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STUDY OF THE MATHEMATICAL MODEL FOR
ABSORPTION AND DIFFUSION IN ULTRA-NAPKINS

PAOLA MANNUCCI

We analyse a mathematical model for absorption and diffusion of a fluid.
in ultra-napkins. We consider a diffusion equation coupled with an ordinary
differential equation, subjected to a discontinuous Neumann boundary condi-

tion.
We prove the existence and the uniqueness of a regular solution which is con-

tinuous up to the boundary.

1. Introduction and preliminaries.

In this paper we consider a nonlinear diffusion equation coupled with an or-
dinary differential equation modelling the liquid transport in a napkin. We study
the diffusive flow of a fluid in a mixture of a discrete material embedded in a
continuous medium. An ultra-napkin consists of cellulose with granules of su-
perabsorbent able to absorb a large quantity of liquid and hence able to keep it
dry.

The mathematical model was derived by J. Weickert in [6]. Let ¥ and v denote
the concentrations of the fluid respectively in the cellulose and in the granules.
The liquid is transported in the cellulose but not in the granules where it can be
only absorbed. This means that u is governed by a nonlinear parabolic equa-
tion while the equation describing the behaviour of the fluid concentration in the

granulate, v, does not have any diffusion term.
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Another important feature of this model is that the fluid can penetrate into the
napkin only through a part of its boundary so that the problem involve a discon-
tinuous Neumann boundary condition.
Let Q € R? denote an open domain of real variables x = (x1, x», x3) and Or
the product space {(x,7) : x € 0,0 < t < T} where T > 0. Q and Q7
are the closures of Q and Qr, 8 Q is the boundary of Q and Sy is the cylinder
{(x,t):x€08Q,0<t<T).
Letu = u(x, ), v = v(x, r). We will discuss the existence and uniqueness of a
solution of the quasilinear parabolic system:

u

(1) o = b—g—)V @ x)d(u)Vu) — A(u,v), on Qr,

; . |
@) = = A, v), on Qr.

ot
The function A(u, v) describing the exchange of liquid between granules and

cellulose is given, according to [6], by :
(3) A, v) = YU Voo — Vilso),

where y is a suitable positive constant, depending on the fluid and on the material
and U, Voo are two positive constants denoting the saturation concentrations in
the two media that is the maximal liquid absorbable respectively by the cellulose

and the granules.
The experiments ([6]) suggest, as conduction coefficient, the following function:

“4) dw) = ae

a, b are positive constants depending on the material.

The function 6(x) express the fact that the fluid diffuses only in a part of the
cellulose, called intermediate space. More precisely u(x, 1) represents the con-
centration of the fluid in the intermediate space. The function 6(x) is such that
(5) - 0()eC(Q), 6(x)=6 >0, Yxe(.

Let 0Q = S; U S, where S, is a convex domain on aQ. Sir = 8§ x [0, T],
Sor = 8 x [0, T].

We consider the following initial and boundary conditions

u(x,0) =uy(x), xeQ,

v(x,0) = vo(x), x€0,

(6)
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) .
E)‘Z' :Oa on SIT’
(7 .
G(x)a’(u)a— = k(r)(4oo —u), on Sor.
n

Here n is the unit outward normal to 9 Q and
(8) k(t) =0, for t>1t, k(t)=ky, for 0<t <t,

where ky is a positive constant and ¢ is the time for complete liquid absorption.

The boundary conditions (7) show that there is a discontinuity of the normal
derivative on 935, and on ¢t = fy;. The boundary conditions take into account
that the fluid enters the napkin only through S, and only for ¢ < fy, where ¢,
represents the instant when all the liquid has been absorbed into the diaper. Let
082, = 05 X [0, %], F = 852,0 U{S x (t =1)}.

We assume that the initial conditions (6) are such that

O S uO(x) S uOOa

0 <v(x) < Veo.

)

We prove existence and uniqueness of the solution of the problem (1), (2) with
initial and boundary conditions (6), (7), such that,

0<ulx 1) <o,

0<vx,t) < V.

Although similar problems have been already studied (e.g. [31, [4], [5]), they
are however quasilinear parabolic systems with continuous Dirichlet conditions
or homogeneous Neumann conditions on the boundary. In our case we consider
a coupling of a diffusion equation with an ODE, with discontinuous Neumann

boundary conditions.
In the paper we use the notations of [2] where not differently specified.
The boundary conditions (7) can be rewritten in a compact form in the following

way

5 s
(10) 9(x)d(u)£ = K(x, (oo — 1) on Sy,

(11) K@x,H)=0, V&, nDeSr, Kx,t)=k@), VY(xt) eSr,

where the function k() is defined by (8).
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Definition 1.1. A classical solution of the problem (1) - (2) with initial and boun-
dary conditions (6), (10) in Qr, with T > 0, is a pair of functions u(x, t), v(x, t)
such that
1) u(x,1)e H* 20y nCUQr) N CH(Qr \ F),
v(x, ) e CY(Qr) N C%Qr);
2) u(x,t),v(x,t) satisfy equations (1), (2) with (6), (10) in Qr.
In Section 2 we will approximate the function K (x, ¢) in (11) by a sequence
of “smooth” functions. For the related problem we find some comparison prin-

ciples and the existence and uniqueness of a classical solution.
In Section 3 we prove the existence and uniqueness of a classical solution

for the problem (1), (2), (6), (10) according to Definition 1.1.

2. The approximating problem.

Let K, (x, t) € C*(Sr) be a sequence of smooth functions such that
Iim[K,(x, ) — K(x,1)|;2 =0, V(x,1)€Sr,
(12) !
K,(x,t) - K(x,t)in C'-norm, in St \ F.

Let us consider the following approximating problem

ou, . 1
(13) 5= %V (O x)dWn)Vu,) — A(un, vs), on Qr,
14 W _ 4
(14) 5 = (U, Vn), on Qr,
(15) up(x,0) =up(x), x eg,
Un(x,0) = vo(x), x€Q,
ou,
(16) 6 (x)du,) o = K, (x, t)(Uoo — uy) on St.

In this paragraph we prove existence and uniqueness of the solution for the
problem (13) — (16) having regular Neumann conditions on the boundary. We
start with some comparison principles leading immediately to the boundedness
and uniqueness of a classical solution of the regularized problem.
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Lemma 2.1. Let 0(x), d(u), K,(x,t), A(u, v) be defined by (5), (4), (12), (3).
Let

1 ou
(17) F(u) = —QTJC—SV - (0 (x)du)Vu) — 5—1‘_ .
Suppose that
a) u;(x,1), vi(x, 1) existand u; (x, t) € HH*H2(QyNCH(Qp), vi(x, 1) €

ClErINCQr), i=1,2
b) u;(x,t) and v;(x,t) with their derivatives satisfy in Qr the differential

inequalities:
F(uy) — A(ug, vi) > F(u2) — A(uz, v2),
3U1 31)2
L A, 2 Az, v2);
5 (U1, v1) < o (uz, v2)

¢c) the following inequalities hold:
Uy < Uy, vVy<vy att=020,

0 ‘ 0
0<x>d<u1>—8%1 + Ko (x, Dy < 9<x>d(uz>$ + Ko(x,Duz, onSr,

then uy < uz and vy < vy in _Q—T.
Proof. Let us suppose that a point P’ = (x',¢') € Q7 exists such that u; < us
and vy < vy in Qp and u(x’, ') = ua(x’, 'y or v1(x’, t') = v (x’, t').
Suppose thatin P’ we have u; = u; and vy < vy.

i) if x’ ¢ S, the function u;(x, t) — ua(x, ¢) has an internal maximum in P’,

hence
F(uy) — A(uy, vy) < F(up) — Aug, vp),

which contradicts assumption b).
i1) if x’ € §, from assumption c)

0 0
K, ) (&, )=, 1) < 06, ) (T2 =2 (),

ou ou C . . .
hence —=(x', 1) > 8—1 (x’, ") which is a contradiction. (n is the unit outward
n

normal).
If in P’ we have vy = vy and u; < ua, the function u;(x,?) — u2(x,t) has a
maximum in P’, hence a contradiction with assumption b). O

Lemma 2.2. Let 6(x), d(u), K, (x,1), A(u, v) be defined by (5), (4), (12),(3).
Let F (u) be defined by (17). Suppose that
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a) ui(x’ t), vi(x’ t) exist and Ui (xa t) € H2+a‘1+a/2(QT) mcl(_QT)’ v (x’ t) €

CHONCUQ0r), i =12
b) u;(x,t) and v;(x,t) with their derivatives satisfy in Qr the differential

inequalities:
F(uy) — A(ug, v1) = F(up) — Aus, vy),

ovy vy
— — A , < — — A(u,, ;
o7 (u1,v1) < o7 (u2, v2)

C) the following inequalities hold:
Uy =uz, vi<vy, art=0,

0 0
9(x>d(u1>3”—1 + Ko(x, Dy < 0(x>d<u2>3”3 + Ko(x, Dus  on Sy,
n . n

then uy; < u; and vi < v, in ET.
Proof. 'We prove the theorem for a linear operator of the following type
du
Lw)=alx,t)Au+b(x,t)Vu +c(x, t)u — o

and next we pass to the nonlinear case.
Let us introduce the barrier function A eM’, where A and M are constants to be

determined. Let L be the Lipschitz constant of A(u,v), then

L(uzs+ 21 e™) — ACug + 2 €M vy + 4 M) =

= L) +c(x,)r e =AM ™ — A(uy + 1 M, vy + 2 M) <

< L(up) — A(ug, v1) + A(ua, vp) +c(x, HOr M — A MMt —

— AQua + A1 eM vy + 2 M) < L(uy) — A(uy, vy) +2L1 M +

e, DreM — A Me™ = L(u)) — A(uy, v)) + A ™ (c(x, 1) + 2L — M).
Moreover |

9 A Mt
(2 42 e )—A(uz-i-)»eMt,vz—l-leMt):

at
. 31)2 Mt Mzt Mt
_W—)\.Me —A(u2+)\.e ,Uz-f-)»e )S
ov
< = Al ) + A, v) — A M M-
— AQug + 1 eM vy + 2 M) <
3
< a_”tl — AQuy, vy) + 203 M — A M M =
_ 31)1

== - Aug, v) +r e QL - M).
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If we take M > max(|clo + 2L, 2L) we may apply Lemma 2.1 to uy, v; and
Uy + reM uy + AeM* and we obtain u; < us + Ae™’ and vy < vy + AeM' in

Q. If A — 0 we get the result.
Now we pass to the case of a nonlinear operator like F(u).

From assumption b) we have
F(uy) — F(uz) = Auy, v1) — A(uz, v2).

We may apply the mean-value theorem for multidimensional calculus. Evaluat-
ing the derivatives of F (u) atthe arguments tu;+(1—1)uz, TVu1+(1—1)Vuy,
tAu;+(1—1)Au,, where t € (0, 1), we obtain a linear parabolic operator L (u)
hence the proof follows. L

Corollary 2.3. If we take u,(x,t), v.(x,t) a classical solution of the problem
(13), (14), (15), (16) such that (9) hold, we immediately obtain from Lemma 2.2
that

(18) Osun(x’t)SuOO9 v(xvt)ea]"a
(19) T 0= v(x,1) SV, Y(x,1)€Qr.

Remark 2.4. If we take uo, = constant and Ve = Veo(X), Where Voo(x) is a
positive regular function as in [6], we obtain analogous results.

Remark 2.5. We note that Lemma 2.1 and Lemma 2.2 hold also for the classical
solution of the problem (1), (2), (6), (10). We have only to replace assumptions
) with the corresponding assumptions for the boundary conditions (10), (11).

Theorem 2.6. Let ug(x) € H2+“ (0), vo(x) € CI(Q), satisfying (9). Then there
exists a unique solution u,(x,t), vy (x,1) of the pro_blem (13), (14), (15), (16)
such that u,(x, 1) € H¥ro1+e/2(0 v, (x, 1) e CY(Qr), YT > 0.

Proof. The uniqueness follows from Lemma 2.2.
We prove the existence of a classical solution by means of a fixed point theorem.

Let us define
B={u,eC(Qr):0 = tty < thoo, | Un 1< M}.
If i1, € B, let us consider the solution v, of the problem

av,

(20) ot
vy (x, 0) = vo(x).

— A(ﬁna vn)a
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Then v, (x, 1) € C1(Q7), 0 < v, (X, 1) < Voo, Y(x, 1) € Or. Let F(u) be the
parabolic operator defined by (17) and u, (x, ) the solution of the problem

Fup) = A(un, vn), on Qr,

(21) Up (x, 0) = u()()C), on —Q—,

duty
9<x>d<un>% = K, (¥, )(too — Un) oD S

From the smoothness of A(u, v) (see (3)) and classical results on parabolic prob-
lems (see Theorem 7.2, Theorem 7.4, p. 486, 491 of [2]) a solution u, of (21,

exists such that u, (x, ) € H**144/2(Q.),

(22) Ofun(x)t)SuOOa V(x’t)eéT’
1+6
(23) 'uleT S Cn ’

where C,, is a constant independent of M.
Let us define the operator 7 such that

ifu,eB, Tiu,=u,

where u, is the -solution of problem (21). From (22) and (23) we have that

u,e€B,thus 7 : B — B.
Moreover, from the maximum principle,

Tﬁln - Tﬁ2n = !uln — u2n| =< C(|121,1 - ﬁ2nl + lvln - U2n|)a

Ivln - v2n' < C(mln - ﬁ2n|>,

then 7 is a continuous operator. Furthermore from estimate (23), 7 is a compact

operator. ‘ ,
Then there exists a fixed point u,(x, t) € B of the operator 7. The couple u,,

v, 1s the classical solution of the problem (13), (14), (15), (16). U

3. Convergence of the approximating problem.

Theorem 3.1. Let ug(x) € H**(Q), vo(x) € C1(Q), satisfying (9). Suppose
that the compatibility conditions of the zero order between boundary and initial
data hold. Then there exists a unique solution u(x, t), v(x,t) of the problem
(1), (2), (6), (10) such that u(x,t) € H**4/2(0.y N CO(Q,), vix, 1) €
Cl(Qr) N C%(Qr) N CY(Qr \ F).
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Proof. From estimates (18) and (19), the sequences {u,} and {v,}, classical
solutions of the problems (13), (14), (15), (16) are equibounded.

We show that they are also equicontinuous. In fact, by means of (18) and (19),
considering d (un), A(Un, Vp), Kn(x, 1) (Uoo —U,) as aknown terms and denoting
by ', (x, ¢, €, T) the fundamental solution of the parabolic operator in (13), we
represent the solution u,, in the following way

(24) u,(x,t) = / Ihix,t, &, Quo(x)dx +
o

+ / / Lo (e, 1, &, T (&, T)dopdT — / / Do e, £, €, D) A, ) &, T)dEAT,
0vs 0J/Q

where ¢, (x, t) is an unknown functions which can be determined imposing the

boundary conditions (16). ,
Following a standard procedure (see [1]), we obtain an integral equation of the

second kind for the unknown function ¢, (x, 1)

25)  du(x, 1) =2 / / PO L D 6, Ddodr + 25,5, 1),
0 S

The kernel of this integral equation

ol (x,t, &, 1)
v

Ny(x,1) =

has a weak singularity. In fact from standard estimates on the fundamental solu-
tion, (see [1]), and (23)

K|
t —oHlx — &M

(26) IN,| <

where £ e (0,1),2€(0,2) and ¢t > 7.
The nonhomogeneous term in (25) is

27 F,(x,1) =/ Falx,t, & Quo(x)dx —
0

—/t/ arn(x’t’é’I)A(un’vn)(é,f)dgdf—Kn(x’t)(uoo_un)'
0 Jo v

From assumptions (3), (12) and estimates (18), (19) follows that

(28) max [Fp(x,1)| <C, VneNlN.
Or
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Hence, taking into account of (26), from expression (25) we deduce that

(29) max |¢,(x,2)| < C, VneN.
Or

Then from expression (24) and the properties of the fundamental solution (see
p. 395 of [2]) we have that the sequence {u,} is equicontinuous in Q.
Moreover we may represent v, (x, t) by

(30) Vn(x, 1) = vp(x) +/ Alun, v)(x, 1)dr.
0

From Gronwall’s Lemma and the equicontinuity of {u,}, follows the equiconti-

nuity of the sequence {v,} in Q7.
Then we may extract two subsequences {tn}, {Vnk} converging to two functions
u and v. We have that

1) gsﬁ(x,r)suoo, V(x,t) e Qr,

<0(x, 1) < v, Y(x,1)€0rp,

and the functions u(x, ) and ¥(x, ¢) are continuous in ET.
Let us consider now the solution u’(x, ), v'(x, t) of the problem

aa‘; — %v (OX)d@)Vu'y — A, 9), (x,1) € Qr,
%—z/ = A(u, v), (x,1) € QOr,
(52) u'(x,0) = uy(x), A xeQ,
v'(x, 0) = vo(x), xeQ,
Q(x)d(ﬁ)%%/ = K(x, 1) (oo — i1), on St.

From (31), the continuity of #(x, r) and ¥(x, ) and classical results (see The-
orem 6.3, p. 459 of [2]), follows that the problem (32) has a classical solution
u', v in Qr such that u’ € C°(Q7).

Moreover if we consider u,, v, solution of (13), (14), (15), (16) and we apply
the maximum principle to ¥’ — u,, and v/ — v,, taking into account of the conti-
nuity of d(u), A(u, v) and of (12), we obtain that the subsequences {u,}, {vai}
converge to u’, v" in L,(Q7) then v’ = i, v’ = v. Hence i (x, 1), ¥(x,t) is a
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solution of the problem (1), (2), (6), (10) such that i(x, t) € H***1+¢/2(Qr)y N
Cl(Qr \ F)NC°Qr), v(x, 1) € CH(Qr) N CO(Q7p).

Moreover this solution is unique. In fact, from Remark 2.5, we may apply
Lemma 2.2 to a solution u(x, t), v(x, t). The boundedness of such a solution, as-
sumption (3) and the regularity of the coefficient of the problem give the unique-
ness of a weak solution and hence the uniqueness of the solution u(x,?) €
HY¥ /20y N CHQr \ F) N CY(Qr), vix, 1) € C'(Qr) N CO(Qr) of the
problem. O

Remark 3.2. We note that the discontinuity of the function k(t) in (8) for t = tj
does not affect the continuity of the solution u(x, t) up to the boundary Sr.

Remark 3.3.‘ If we substitute the boundary condition (7) with (see [6])

9
& 0, on Sy,
on
(33) u=M, onSy, witht<tp,
' ou ‘

— =0, onSy, with t>1,
on

with M a suitable constant, we may apply an analogous approximation for the
condition on Syt as done previously and we obtain the same results as in Theo-

rem 3.1.

Acknowledgments. The author would like to thank Prof. H. Neunzert for his
kind hospitality at the University of Kaiserslautern, Dr. J. Weickert and Dr. E.
Scheckter for the useful discussions.

Work partially supported by ERASMUS Project and Italian MURST Project
”Problemi non lineari...” and by the Italian CNR (Strategic Project).



14

(1]
(2]
[3]
(4]
[5]

(6]

PAOLA MANNUCCI

REFERENCES

A. Friedman, Partial differential equations of parabolic type, Prentice Hall Inc.,
1964. |
O.A. Ladyzhenskaya - V.A. Solonnikov - N.N. Ural’ceva, Linear and quasi-linear
equations of parabolic type, Transl. Math. Monographs, 23, Providence, 1968.
A.W. Leung, Systems of nonlinear partial differential equation, Kluwer Acade-
mic Publishers, 1989.

A. Mc Nabb, Comparison and existence theorems Sfor multicomponent diffusion
systems, J. Math. Anal. Appl., 3 (1961), pp. 133-144.

G.C. Wake, Non-linear heat generation with reactant consumption, Quart. J.
Math. Oxford (2), 22 (1971), pp. 583-595.

I. Weickert, A mathematical model for diffusion and exchange phenomena in ultra
napkins, Math. Meth. Appl. Sci., 16 (1993), pp. 759-777.

Dipartimento di Matematica, “U. Dini”,
Universita di Firenze,

Viale Morgagni 67/a,

50134 Firenze (ITALY)



