of all clauses containing h, re-
quires h to belong to its model, as discussed above.

THEOREM. vH /∈
⋃

S→(
Is cnfSatΘ(S)↔ Is cnfSatΘ({{H}} ∪ {c ∈ S |H /∈ c})

)
.

(iv) h is neither a unit literal nor a pure literal. Then vh ∈
⋃

S. Splitting the
formula S on h means checking whether either of the two formulae

{{h}} ∪ {c\{vh} : c ∈ S |h /∈ c} , {{vh}} ∪ {c\{h} : c ∈ S |vh /∈ c}

has a model. As h or vh are unit literals here, this amounts to checking whether
h or vh can be put in a model of S.

THEOREM. Is cnfSatΘ(S)↔ Is cnfSatΘ({{H}} ∪ {c\{vH} : c ∈ S |H /∈ c})
∨ Is cnfSatΘ({{vH}} ∪ {c\{H} : c ∈ S |vH /∈ c}).

To exemplify the Ref proof-checking mechanism and its inference steps, we
illustrate below how to prove the above splitting principle by resorting to the
following theorems, which must have been proved already:

THEOREM cnfModels0. vvH =H & vH 6=H;
THEOREM cnfModels12. Has cnfModelΘ(S,M)→

Has cnfModelΘ({{H}} ∪ {c\{vH} : c ∈ S |H /∈ c} ,M ∪ {H}) ∨
Has cnfModelΘ({{vH}} ∪ {c\{H} : c ∈ S |vH /∈ c} ,M ∪ {vH});

THEOREM cnfModels14. Is cnfSatΘ({{H}} ∪ {c\{vH} : c ∈ S |H /∈ c})→

CORRECTNESS OF DPLL 93

Is cnfSatΘ(S).

The proof of the splitting principle runs as follows:

THEOREM cnfModels15. Is cnfSatΘ(S)↔
Is cnfSatΘ({{H}} ∪ {c\{vH} : c ∈ S |H /∈ c}) ∨
Is cnfSatΘ({{vH}} ∪ {c\{H} : c ∈ S |vH /∈ c}). PROOF:
Suppose not(s,h0)⇒ AUTO

Let s,h0 be a counterexample. We consider the direct implication first:

Suppose⇒ Is cnfSatΘ(s) &
¬

(
Is cnfSatΘ({{h0}} ∪ {c\{vh0} : c ∈ s |h0 /∈ c}) ∨

Is cnfSatΘ({{vh0}} ∪ {c\{h0} : c ∈ s |vh0 /∈ c})
)

Use def (Is cnfSatΘ)⇒ Stat1 : 〈∃m |Has cnfModelΘ(s,m)〉 &
Stat2 : ¬〈∃m |Has cnfModelΘ({{h0}} ∪ {c\{vh0} : c ∈ s |h0 /∈ c} ,m)〉 &
Stat3 : ¬〈∃m |Has cnfModelΘ({{vh0}} ∪ {c\{h0} : c ∈ s |vh0 /∈ c} ,m)〉

〈m1〉↪→Stat1(Stat1?)⇒ Stat4 : Has cnfModelΘ(s,m1)

According to Theorem cnfModels12 , we can construct a model for one of the
two sets in the hypothesis.

〈s,m1,h0〉↪→TcnfModels12 (Stat4?)⇒
Has cnfModelΘ({{h0}} ∪ {c\{vh0} : c ∈ s |h0 /∈ c} ,m1 ∪ {h0}) ∨
Has cnfModelΘ({{vh0}} ∪ {c\{h0} : c ∈ s |vh0 /∈ c} ,m1 ∪ {vh0})

Both cases get discarded, as they contradict Stat2 and Stat3, respectively.

Suppose⇒ Stat5 :
Has cnfModelΘ({{h0}} ∪ {c\{vh0} : c ∈ s |h0 /∈ c} ,m1 ∪ {h0})

〈m1 ∪ {h0}〉↪→Stat2(Stat5?)⇒ false
Discharge⇒ Stat6 :

Has cnfModelΘ({{vh0}} ∪ {c\{h0} : c ∈ s |vh0 /∈ c} ,m1 ∪ {vh0})
〈m1 ∪ {vh0}〉↪→Stat3(Stat6?)⇒ false; Discharge⇒ AUTO

We now consider the reverse implication, and suppose that the first statement
holds. By Theorem cnfModels14 , we arrive at a contradiction.

Suppose⇒ Is cnfSatΘ({{h0}} ∪ {c\{vh0} : c ∈ S |h0 /∈ c})
〈h0,s〉↪→TcnfModels14 (?)⇒ false; Discharge⇒ AUTO

It remains to be shown that the second statement holds. Given that vvh0 =h0,
we can exploit Theorem cnfModels14 again. We have discarded all possible
cases, and hence our proof is complete.

〈h0〉↪→TcnfModels0 (?)⇒ vvh0 =h0

EQUAL⇒ Is cnfSatΘ({{vh0}} ∪ {c\{vvh0} : c ∈ s |vh0 /∈ c})
〈vh0,s〉↪→TcnfModels14 (?)⇒ false; Discharge⇒ QED

Some readers may be perplexed about an apparent terminology misuse in
what precedes: in spite of our indication that the notions of model and satisfia-
bility refer to formulae in conjunctive normal form, the formal definitions of the

94 EUGENIO G. OMODEO - ALEXANDRU I. TOMESCU

THEORY globalizeTog (T)
Svm(T) & T← =T &

{
p ∈ T |p[1] =p[2]

}
= /0

⇒
(
togΘ

)
〈∀x ∈ domain(T) |T�x 6= x & T�(T�x)= x〉
〈∀x ∈ domain(T) | togΘ(x)=T�x〉
〈∀x | togΘ(x) 6= x & togΘ

(
togΘ(x)

)
= x〉

END globalizeTog

Figure 3: A tool for globalizing a toggling map T to the entire universe of sets

predicates Has cnfModelΘ(S,) and Is cnfSatΘ(S) do not enforce any typing
restriction reflecting the idea that S should be a set of sets of literals. The very
requirement that the correspondence v be defined globally (i.e., that v X yield
a value for every set X) may look over-demanding, if one thinks that literals
should be drawn from a specific set (say the set of non-null integer numbers)
instead of from the class of all sets. The theory displayed in Figure 3 accommo-
dates things for those who think that a better way of modeling negation would
be by means of a self-inverse function whose domain is the specific set whose
elements represent literals and truth constants. As a matter of fact, it provides
a mechanism for extending any such “toggling map” into a global Galois corre-
spondence. Once this patch is available, one will probably convene that working
without the encumbrance of a typing discipline not only is safe but also offers
some advantages to the proof designer.4

4. Specifying and checking the Davis-Putnam procedure

After having developed the ability to construct a global Galois correspondence,
a set of signed symbols, and an encoding of falsehood (to be passed on to our
next theory via its formal parameters vX, lits and fail), we can now proceed to
writing an “archetype” version of the Davis-Putnam algorithm for propositional

4To clarify the theory interface shown in Figure 3, we must say that a pairing func-
tion x,y 7→ 〈x,y〉 and projections p 7→ p[1], p 7→ p[2] have been defined globally so that〈
∀x,y | 〈x,y〉[1] = x & 〈x,y〉[2] = y

〉
. By the notation Svm(F) we indicate that F is a map,

i.e. a set satisfying the property F =
{
〈p[1], p[2]〉 : p ∈ F

}
, and is also single-valued in the

sense that
{
〈p,q〉 : p ∈ F,q ∈ F | p 6= q & p[1] = q[1]

}
= /0 . The notation F�X , where F normally

is a map—not a global function!—designates the application of F to X , defined as follows:
F�X =Def arb

({
p[2] : p ∈ F | p[1] = X

})
. Finally, the inverse F← and the domain of a map F

are defined to be the respective sets
{
〈p[2], p[1]〉 : p ∈ F

}
and

{
p[1] : p ∈ F

}
.

CORRECTNESS OF DPLL 95

formulae in conjunctive normal form. We will define a recursive function dpΘ

that, given a set of clauses S, returns a model of S if S is satisfiable, otherwise
returns a fictitious model containing the element fail. Let us note that the null
set /0 will represent falsehood when viewed as a clause, whereas it will represent
truth when viewed as a set of clauses.

Within the davisPutnam theory (see Appendix C), we will apply the cnfMod-
els theory submitting as input parameter to it the same function vX, and renam-
ing its output predicates as Has dpModelΘ and Is dpSatΘ, respectively.

A selection function sl(S) will be supplied to davisPutnam as a fourth pa-
rameter: this is supposed to provide a literal appearing in S, unless S is a trivial
formula (i.e., a blatantly satisfiable or unsatisfiable one). The simplest such
function is

sl(S) =Def arb(arb(S)).

A more efficient choice would be to select first literals within unit clauses, then
pure literals, and finally arbitrary literals from the formula. Ouyang [13] ana-
lyzes the choice of branching rules, but such a discourse is beyond the scope of
our paper.

The formulae which make sense as input for the satisfiability decision algo-
rithm contain finitely many literals; accordingly, we define clauSetsΘ to be the
set of all formulae with a finite number of literals, all belonging to lits:

clauSetsΘ =Def {s⊆P lits |Finite(
⋃

s)} .

Let us introduce the notation settledΘ to represent, for any s ∈ clauSetsΘ,
the set of all literals h which occur as unit literals and also as pure literals in s
and for which {h} is the only clause in s that involves h:

settled(S)
Θ

=Def

{
u : u ∈ S,h ∈ u |u = {h} & {h,vh} ∩

⋃
(S\{u})= /0

}
.

Using the definition of Has dpModelΘ, we can deduce that
⋃

settledΘ(S) is
included in any model of S; therefore, in order to simplify S, it suffices to select
literals from S\settledΘ(S). Hence, we define the “picking” function:

pkΘ =Def

{[
x,sl

(
x\settledΘ(x)

)]
: x ∈ clauSetsΘ

}
.

In sight of defining the Davis-Putnam procedure recursively, we must single
out a well-founded relation over the family clauSets of all sets of clauses. (Inci-
dentally, this approach will automatically ensure termination of the algorithm).
A set of clauses is regarded as being “smaller” than another if its unsettled part
involves fewer literals than the unsettled part of the other. The relationship just
introduced is indeed well-founded over the family clauSetsΘ of sets of clauses:

96 EUGENIO G. OMODEO - ALEXANDRU I. TOMESCU

THEOREM. G⊆ clauSetsΘ & G 6= /0→〈
∃m ∈ G,∀v ∈ G |¬

(⋃(
v\settledΘ(v)

)
⊆

⋃(
m\settledΘ(m)

)
&⋃(

v\settledΘ(v)
)
6=

⋃(
m\settledΘ(m)

))〉
.

To be able to invoke the wellfounded recursive fcn theory already available
in Ref (cf. [12]), we define an operator f3 dpΘ and a predicate P3 dpΘ, both
ternary, which will play the role of formal input parameters. The third argument
of these is meant to designate a “picking” function like the one just defined. As
regards the operator f3 dpΘ, its first and second argument generally designate a
set s of clauses and a doubleton collection of models, one modeling s ∪ {{p�s}}
and one modeling s ∪ {{v(p�s)}}; the pseudo-model {fail} being used in place
of either when a genuine model does not exists. When s is trivially satisfiable
(e.g. null), as it coincides with its obvious part, then f3 dpΘ(s, ,) supplies its
model

⋃
s; when s is manifestly false, as flagged by the null clause present in it,

f3 dpΘ(s, ,) returns {fail}; when s is neither trivially satisfiable nor manifestly
false, f3 dpΘ(s,m,p) draws a model of s (if any) from m, giving priority to the
model of s ∪ {{p�s}} if this exists but picking the model of s ∪ {{v(p�s)}}
when the former does not exist (of course if neither has a model, m = {{fail}}
will hold).

f3 dpΘ(S,M,P) =Def if /0 ∈ S then {fail} else
if settledΘ(S)⊇S then

⋃
S else

arb
(
{w ∈M | (fail /∈

⋃
M→P�S ∈ w) &

(fail ∈ w→ 〈∀v ∈M | fail ∈ v〉)}
)

fi
fi

As regards the predicate P3 dpΘ, its first argument again designates a set
s of clauses, and its second designates the set s′ resulting from the simplifica-
tion of s when either the literal h or its complement vh is assumed to be true,
where h is selected from s by the picking function. It would be pointless to
carry out the simplification relative to vh when h is a pure literal, namely one
whose complement does not occur in s: in this case the above-discussed opera-
tor f3 dpΘ will receive a singleton, instead of a doubleton, set of models. There
are situations in which the picking function is not guaranteed to return anything
significant, but they cause no problem because in such cases the satisfiability
check for s is obvious and can be performed directly by the operator f3 dpΘ

without reduction of s to a simpler s′ .

CORRECTNESS OF DPLL 97

P3 dpΘ(S,S′ ,P)↔Def

(
v(P�S) ∈

⋃
S &

S′ = {{v(P�S)}} ∪ {c\{P�S} : c ∈ S |v(P�S) /∈ c}
)
∨

S′ = {{P�S}} ∪ {c\{v(P�S)} : c ∈ S |P�S /∈ c}

Let us note that in the case when P�S is a pure literal, we have
{{P�S}} ∪ {c\{v(P�S)} : c ∈ S |P�S /∈ c} = {{P�S}} ∪ {c ∈ S |P�S /∈ c}.

By applying the THEORY well recursive fcn, we obtain:

THEOREM. 〈∀x,p |x ∈ clauSetsΘ→dp0Θ(x,p)=
f3 dpΘ(x,{dp0Θ(y,p) : y ∈ clauSetsΘ | (

⋃
(y\settledΘ(y))⊆

⋃
(x\settledΘ(x))

&
⋃

(y\settledΘ(y)) 6=
⋃

(x\settledΘ(x))) & P3 dpΘ(x,y,p)},p)〉.

The following theorem states that the set resulting from the splitting rule
is a finite set of literals and that it is smaller with respect to the well-founded
relation introduced above.

THEOREM. X ∈ clauSetsΘ & H ∈
⋃(

X\settledΘ(X)
)

&

Y = {{H}} ∪ {c\{vH} : c ∈ X |H /∈ c} →
Y ∈ clauSetsΘ &

⋃(
Y\settledΘ(Y)

)
6=

⋃(
X\settledΘ(X)

)
&⋃(

Y\settledΘ(Y)
)
⊆

⋃(
X\settledΘ(X)

)
.

We are now ready to state the key theorem of our correctness verification:

THEOREM. S ∈ clauSetsΘ→ if fail ∈ dp0Θ(S,pkΘ then
¬Is dpSatΘ(S) else Has dpModelΘ

(
S,dp0Θ(S,pkΘ)

)
fi.

This assertion gets proved by mathematical induction on the number
n = #

⋃(
s\settledΘ(s)

)
. If n = /0, then s\settledΘ(s)= /0 or s\settledΘ(s)= { /0} .

If the former alternative holds, then the value returned by dp0Θ will be
⋃

s, and
actually we know from cnfModels (recalling the definition of settledΘ) that this
is a model of s. If the latter alternative holds, we have also /0 ∈ s and thus dp0Θ

will return the answer {fail} which is again correct by the definition of a model.
If /0∈ n, then pkΘ will pick a literal h from one of the clauses in s\settledΘ(s).

If v(pkΘ�s) /∈
⋃

s, then the only set that satisfies the predicate P3 dpΘ is s1 =
{{pkΘ�s}} ∪ {c ∈ s | (pkΘ�s) /∈ c}. As it has one fewer literal than s, we can
apply the induction hypothesis and deduce that the resulting set m1 is a model
for s1.

Otherwise, both s1 = {{v(pkΘ�s)}} ∪ {c\{pkΘ�s} : c ∈ s |v(pkΘ�s) /∈ c}
and s2 = {{pkΘ�s}} ∪ {c\{v(pkΘ�s)} : c ∈ s | (pkΘ�s) /∈ c} satisfy P3 dpΘ.
As they have two fewer literals than s, by the induction hypothesis we deduce

98 EUGENIO G. OMODEO - ALEXANDRU I. TOMESCU

that the models m1 and m2 returned by dp0Θ(s1) and dp0Θ(s2) are indeed mod-
els of s1 and s2, respectively.

For all the cases above, using the theorems on the pure literal rule, unit
literal rule and the splitting rule in cnfModels, we can prove the statement for s,
and show that the induction holds, which completes our proof.

To refine our results, we define the function dpΘ that applies dp0Θ to the
input formula deprived of all tautological clauses, and then enriches the model
(if any) thus obtained, so that it becomes also a model of the initial formula.

DEF. modelTautΘ(S,M) =Def if fail ∈M then {fail} else
M ∪ {arb({h,vh}) : c ∈ S,h ∈ c\M |vh ∈ c\M};

DEF. dpΘ(S) =Def modelTautΘ

(
S,dp0Θ(S\{c : c ∈ S,h ∈ c |vh ∈ c} ,pkΘ)

)
;

THEOREM. S ∈ clauSetsΘ→
(
Is dpSatΘ(S)↔ fail /∈ dpΘ(S)

)
;

THEOREM. S ∈ clauSetsΘ→
(
Is dpSatΘ(S)↔Has dpModelΘ

(
S,dpΘ(S)

))
.

5. Proof of the Compactness Theorem

It is remarkable that a single proof-development environment can provide sup-
port for the specification of a terminating algorithm (the Davis-Putnam proce-
dure in our case-study), for the proof of its correctness, and also for the proof of
such a general fact as the compactness theorem. For propositional logic, this fact
can be stated by first introducing the notion of FINITE SATISFIABILITY, which
refers to a set Ψ of sets S of finite clauses: in order that Ψ be finitely satisfiable,
for every finite subset F of Ψ there must exist a model M which simultaneously
satisfies all S in F . The compactness theorem states that any Ψ which is finitely
satisfiable in this sense admits a model M which simultaneously satisfies all S in
Ψ. A short, well-known proof of this fact can be derived from the Zorn lemma.

In rough outline, the proof goes as follows: let us consider the set Σ of all
finitely satisfiable supersets Φ of Ψ such that{

x : s ∈Φ,c ∈ s,y ∈ c,x ∈ {y,v y}
}

=
{

x : s ∈Ψ,c ∈ s,y ∈ c,x ∈ {y,v y}
}

.

It can be shown that every subset of Σ which is totally ordered by ⊆ has an
upper bound (relative to ⊆) in Σ; therefore, by the Zorn lemma, Σ has at least
one ⊆-maximal element Φ0. It can be shown that for every finitely satisfiable
set Φ and for each X ∈

{
x : s∈Φ,c∈ s,y∈ c,x∈ {y,v y}

}
, either Φ∪{{{X}}}

or Φ∪{{{v X}}} is finitely satisfiable: which means, when Φ is maximal (e.g.
when Φ = Φ0), that either {{X}} or {{v X}} (and only one of the two, else the
finite satisfiability would be contradicted) belongs to it. Hence we can define a
model M0 by collecting all those X for which {{X}} ∈ Φ0. Consider now an
S ∈ Φ0 and a clause c ∈ S. Assuming by contradiction that c does not intersect

CORRECTNESS OF DPLL 99

M0, we would have {{v x}} ∈ Φ0 for every x ∈ c, but then {S}∪{{{v x}} :
x ∈ c} would not be satisfiable, contradicting the finite satisfiability of Φ0.

Carrying this argument out in Ref requires two proofs (one concerning the
extensibility of finitely satisfiable sets, and one culminating in the compactness
theorem). We found that the natural placement for such proofs is within the
cnfModels theory discussed two sections ago (see boxed parts of Appendix B).
232 lines of proofware were needed to formalize these proofs; their verification
takes about 2 seconds.

Conclusions and Further Work

In this paper we have described how to prove the correctness of a well-known
algorithm in the ÆtnaNova theorem checker. The three theories introduced
constitute the actual proof, showing that Ref can be used to tackle algorithm
verification problems. Many algorithms can be specified, very naturally and
in compact, high-level terms, by means of an executable language grounded
on set theory (cf. [15]). Hence it would be desirable to enhance Ref with
programming-specific notation, so that proving that a procedure behaves as de-
sired could be done, in full, under the surveillance of the automated verifier.

This paper has also addressed, for the first time, the issue of how to “arith-
metize” the syntax and the symbolic manipulations of a formal language; i.e.,
how to encode by means of set-theoretic constructions the formation rules, des-
ignation rules, deduction and/or rewriting rules of a formal system. The first
step having now been done, we are confident that many situations will arise
which can be tackled similarly. Indeed, thanks to the set-theoretic counterpart
provided by the THEORY signedSymbols for the basic symbols of a language,
∈-recursion can mimic structural recursion over the terms of its signature.

For a quick example, let us denote by Vω the collection of all the hereditarily
finite sets (namely, those sets whose rank is a finite ordinal). We can specify the
algorithm which reduces an arbitrary formula of classical propositional logic to
negation normal form as follows:

rev opc(P) =Def {arb(P∩Vω)} ∩ 1;

f lip(P) =Def if P ∈ lits then v P

elseif P\Vω = {arb(P∩ lits)} then f lip
(
arb(P∩ lits)

)
else { rev opc(P)} ∪ { f lip(y) : y ∈ P\Vω } fi ;

nn f (P) =Def f lip
(

f lip(P)
)
.

100 EUGENIO G. OMODEO - ALEXANDRU I. TOMESCU

The idea, here, consistently with what has been proposed at the end of Section 2
(where we were focusing exclusively on literals), is that formulae (now also
conjunctions and disjunctions, arbitrarily nested) are encoded by sets of transfi-
nite rank. When we view a set P as the encoding of a formula, we regard P∩Vω

and P \Vω as being its opcode and its operand; for specificity we can think
that P encodes a disjunction, respectively a conjunction, depending on whether
arb(P∩Vω) is 0 or is nonnull: correspondingly, since 0 = /0 and 1 = { /0} hold
by definition, the value of rev opc(P) will be 1 or 0. In either case, we under-
stand the operands of the disjunction/conjunction to be the formulae encoded by
the elements of P \Vω . In the light of this, it should be clear that f lip simply
implements the De Morgan’s rules, plus a rule for unwrapping unit literals.

To see another example, referring now to propositional mono-modal logic,
let us specify how to evaluate a formula P relative to a Kripke frame consisting
of

• a set W of worlds and an accessibility relation R between worlds, and to

• a model M assigning a set of worlds to each propositional letter.

The evaluation rules are:

m vl(Op,U,W,R) =Def if Op = 0 then U elseif Op = 1 then W \U
else

{
x ∈W |U ⊇ R � {x}

}
fi ;

m eval(P,W,R,M) =Def if P ∈ domain(M) then M � P else

m vl
(
arb(P∩Vω),

⋃
{m eval(y,W,R,M) : y ∈ P\Vω} ,W,R,M

)
fi .

Here we view again P∩Vω as being the opcode of a formula, and we inter-
pret P\Vω as a disjunction, a negated disjunction, or a necessitated disjunction,
when the value of arb(P∩Vω) is 0, 1, or any set different from these, respec-
tively. The set of worlds where a disjunction is true is the union of the sets
of worlds making its disjuncts true; a necessitated formula holds true in those
worlds x such that every world accessible from x belongs to the set U of worlds
that make the operand of necessitation true.

Acknowledgements

The authors would like to thank Jacob T. Schwartz (New York University) for
his assistance with the development of the ÆtnaNova system.

We had pleasant and fruitful discussions with Giovanna D’Agostino (Univ.
of Udine), who contributed to the “arithmetization” (set-theoretic rendering in
our case) of semantic notions referring to propositional (even non-classical) log-
ics, and with Marianna Nicolosi Asmundo (Univ. of Catania), who contributed
to the proof of compactness.

CORRECTNESS OF DPLL 101

REFERENCES

[1] M. Baaz - U. Egly - A. Leitsch, Normal Form Transformations, A. Robinson and
A. Voronkov (eds.), Handbook of Automated Reasoning 275-333, Elsevier, 2001.

[2] D. Cantone - E.G. Omodeo - J.T. Schwartz - P. Ursino, Notes from the logbook
of a proof-checker’s project, N. Dershowitz ed. International symposium on ver-
ification (Theory and Practice) celebrating Zohar Manna’s 10000002-th birthday.
Springer-Verlag, LNCS 2772, 182-207, 2003.

[3] M. Davis - G. Logemann - D. Loveland, A machine program for theorem-proving,
Comm. of the ACM 5 (7) (1962), 394-397.

[4] M. Davis - H. Putnam, A Computing Procedure for Quantification Theory, J. ACM
7 (3) (1960), 201-215.

[5] N. Dunford - J. T. Schwartz, Linear operators. Part I: General theory, Interscience
Publishers, New York, 1958.

[6] J. Harrison, Stålmarck’s algorithm as a HOL derived rule, J. von Wright,
J. Grundy, and J. Harrison (Eds.), Theorem Proving in Higher Order Logics:
9th International Conference, TPHOLs’96 (26–30 August 1996), Springer-Verlag,
LNCS 1126, 221-234, 1996.

[7] J. Harrison, Formalizing Basic Complex Analysis, R. Matuszewski and A. Za-
lewska (Eds.), From Insight to Proof: Festschrift in Honour of Andrzej Trybulec,
University of Białystok, Studies in Logic, Grammar and Rhetoric, vol. 10 (23),
151-165, 2007.

[8] J.-P. Keller - R. Paige, Program derivation with verified transformations - A case
study, Comm. Pure Appl. Math. 48 (9-10) (1995), 1053-1113. Special issue in
honor of J.T. Schwartz.

[9] P. Letouzey - L. Théry, Formalizing Stålmarck’s algorithm in Coq, J. Harrison and
M. Aagard (Eds.), Theorem Proving in Higher Order Logics: 13th International
Conference, TPHOLs 2000, Springer-Verlag, LNCS 1869, 387-404, 2000.

[10] T. Nipkow - L. C. Paulson - M. Wenzel, Isabelle/HOL – A Proof Assistant for
Higher-Order Logic, Springer-Verlag, LNCS 2283, 2002.

[11] E.G. Omodeo - D. Cantone - A. Policriti - J.T. Schwartz, A Computerized Referee,
O. Stock and M. Schaerf (Eds.), Reasoning, Action and Interaction in AI Theories
and Systems, Essays Dedicated to Luigia Carlucci Aiello, LNAI 4155, 114-136,
2006.

[12] E.G. Omodeo - J.T. Schwartz, A ‘Theory’ mechanism for a proof-verifier based on
first-order set theory, A. Kakas and F. Sadri (eds.), Computational Logic: Logic
Programming and beyond, Essays in honour of Robert Kowalski, part II, Springer-
Verlag, LNAI 2408, 214-230, 2002.

[13] M. Ouyang, How good are branching rules in DPLL?, Discrete Applied Mathe-
matics 89 (1-3) (1998), 281-286.

[14] D. Prawitz - H. Prawitz - N. Voghera, A Mechanical Proof Procedure and its Real-
ization in an Electronic Computer, J. ACM 7 (2) (1960), 102-128. Reprinted (with
a commentary) in Automation of Reasoning 1, Classical Papers on Computational

102 EUGENIO G. OMODEO - ALEXANDRU I. TOMESCU

Logic, 202-228, J. Siekmann and G. Wrightson (eds), Springer-Verlag, 1983.
[15] J. T. Schwartz - R. K. B. Dewar - E. Dubinsky - E. Schonberg, Programming

with Sets: An introduction to SETL, Texts and Monographs in Computer Science.
Springer-Verlag, New York, 1986.

[16] http://www.settheory.com/Setl2/Ref user manual.html

CORRECTNESS OF DPLL 103

Appendix

A. The signedSymbols THEORY

THEORY signedSymbols(atms)
⇒ (affΘ,negΘ, litsΘ, falseΘ)
〈∀x,y |x 6= y→affΘ(x) 6=affΘ(y)〉
〈∀x |negΘ

(
negΘ(x)

)
= x & negΘ(x) 6= x〉

〈∀x,y |affΘ(x) 6=negΘ

(
affΘ(y)

)〉
{affΘ(x) : x ∈ atms} ⊆ litsΘ

{negΘ(x) : x ∈ litsΘ} = litsΘ

falseΘ /∈ litsΘ

END signedSymbols

B. The cnfModels THEORY

THEORY cnfModels(vx)
〈∀x |vvx = x & vx 6= x〉

⇒ (Has cnfModelΘ, Is cnfSatΘ , Is cnfFinSatΘ)
〈∀s |Has cnfModelΘ(/0, /0) & Is cnfSatΘ(/0) &

(
/0 ∈ s→¬Is cnfSatΘ(s)

)〉
〈∀s | {h ∈⋃

s |vh ∈
⋃

s} = /0 & /0 /∈ s→Has cnfModelΘ(s,
⋃

s) & Is cnfSatΘ(s)〉
〈∀s | {u : u ∈ s,h ∈ u |u = {h} & {h,vh} ∩

⋃
(s\{u})= /0} ⊇ s→

Has cnfModelΘ(s,
⋃

s) & Is cnfSatΘ(s)〉
〈∀t,s,m | t⊆ s & Has cnfModelΘ(s,m)→Has cnfModelΘ(t,m)〉
〈∀t,s | t⊆ s & Is cnfSatΘ(s)→ Is cnfSatΘ(t)〉
〈∀s,m |Has cnfModelΘ(s,m)→Has cnfModelΘ(s,m ∩

⋃
s)〉

〈∀s,m,n |Has cnfModelΘ(s,m) & {h ∈ n\m |vh ∈ n} = /0 & m⊆n→
Has cnfModelΘ(s,n)〉

〈∀s,m, t |Has cnfModelΘ(s,m)→
Has cnfModelΘ(/0,m ∪ {arb({k,vk}) : c ∈ t,k ∈ c\m |vk ∈ c\m})〉

〈∀s,m, t |Has cnfModelΘ(s,m)→
Has cnfModelΘ(s ∪ {c : c ∈ t,h ∈ c |vh ∈ c} ,

m ∪ {arb({h,vh}) : c ∈ t,h ∈ c\m |vh ∈ c\m})〉
〈∀s,m,h |Has cnfModelΘ(s,m) &

¬Has cnfModelΘ({{h}} ∪ {c\{vh} : c ∈ s |h /∈ c} ,m ∪ {h})→
vh ∈m〉

〈∀s,m,h |Has cnfModelΘ(s,m)→
Has cnfModelΘ({{h}} ∪ {c\{vh} : c ∈ s |h /∈ c} ,m ∪ {h}) ∨
Has cnfModelΘ({{vh}} ∪ {c\{h} : c ∈ s |vh /∈ c} ,m ∪ {vh})〉

104 EUGENIO G. OMODEO - ALEXANDRU I. TOMESCU

〈∀h,s,m |Has cnfModelΘ({{h}} ∪ {c\{vh} : c ∈ s |h /∈ c} ,m)→
Has cnfModelΘ(s,m)〉

〈∀h,s | Is cnfSatΘ({{h}} ∪ {c\{vh} : c ∈ s |h /∈ c})→ Is cnfSatΘ(s)〉
〈∀s,h | Is cnfSatΘ(s)↔ Is cnfSatΘ({{h}} ∪ {c\{vh} : c ∈ s |h /∈ c}) ∨

Is cnfSatΘ({{vh}} ∪ {c\{h} : c ∈ S |vh /∈ c})〉
〈∀h,s |vh /∈

⋃
s→

(
Is cnfSatΘ(s)↔ Is cnfSatΘ({{h}} ∪ {c ∈ s |h /∈ c})

)〉
〈∀h,s,m | {h} ∈ s & Has cnfModelΘ(s,m)→h ∈m & vh /∈m〉
〈∀Ψ | Is cnfFinSatΘ(Ψ)↔
〈∀f⊆Ψ |Finite(f)→〈∃m,∀s ∈ f |Has cnfModelΘ(s,m)〉〉〉

〈∀Ψ | Is cnfFinSatΘ(Ψ) & 〈∀s ∈Ψ,c ∈ s |Finite(c)〉→
〈∃m,∀s ∈Ψ |Has cnfModelΘ(s,m)〉〉

END cnfModels

C. The davisPutnam THEORY

THEORY davisPutnam
(
vx, lits, fail,sl(x)

)
〈∀x |vvx = x & vx 6= x〉
{vx : x ∈ lits} = lits

fail /∈ lits

〈∀s | s 6= /0 & /0 /∈ s→ sl(s) ∈
⋃

s〉
⇒ (clauSetsΘ,Has dpModelΘ, Is dpSatΘ,dpModelΘ,settledΘ,pkΘ,

f3 dpΘ,P3 dpΘ,dp0Θ,modelTautΘ,dpΘ)
〈∀h,s |vh /∈

⋃
s→{c ∈ s |h /∈ c}= {c\{vh} : c ∈ s |h /∈ c}〉

〈∀s | s ∈ clauSetsΘ→
(
Finite(s) & Finite(

⋃
s) &

⋃
s⊆ lits &

fail /∈
⋃

s & vfail /∈
⋃

s
)〉

〈∀s,c | (s ∈ clauSetsΘ & c ∈ s
)
→Finite(c)〉

〈∀s, t | (s ∈ clauSetsΘ & (t⊆ s ∨
⋃

t⊆
⋃

s)
)
→ t ∈ clauSetsΘ〉

〈∀s,m |Has dpModelΘ(s,m)↔ {h ∈m |vh ∈m} = /0 &

{c ∈ s |m ∩ c = /0} = /0〉
〈∀s | Is dpSatΘ(s)↔〈∃m |Has dpModelΘ(s,m)〉〉
〈∀g | (g ⊆ clauSetsΘ & g 6= /0)→ (∃m ∈ g | ∀v ∈ g |

¬
(⋃

(v \ settledΘ(v))⊆
⋃

(m\ settledΘ(m)) &⋃
(v \ settledΘ(v)) 6=

⋃
(m\ settledΘ(m))

)〉
〈∀x,p |x ∈ clauSetsΘ→dp0Θ(x,p)=

f3 dpΘ

(
x,{dp0Θ(y,p) : y ∈ clauSetsΘ |(⋃(

y\settledΘ(y)
)
⊆

⋃(
x\settledΘ(x)

)
&⋃(

y\settledΘ(y)
)
6=

⋃(
x\settledΘ(x)

))
&

CORRECTNESS OF DPLL 105

P3 dpΘ(x,y,p)},p
)
〉

〈∀s | s ∈ clauSetsΘ→#
⋃(

s\settledΘ(s)
)
∈ Za〉

〈∀x,h,y |x ∈ clauSetsΘ & h ∈
⋃(

x\settledΘ(x)
)

&

y = {{h}} ∪ {c\{vh} : c ∈ x |h /∈ c} →
y ∈ clauSetsΘ &

⋃(
y\settledΘ(y)

)
6=

⋃(
x\settledΘ(x)

)
&⋃(

y\settledΘ(y)
)
⊆

⋃(
x\settledΘ(x)

)〉
〈∀s | s ∈ clauSetsΘ & /0 /∈ s & s 6⊆ settledΘ(s)→

pkΘ�s ∈
⋃(

s\settledΘ(s)
)

& pkΘ�s 6= fail &

v(pkΘ�s) 6= fail &
(
v(pkΘ�s) ∈

⋃
s→v(pkΘ�s) ∈

⋃(
s\settledΘ(s)

))〉
〈∀s | s ∈ clauSetsΘ & /0 ∈ s ∨ s⊆ settledΘ(s) ∨ #

⋃(
s\settledΘ(s)

)
= /0→

if fail ∈ dp0Θ(s,pkΘ) then ¬Is dpSatΘ(s)
else Has dpModelΘ

(
s,dp0Θ(s,pkΘ)

)
fi〉

〈∀s | s ∈ clauSetsΘ→
if fail ∈ dp0Θ(s,pkΘ) then ¬Is dpSatΘ(s)
else Has dpModelΘ

(
s,dp0Θ(s,pkΘ)

)〉 fi
〈∀s | s ∈ clauSetsΘ→

(
Is dpSatΘ(s)↔ fail /∈ dpΘ(s)

)〉
〈∀s | s ∈ clauSetsΘ→

(
Is dpSatΘ(s)↔Has dpModelΘ

(
s,dpΘ(s)

))〉
END davisPutnam

EUGENIO G. OMODEO
Dipartimento di Matematica e Informatica

Università di Trieste
e-mail: eomodeo@units.it

ALEXANDRU I. TOMESCU
University of Bucharest

Faculty of Mathematics and Computer Science
e-mail: alexandru.tomescu@gmail.com

