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DIFFERENTIABILITY OF WEAK SOLUTIONS
OF NONLINEAR PARABOLIC SYSTEMS
WITH QUADRATIC GROWTH

MARIO MARINO - ANTONINO MAUGERI

We show, making use of the interpolation theory in Besov spaces, an
imbedding theorem of Gagliardo-Nirenberg type for functions u belonging to
wmr N C5*, from which we deduce the local differentiability result:

e L2( —a,0, HX(B(o), RN)) nH ( — 4,0, L2(B(o), RN)),

for the solutions u of class L2(—T,0, H! (2,RY)) n ¢%* (Q, R¥) (N in-
teger > 1, Q@ = Q2 x (—T,0),0 < A < 1) to the nonlinear parabolic system:

. | 0
~S"Didt (X, u, Du) + 55;- = B%(X,u, Du), X = (x,0) € 0,

n
i=1

with quadratic growth:

1B° (X, u, Duy | < M (14 Du)’?)

Entrato in Redazione il 5 luglio 1996.

Lavoro eseguito con il contributo finanziario del M.U.R.S.T. e nell’ambito del
G.N.A.FA. del C.N.R.
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1. Introduction.

Let €2 be an open bounded subset of R"(n > 2) of generic point x =
(X1, X2, ..., %,), O the cylinder @ x (=T,0) (0 < T < 4oo0)and u €
L?(-T,0, H'(Q2,RY)) n C®*(Q, RV) (N integer positive, 0 < A < 1) (})
a solution in Q to the second order nonlinear parabolic system of variational

type (%)

. 3
(1.1) —~N"Did' (X, u, Du) + 5‘; = B°(X,u, Du),

n
=1

in the sense that

/Q {2”: (a'(X,u, Du) | D;p) — (ul?)_(tp> }dX _

=1

'=/(B°(X,u,Du)]g0)dX, Vgoecg"(Q,RN),
Q

) By wmr(Q,R¥),m =0,1,2,...,1 < r < oo, we will denote the usual Sobolev

spaces.
W’?"(SZ, RN), 0<% <1,1 <r < oo, will denote the Slobodeckij space of those

vectors u € L™ (2, RV) such that

lu(x) — uly)ll”
lu|r :f dx -
0,2 Q o “x _ y”n+19r

W+ (Q RYY, m = 1, 2, L0<® <1,1 <r < oo, will denote the space of those
vectors u € W™ (Q, RV) such that D% WP, RN), Via| = m.

If r = 2 we shall use the notation H™*+? m = 0,1,2,...,0 < ¢ < 1, instead of
Wm+z9,2'

By C“_S_SZ, RN), s=20,1,2,...,0 < A < 1, we shall denote the space of those vectors
u € C*(Q, RY) for which

dy < +o00.

[Dau]k,ﬂ = sup ”D M(X) - Dku()’)”
x,yeQ lx =yl

x#y

< 400, Vx| =s.

In @ the Holder continuity is considered with respect to the parabolic metric

d(X,Y) =max{|x — y|, It = 7|2}, X = (x, 1), ¥ = (y, 7).

(2) For the notations and the symbols we refer to [3]. In particularif u : 0 — RY we

shall write Du = (Dju | ...| Dyu), D; = %
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where X = (x,t) and a‘ (X, u, p),i=1,2, ..., n and BYX, u, p) are vectors
of RY defined on A = Q x RY x R"V, satisfying the following conditions:

(1.2) the vector B*(X, u, p) is measurable in X, continuous in (u, p) and, for
each (X, u, p) € A with ||u|| < K, such that

IB°(X, u, p)Il < M(K) {1+ IplI?};

(1.3) the vectors a' (X, u, p), i =1,2,...,n, are of class C1 in O x RN x R"¥
and, for each (X, u, p) € A with |lu]| < K,

T T e T
: 9 <MK{1 } =12,
90+ 2 | 2 g | S MEOUHIPIL =120
N n aai
D2 =l s MK, =12,
k=1 j=1 | 9Pk

(1.4) there exists v(K) > 0 such that

n N ]
aal (X, u, p) i
> g v )lgl?
i, j=1hk=1 Py
for each & = (EYE?] ... |E") e R™ and for each (X, u, p) € A with lu]| < K.

In the work [3] L. Fattorusso is concerned with the local differentiability,
with respect to the spatial derivatives, of the solutions

ue L*(—T,0, H(Q,R")YNC®*(Q,RY), 0<Ar<1,

to the system (1.1), proving that, if the assumptions (1.2), (1.3) and (1.4) are
fulfilled, then, for each cube B(20) = B(x°,20) = {x e R* : [x; — x?l <
20,i =1,2,...,n} CC Qand Y2a € (0, T), it results

(1.5) uelL*(—a, 0, HF?(B(o), RM)), Vo € (0, 1),
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and the following estimate (%)

0 0
/ |Dulj podt < ¢ {1 +/2 lul%,ma)d"‘}
— — 2

a

holds.
In the same work is pointed out that it is not possible to improve this result, in
such a way to achieve for each solution u to the system (1.1) the differentiability

(1.6) uel?(—a,0, H*(B(c),R")),
if, preliminarily, the regularity
(1.7) DiuelL*(~a,0,L*(B(p),RY)), i=1,2,...,n,

VB(p) cC 2 and Ya € (0, T), is not ensured.
The technique used in [3] allows us to achieve, instead of (1.7), the condi-

tion

| Diu e L* " (—a,0, L*(B(p),RY)), i=1,2,...,n,

VB(p) CC RQ,Yae(0,T) and V¥ € (24, 1), which is not enough to ensure
that

uel?(—a,0, H(B(o),RY)).

In the papers [4], [6] and [5] the problem of differentiability has been con-
sidered again, under assumptions of monotony and of nonlinearity ¢ # 2, always

achieving results of the type (1.5).
In the paper [10], the author obtains the desidered result (1.6) under as-
sumptions stronger than (1.2), (1.3), (1.4) and requiring that the solutions u to

(3) fl<r<oo,0<v¥ <landm=0,1,2,..., weshall set

1 1

; m r
[telm,r,2 = (/;2 Z ”Dau”rdx> Neelim,r@ = <Z lulz,,—,g) ’
k=0

lotf==m

1
lullmisro = (llull,’n,,,QJr > lD“ulfa,r,g> :
letl=m

For the sake of simplicity we shall write: | - [, | - |9.Q, | - lm., || - lm+0,0 instead of

n
[ lm2.90 |- 192,00 I Im,2,90 1|+ lm+9,2,0, respectively, and IDuI?,,Q =3, IDiul?g,g
=1
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the system (1.1) belong to the space L*( — T, 0, H'(2,R")) N C%*(Q, RY)
with 1 <A < 1.

The aim of this paper is to obtain, under the assumptions of [3], the differen-
tiability result (1.6) for the solutions u € L*(—T, 0, H'(Q, RY))nC%*(Q, RV),
0 < A < 1,tothe system (1.1). The technique followed is to reach, preliminarily,
the regularity result (1.7), by using the condition (1.5) proved in [3], the assump-
tion u € C%* (Q, R") and a suitable imbedding theorem of Gagliardo-Nirenberg

type for functions u € W™’ N C** (see Section 2).

2. An interpolation result.

In this section we establish, making use of the interpolation theory in Besov
spaces (cf.: [12] and [13]), an interpolation result of Gagliardo-Nirenberg type
for functions ¥ € W™ N C%* with m non integer > 1,1 < r < 0o, s integer
> 0,0 < A < 1, that we will use in Sect. 3 to show the differentiability result
(1.6) for the solutions u € L*(—T, 0, H'(Q, R¥)) NC%*(Q, RV) to the system
(1.1).

If u € W™NC**, with m integer > 2, the following result due to Nirenberg
[11] (see also C. Miranda [9]) is well known :

Theorem 2.1. Let N be a positive integer and Q2 a cube of R". If
ue W™ (Q,RY) N oM, RY),
with m integer > 2, 1 < r < oo, sinteger > 0,0 < A < 1,s <m—1,

then, for each integer j withs + A < j < m, there exist two constants ¢; and
¢, (depending on 2, m, r, s, A, j) such that:

a , l—a
max |D%ulo p.0 < ci <|rr|1ax lDauIO,r,Q> (lmlax [D“uh,sz) +
aj=s

la|=j al=m

+ ¢a IIl’lla)( [Dalt]),,gz,
al=s

1 ' 1 A f— 85 — A
where—:i—l—a(——ﬂ)-(l—a)s—i_ ,VaE[J——{— 1[(4).
p R r o n 7 m

(*) Inthe work [11], Theorem 2.1 is stated in a slightly more general form.
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Making use of this theorem, in [8] we proved that the solutions
wel®(=T,0, H*(Q,RY)) nc®*(Q,RY)

to the system (1.1) belong to H'( — T, 0, L?(22, RY)) and, hence, the partial
Holder continuity in Q of D;u,i =1,2,...,n.

Now let us show an analogous result for functions u € W™ NC*, with m
non integer > 1.

Theorem 2.2. Let N be a positive integer and Q2 a cube of R*. If
ue Wm—}-l?,r(Q, RN) N Cs,k(sz, RN) ,

with m integer > 1,0 <9 < 1,1 <r < o0, s integer > 0,0 <A < 1,5 < m,
then, for each j with max(s +A,m +0 —2) < j <m + 9, it results

2.1) ue W r(Q,RY)

and there exists a constant ¢ (depending on Q,m, 9, r, s, A, j, n,a) such that:

(2.2) lullp.0 < clullisall@lgo g qry ©),
1 ' 1 (s A -5 — A
where—zi-i—a Lomty —(1——a)s+ ,Vae[ /=3 ,1[
n r n n m+10—s—A»A

with (lp— a)(s + A) + a(im + ©) non integer.

Proof. 1t is well known that (°)

(2.3) wmHr (@, RY) = B (@, RY)
and that (7)

(2.4) C**(Q,RY) = B (@, RY).

Then it results u € B *? (2, RY) N B (Q, RY) and, hence, by means of

Theorem 3.3.6 in [13] (%), we get, foreacha €] 0, 1[:
(2.5) ue (B (@, RY), B (q, RY)) =B} (@, RY)

, 00 rr

C) Nullcsrgprry = 2 lal<s SUP, i 1D U 4 3 g = [D¥uli 0.

(%) For the scalar case (N = 1) see [12], Remark 4.4.2/2. The result can be extended
to the vectorial case (N > 1).

(7) For the scalar case (N = 1) see [12], Remark 4.5.2/3 and (3.4.2/2) in [13]. The
result can be extended to the vectorial case (N > 1).

() The result can be extended to the vectorial case.
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and by (1.9.3/3) in [12]

(2.6) 1132, @0 < €ltlmeo g o 11525

where h = (1 —a)(s +A) +a(m + 1), ql = I
Now fixed j € Jmax(s + A, m + ¢ — %), m 4 ©[, let us consider (2.5) and

(2.6) fora e [—{;g—s—*; 1] with (1—a)(s+) +a(n + ) non integer; for such

values of a, setting

1 ] 1 0 A
_:_J_+a<___m+ )_(1_a)s+
p n r n

1t results:
. n n
l<g=<p<oo, O<j<h<oo, h——=j——,
q p
from which, thanks to the Remark 4.4.2/2 in [12] (%) and to (4.6.1/8) in [12] (®)
it follows |
2.7) B} (Q,RY) =W"(Q,RY) c W/?(Q,RY),

with algebraic and topological inclusion.
Then we reach (2.1) and (2.2) from (2.5), (2.7), (2.6), (2.3) and (2.4).
From Theorem 2.2 (withm = 1,r = 2,5 = 0, j = 1) we easily get the
following
Corollary 2.1. Let N be a positive integer and Q2 a cube of R". If
ue H'*(Q,RY) N oM@, RY),

with) < ¢ < land0 < A < 1, then u € WHP(Q2, RY) and there exists a
constant ¢ (depending on 2, 9, A, n, a ) such that:

Hunl p,2 = =< C”u” +0Q”u“C'OA(Q RV)?
1 1 1 1479 1—A
where — = —+al| - — -—(l—a)—, Vae]———~——,1[.
p n 2 n 14+9 -2

In particular, if 1 — A < ¥ < 1, fora = l we get:
u e WHP(Q, RY) and there exists a constant c (depending on 2, ¥, A, n) such

that:

1 1
”u”l,p,ﬁ < c”u”12-|-19,Q”u”(2,‘0,)\(gyRN)9

(3 + A — 1)
P TSN N C

where p = 4 +
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3. Differentiability of the solutions to the system (1.1).

LetueL*(=T,0, H' (2, RY)) N C**(Q,R), 0 < A < 1, be a solution
to the system (1.1) and let us suppose that the assumptions (1.2), (1.3) and (1.4)
are fulfilled; in what follows we shall set

,

B B N lu(X) —u()|
K = sup lull, U =lulro= o dNX.Y)

X#£Y

where d(X, Y) is the parabolic metric:
d(X,¥) = max {lx = yll, It - i, X=00, Y=0.0.
In this section we shall prove that
ueL?(—a,0,H*(B(0),R")) N H'(~a,0, L*(B(o), RY)),

VB(3o) = B(x°,30) cC Q and Va (0, T).
First we recall the following result:

Lemma 3.1. Ifve L?*(—a, 0, L2(BQ0),R"™)), a,0 > 0, and if there exists a
real number M > 0 such that (°)

0
/ dt/ Iz avll>dx < |k]*M, Vih| <o, i =1,2,...,n,
—a B(o)

then v e L? (—a, 0, H'(B(o), RN )) and the following estimate holds:
0
/ dt/ IDivl|*dx <M, i=1,2,... n
~a B(o)

The proof is the same of Theorem 3.X in [1], Chap. L
Now we show the following

(9) Let 7, p and a be three positive real numbers, with T < 1 and let 4 be a real
number such that [#| < (1 — )p. If v is a function from B(p) x (—a,0) in R¥ and
X = (x,1) € B(rp) x (—a, 0), we shall set here and in what follows

X)) =v(x +he, ) —v(X), i=12,....n,

where {e"}i=1,2,_,_,n is the canonic base of R”,
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Theorem 3.1. [fueL?(=T,0, H'(Q,RY)) N C** (Q,R¥),0< A < 1,isa

solution to the system (1.1), if the assumptions (1.2), (1.3) and (1.4) hold, then,
VBBo) = B(x° 30) cc Q,Va,be(0,T),a < b, it results:

(3.1) uel?(—a,0, H(B(o),RM)) N H' (—a,0, L*(B(c), RY))
and the following estimate holds:

Bu

ot }dt =

0
(3.2) /_ {Iulz Bo) T

a 0,B(o)

0
<c(,K,U,A,0,a,b,n) {1 +/ IuliBGG)dt} .
—b

Proof. Fixed B(30) = B(x°,30) cC Q,a,b€ (0, T) witha <band h e R
suchthat |h] < &, setb* = ‘””b and let ¥ (x), pn (¢) be the real functions defined
as in the proof of Theorem 3. I in [3]. Arguing as in the proof of Theorem 3.1 in
[3], we obtain, for each integer i, 1 < i < n, and for each £ > 0 (see (3.31) of

[3D:

1
(33) f 02 17ip DullPdx <
B(ZJ)

{6+ c(K, YR + IR + |B] + |hD)} / “dr | ypllluDulldx +
‘ —b* B(20)

s
+c(K,o0,a,b, g)|h|2/ dtf (1+ || Dul|®)dx +
—b* B(30)

1
+e(K,e) [ dt [ w202 Il Dulldx +
—b* B(20)

o) [ Tppar | o A DD (a0 dx.

Now it is obvious that there exists a real number Ao (v, K, U, A) with 0 <'ho <
min {1, ¢} such that, for each || < hy, it results

¢ (K, UY (|l + 1R + h] + [h]?) < g
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and, hence, from (3.3) (with ¢ = 43 ) it follows, for each integer i, 1 < i < n,
and for each || < hy:

1
(3.4) K/ dt V22 |t n Dull*dx <
2 J_p B(20)

< c(v, K, 0, a, B)|h[? f

b*

dt/ (14 || Dul®) dx +
B(30)

F=

+ew, K) / dt [ Y202l Pl Dl dx +
—b* B(20)

1
+C(K)/b P,id’/ . (1 + 1 Dul® |7 (W27 )| dx.
b B(3o)

Let us consider the last integral that appears at the right hand side of (3.4).
Theorem 3.1l in [3] (with 0y = 30, a = b* ) ensures that

3.5) ueLz(—b*,O, H1+ﬁ(3(ga),RN)),we(o, 1,
and

0
(3.6) /_ . |Dul; pis,ydt <

0
<c(v,K,U,9,A,0,a,b,n) {1+/ Iu]%,B(%)dt};
—b

hence, thanks also to the assumption u € Co*(Q, RM), it results for a.e. t €
(=b*,0)

u(x, 1) € H*(B(30),RV) N C®*(B(30), RY), Vo € (0, 1).

From Corollary 2.1 (with Q@ = B(%a) and ¥ = 1 — % ) we get for a.e.
t € (—b*0):

3.7) u(x,t) € Wh?(B(30), RY)
and
1 L
(38) “unl,p,B(%o—) S C()‘" o, n’)“u” ? ”u”(zfo’)‘(B(%U),RN)’

2-%,B(30)
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where p = 4 + n%.
Now, since p > 4, we obtain the algebraic and topological inclusion

wh?(B(30),RY) c W' (B(30), RY),
from which, by virtue of (3.7) and (3.8), it follows for a.e. r € (—b*, 0):
3.9) u(x,t) e W (B(30), RY)
and

(3.10)  [ullf, s = €K, U ko) {1 [l gy + IDuI%_%,B(%a)} .

The estimate (3.9) holds in particular for a.e. t € (—b*, — %); for such values of
t, therefore we have:

oK) [ A+ IDwl| )|t - (W27 pe) || dx <
B(30)

(/ cz(K)|h|2(1+||Du||2)2dx> (/ |hr2||r,-,_h<w2r,~,hu>Wx)
B(30) B(30)

and Ve > 0

1
2

IA

G1D &) | A+ DUl Ti-n (¥ m) | dx <
B(30)
£
< —|h|? / Iz —n (2T pu) |1 dx + (K, &) |h]? f (1+ |1 Dul»?*dx <
2 B(30) - B(30)
<o YAraDul?dx + c(o, o)A / | DulP dx +
BQo0) B(30)
+c(K,o,n,e)h* 11+ f | Dul*dx } (19).
B(30)
From (3.11) we deduce, for ¢ = :
c(K) (1 + |1 Dul| DNt - (27 pu) | dx <

B(30)

< - Y2 n DulPdx + c(v, K, o, mIAPL + 1l yagy + 0] 4 peso)
4 Jp@0) 4B

(19) In the last estimate we made use of (3.38) in [3].
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from which, by virtue of (3.10):

(3.12)  ¢(K) A+ 1 Dul®) i, (i pu0) |dx <

B(30)

v
< - V2|t Dul* dx +
4 Jpoo

+c, K, U, A, 0,n) || {1 =+ I”liB(w) + ’D”'%_Q,B(ga)} :

By multiplicating both members of (3.12) for ,031 and by integrating with respect
to ¢ in (—b*, —-) we obtain:

G.13) (k) / T 2ar / (1 + 1 DUl (92 pt) dx <
—b* B(30)

1
v [ 2 2 2
<2 / di [ w02l DullPdx +

4 J_p B(Q20)

e, K, U, 3 0. m) |’ f
—b*

I~

2 2
(A [uly oy + 1DUl_y syt

which is the desidered estimate of the last terms of the right hand side of (3.4).
Using (3.13) and taking into account the meaning of ¥ and of p,,, (3.4) becomes:

2
/ dt / |5, Dul*dx <
—a B(o)

0
< ¢, K,U, 7 0.a, b, n)|h]? / U+l oy +
_b*

0
+1Dul}_, s ddt+c(w, K) | di i, 0u || Due ) dix,
1=5.8(30) —b* B(20)
from which, taking the limit as m — oo, we get
0
(3.14) / dt/ T DullPdx <
—a B(o)
0
S C(Ua K9 U, A‘s 0,4, b’ n)lhlz{l +/ (Iul%,B(:ig) + ’Du,%_& B(%U))dt} +
_b* 2

0
+ ¢(v, K)/ dt/ 'z pue))?l| Du||*d x.
—b* B(20)
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Now let us consider the integral

0
f dt / e 2 Duel 2 x
—b* B(20)

that appears in the right hand side of (3.14). For a.e. r € (—b*, 0), we have, using
the Holder inequality and thanks to Lemma 2.1I in [2] and to (3.10):

1
2 2
f ||ri,hu112||Dut|2dxs</ liri,hull‘*dx) (/ nDun“dx> <
B(20) B(20) B(20)
% %
<[ 1oulas (f nDun“dx) < PIl, s <
B(30) B(20) 4,B(50)

<c(K,U, A o,n) |h? {1 18 gy + lDul%_%,B(%U)} ,

from which, by integrating in (—b*, 0) it follows
0

(3.15) f dtf I nuel*| Dul*dx < ¢(K, U, A, 0,a,b,n)|h|*
—b* B(20).

0
2 2

From (3.14), (3.15) and (3.6) (with ¢ = 1 — %), we deduce, for each integer
i,1 <i <n,and for each |h| < hy:

0
(3.16) f dt / |7 Duf®dx <
—a B(o)

0
2 2 2
_<_ C(V, K’ Ua A’? ag, a,b, n')lh‘l {1 + [_b* (Iull,BGO’) + lDull—%,B(%o’))dt} S

0

<c(, K, U, A, 0,a,b, n)|h|2{1 +f |u|%,3(30_)dt}.
b

If hg < |h| < o the estimate (3.16) is trivial; hence (3.16) will be true for each
integer i, 1 <i < n, and foreach |h| < 0.
From (3.16), by virtue of Lemma 3.1, it follows

(3.17) ueL?(—a,0, H*(B(o), RY))
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and

0
(3.18) |

a

0
<c(w,K,U,\ 0,a,b n) {1 +/ lul%,B(Sa)dt} .
—b

It remains to show that u € H' (—a, 0, L(B(c), R")) and that the relative
estimate holds. From (3.10) it follows, for a.e. t € (—a, 0):

/B Dl < oK U, by, m {1 la] sy + DUy e |

i = 1,2,...,n, from which, by integrating With respect to ¢ in (—a, 0), we
deduce:
DiueL*(B(o) x (—a,0),RY), i=1,2,...,n,

and

0
(3.19) fdtf | Dull*dx <
—a B(o)

0
<c® U ko [ {1+l o, +1Dul_, 4 Lar <

-a

0
S C(U9 K, Ua )"a g,4a, b’ n) {1 +/ IMI%,B(:}o-)dt} (11)-
-b

Now, taking into account that B°(X, u, p) satisfies (1.2), we obtain
(3.20) B%(X,u, Du) e L* (B(0) x (~a, 0), RY)
and

0
(3.21) /dt/ I|B(X, u, Du)||?dx <
—a B(o)

0
< c¢(K) dt/ (14 [Dull*) dx .
—a B(o)

(1) In the last estimate we made use of (3.6) (with ¢ =1 — 32‘—).
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On the other hand, from the assumption (1.3) on @’ (X, u, p) we deduce that (12)
(3.22)  Dia'(X,u, Du)e L*(B(o) x (—a,0),RY), i=1,2,...,n,

and that

0 n
(3.23) / dt f ZHDia" (X, u, Du) ||?dx <
—a B(o) ;=1

0 n
<o) [ dr [ A+ Dul+ Y 1Dl
—d B(o) i, j=1

Now let us recall that « is a solution in @ (and hence in B(o) X (—a, 0)) to the
system (1.1), and therefore, for each ¢ € C3°(B(0) x (—a, 0), RY), it results:

0
[, (o5)-
—a B(o) ot
0 n )
= _/ dt/ (Z Dia'(X,u, Du) + B*(X, u, Du)lqo) dx
—a Blo) \ ;=1

from which, by virtue of (3.20) and (3.22), it follows that
ou ) N
(3.24) = o € L“(B(o) X (—a, 0), R™),

From (3.21) and (3.23) we deduce

0
[
—a B(o)

0 n
<c(K,n) dt/ (1 +1Dufl* + ) ||Dl-juu2) dx,
- B(o) i,j=1 .

au 12
il dx <
ot

that, thanks to (3.18) and (3.19), provides us with

0
(3.25) f dt /
—d B(o)

(12) See the proof of Theorem 2.1 in [8].

P 2
_u dx S
at
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0
<cWw K,U,A,0,a,b,n) {I-I-/ |u|:f‘,B(3o)dt} (13).
~b

Finally (3.1) and (3.2) follow from (3.17), (3.18), (3.24) and (3.25).

Remark 3.1. Theorem 3.1 can be proved by substituting (1.3) and (1.4) with the
monotony assumptions (2.4) and (2.5) of [4]. It is enough to follow the technique
in [4] instead of the one in [3].

Remark 3.2. Using Theorem 3.1 in this section and Theorem 4.1 in [7] it is
easy to obtain a result of partial Holder continuity for the spatial gradient of the
solutions u € L> (—T, 0, H' (2, RM)) N C%*(Q, R") to the system (1.1).

Remark 3.3. After the proof reading of this work, we got to the knowledge of
a paper by J. Naumann and J. Wolf (see [14]), where a result similar to our one
obtained in Sect. 3 was stated for differentiability of solutions to the system (1.1)
by means of a different technique.
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