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FIXED POINT THEOREMS FOR COMPATIBLE
MAPPINGS OF TYPE (P) AND APPLICATIONS TO
DYNAMIC PROGRAMMING

H. K. PATHAK - Y. J. CHO - S. M. KANG - B. S. LEE

In this paper, we prove some common fixed point theorems for compat-
ible mappings of type (P). As applications, the existence and uniqueness of
common solutions for a class of the functional equations in dynamic program-

ming are discussed.

1. Introduction.

In [18], the concept of compatible mappings of type (P) was introduced
and compared with compatible mappings ([9]-[16]) and compatible mappings of
type (A) ([13], [17]). The purpose of this paper is to prove some common fixed
point theorems for compatible mappings of type (P), which extend and improve
some recent results of [5], [8], [10] and [13]. As applications, we use our main
results to study the existence and uniqueness problems of common solutions for a
class of functional equations arising in dynamic programming. The main results
extend and improve the corresponding results of [2], [4] and [5].
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2. Compatible Mapppings of Type (P).

Throughout this section, let (X, d) denote a metric space. We recall the fol-
lowing definitions and properties of compatible mappings, compatible mappings
of type (A) and compatible mappings of type (P) ([9], [13], [18]).

Definition 2.1. Let S, T : (X, d) — (X, d) be mappings. The mappings S and
T are said to be compatible if

lirgo d(STx,, TSx,) =0

whenever {x,} is a sequence in X such that lim Sx, = lim Tx, = z for some
n—oQ n—>o0

zin X.

Definition 2.2. Let S, T : (X,d) — (X, d) be mappings. The mappings S and
T are said to be compatible of type (A) if

lim d(T Sx,, SSx,) =0 and lim d(STx,,TTx,) =0

n—0oco n—>00

whenever {x,} is a sequence in X such that lim Sx, = lim Tx, = z for some
. n—0o0 n—>00

zin X.

Definition 2.3. Let S, T :(X,d) — (X, d) be mappings. The mappings S and
T are said to be compatible of type (P) if

lim d(8§8x,, TTx,) =0

n—>00

whenever {x,} is a sequence in X such that lim Sx, = lim Tx, = z for some
’ n—> 00 n—>o0

zin X.
The following propositions show that Definitions 2.1 and 2.2 are equivalent
under some conditions:

Proposition 2.1. Let S, T : (X,d) — (X, d) be continuous mappings. If S
and T are compatible, then they are compatible of type (A).

Proposition 2.2. Let S, T : (X, d) — (X, d) be compatible mappings of type
(A). Ifone of S and T is continuous, then S and T are compatible.

The following is a direct consequence of Propositions 2.1 and 2.2:

Proposition 2.3. Let S, T : (X,d) — (X, d) be continuous mappings. Then S
and T are compatible if and only if they are compatible of type (A).
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Remark 1. In [13], we can find two examples that Proposition 2.3 is not true if
S and T are not continuous on a metric space.

We can show also that if § and T are continuous, then S and 7 are com-
patible if and only if they are compatible of type (P) as follows:

Proposition 2.4. Let S, T : (X, d) — (X, d) be continuous mappings. Then S
and T are compatible if and only if they are compatible of type (P).

Proof. Let {x,} be a sequence in X such that

lim Sx, = lim Tx, =z

n—>00 n—>o0

for some z € X. Since S and T are continuous,

lim §Sx, = lim STx, = Sz

h—>00 n—»oo

and
lim TSx, = lim TTx, =Tz.

n—oo n—»00

Suppose that S and T are compatible. Then we have

lim d(8Tx,, TSx,) =0.

n—>00
Now, since we have
d(SSx,, TTx,) <d(SSx,, STx,) +d(STx,, TTx,)
<d(SSx,, STx,) +d(STx,, TSx,) +d(T Sx,, TTx,),

it follows that lim d(SSx,, TTx,) = 0. Thus, the mappings S and T are

n—so
compatible of type (P).
Conversely, suppose that S and 7 are compatible mappings of type (P),

that is,
lim d(SSx,, TTx,) =0.

n—>00

We then have
d(STx,, TSx,) <d(STx,, SSx,) +d(SSx,, T Sx,)
<d(STx,, SSx,) +d(SSx,,TTx,) +d(TTx,, T Sx,) .

Therefore, it follows that lim d(STx,, T Sx,) = 0. This completes the proof.

n—>0o0 .
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Proposition 2.5. Let S, T : (X,d) — (X, d) be compatible mappings of type
(A). If one of S and T is continuous, then S and T are compatible of type (P).

Proof. Let {x,} be a sequence in X such that

lim Sx, = lim Tx, =z

n—>00 00

for some z € X. Suppose that S and T are compatible mappings of type (A).
Assume, without loss of generality, that S is continuous. we then have

d(SS8x,, TTx,) <d(SSx,,STx,) +d(STx,, TTx,)
and so, since S and T are compatible of type (A), we have

lim d(S§8x,,TSx,) =0 and lim d(STx,,TTx,) =0.
n—oo n—»00

Therefore, it follows that

lim d(SSx,,,TTx,) =0.

n—>00

This completes the proof.

As a direct consequence of Propositions 2.3 — 2.5, we have the following:

Proposition 2.6. Let S, T : (X,d) — (X, d) be continuous mappings. Then

(1) S and T are compatible if and only if they are compatible of type (P).
(2) S and T are compatible of type (A) if and only if they are compatible of
type (P).
Next, we give several properties of compatible mappings of type (P) for
our main theorems:

Proposition 2.7. Let S, T : (X,d) — (X, d) be mappings. If S and T are
compatible of type (P) and Sz = Tz for some z € X, then SSz = STz =
TSz=TTz. o

Proof. Let {x,} be a sequence in X defined by x, = z,n = 1,2,..., and
Sz = Tz for some z € X. Then we have Sx,, Tx,, — Sz asn — oo. Since S

and T are compatible of type (P), we have

d(§8z,TTz) = lim d(SSx,, TTx,) =0.

Therefore, SSz = TTz. But Sz = Tz implies §Sz = STz =TSz = TTz.
This completes the proof.
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Proposition 2.8. Let S, T : (X,d) — (X, d) be mappings. Let S and T are
compatible mappings of type (P) and let Sx,, Tx, — z as n — oo for some
z € X. Then we have the following:

(1) lim TTx, = Sz if S is continuous at z.
(2) hm SS8x, = Tz if T is continuous at z.
3) STz =TSzand Sz=Tzif Sand T are contmuous at z.

Proof. (1) Suppose that S is continuous at z.
Since

lim Sx, = lim Tx, =z
n—»00 n—>0oo

for some z € X, we have SSx, — Sz asn — oo. Again, since S and T are
compatible of type (P), we have lim d(TTx,, SSx,) = 0 and so, since we
n-—>00o

have _
d(TTx,, Sz) <d(TTx,, SSx,) +d(SSx,, S7),

it follows that TTx,, — Sz asn — oo.
(2) The proof of lim SSx, = Tz follows on the similar lines as argued in
n—>C0

(1).

(3) Suppose that S and T are continuous at z. Since Tx, — z as 1 — 00
and § is continuous at z, by (1), TTx, — Sz as n — 00. On the other hand,
since T'x, — zasn — oo and T is also continuous at z, TTx, — Tz. Thus,
we have Sz = Tz by the uniqueness of the limit and so, by Proposition 2.7,
T Sz = STz. This completes the proof.

3. Common Fixed Point Theoréms D.

In this section, we prove some common fixed point theorems in metric
spaces :

Theorem 3.1. Let (X, d) be a complete metric space and A, B, S and T be
mappings from X into itself. Suppose that S and T are continuous mappings
satisfying the following conditions:

(3.1) A(X) CT(X)and B(X) C S(X),

(3.2) the pairs {A, S} and {B, T} are compatible of type (P),

(3.3) d(Ax, By) < ®(max{d(Sx, Ty),d(Sx, Ax),d(Ty, By),
1
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forall x,y € X, where ® : [0,00) — [0, 00) is a nondecreasing and upper
semicontinuous function and ®(t) < t forallt > 0. Then A, B, S and T have

a unique common fixed point in X.

Proof. Since A(X) C T(X) and B(X) C S(X), we can choose a sequence
{x,} in X such that Sx,, = Bxy,—1 and Tx,—1 = Axpp—2 forn = 1,2, 3,....
Suppose that

(3.4) Yoni = TXop1 = AXop—p and yz, = Sx2, = BXon—1

forn = 1,2,3,.... By using the technique of Charig [5], we can prove that {y,)
is a Cauchy sequence in X and so, since X is complete, it converges to a point
z in X. On the other hand, the subsequences {Axau-2}, {Bx2n-1}, {Sx2,} and
{Tx5,-1} of {y,} also converge to the point z.

Since {4, S} and {B, T} are compatible of type (P), it follows from the
continuity of S and T, (3.4) and Proposition 2.8 that

Ty — Tz, By = BBxy-1—> Tz,
(3.5)

SYon—1 —> Sz, AYau-1=AAxy_2 > SZ
as n — co. By (3.3) and (3.4), we have

d(Ay2n—1 3 By2n)
< <I>(max{d (Syan—1, Ty21), d(Sy2n-1, AY2n—1), (T y20, BY2n),

1
E[d(S}’Zn-l, Byn-2) + d(Tya, Aym-1)1})-
By the upper semicontinuity of ® (), (3.4) and (3.5), if Sz # Tz, then we have

d(Sz, Tz) < ®(max{d(Sz,T7z),0,0,d(Sz,Tz)})
= $(d(Sz,T2)) <d(Sz,Tz),

which is a contradiction. Thus it follows that Sz = T'z.
Similarly, from (3.3), (3.4), (3.5) and the upper semicontinuity of ¥, we can
obtain Sz = Bz and Tz = Az. Hence we have

(36) Az =Bz=87=Tz.
From (3.3) and (3.4), we have also |
d(AX2n, BZ) = d)(max{d(stna TZ), d(Sin, Ax2n)7 d(TZBZ)7

%[d(szn, Bz) +d(Tz, Ax22)1}).
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This implies that, if Bz # z, then

d(z, Bz) < &(d(z, Bz)) < d(z, Bz),

which is a contradiction. Therefore, we have 7 = Az = Bz = Sz = Tz. The
uniqueness of the fixed point z is obvious from (3.2). This completes the proof.
From Theorem 3.1, we have the following:

Theorem 3.2. Let (X, d) be a complete metric space and A and B be mappings
from X into itself satisfying the following condition:

(3.7) d(Ax, By) < ®(max{d(x, y),d(x, Ax),d(y, By),
1
E[d(x, By) +d(y, Ax)1})

for all x, y in X, where ®(t) is the same as in Theorem 3.1. Then A and B have
a unique common fixed point in X.

Proof. Define a sequence {x,} in X by
(3.8) Xop-1 = AXon—2 and X2, = By,
forn =1,2,3,.... Thenitis easy to show that {x,} is a Cauchy sequence in X.

Since X is complete, letting x, — z € X as n — o0, we know that {x,,_1} and
{x2,} converge to z, too. By (3.7) and (3.8), we have

d(Az, x2,) < d(Az, Bxp-2)
< ®(max{d(z, x2n-2), d(2, A2), d(x20—2, X20),

1
E[d(z, X2n) + d (X202, AZ)]}).
By the upper semicontinuity of ®(¢), if Az # z, then we have
d(Az,z) < ®(d(z, Az)) < d(z, Az),

which is contradiction and so z = Az. Similarly, we have z = Bz. This
completes the proof.

The following result is an immediate consequence of Theorem 3.1:
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Theorem 3.3. Let (X,d) be a complete metric space and S, T and A, be
mappings from X into itself n = 1,2,.... Suppose further that § and T
are continuous and, for every n € N, the pairs {Az,—1, S} and {Aa, T} are
compatible of type (P), Axp—1(X) C T(X) and A2,(X) C S(X) and, for any
n € N, the set of positive integers, the following condition is satisfied:

(3.9) d(A,x, Apy1y) < ®(max{d(Sx, Ty),d(Sx, A,x),d(Ty, Apt1Y),
1
E[d(Sx, Any1y) +d(Ty, Apx)1}H)

forall x,y € X, where CD.(t) is the same as in Theorem 3.1. Then S, T and
{A,}, n€ N, have a unique common fixed point in X.

Remark 2. Theorem 3.3 extends Theorem 3.1 in [10], Theorem 1 in [7] and the
main results in [5] and [19]. '

4. Common Fixed Point Theorems (II).

In this section, we give some common fixed point theorems in convex met-
ric spaces.

Definition 4.1. A metric space (X, d) is convex if for x, y € X with x # y,
there exists a point z € X such that

d(x,z) +d(z,y)=d(x,y).

Lemma 4.1. ([1]) Let K be a closed subset of a complete convex metric space
(X,d). If x € K and y € K, then there exists a point 7 € K such that

dx,z) +d(z,y)=d(x,y).

Definition 4.2. Let (X, d) be a metric space, K be a subset of X and A4, S :
K — X be mappings. The mappings A and § are said to be relatively compat-
ible of type (P) if

lim d(AAx,, SSx,) =0

n—oo

whenever {x,} is a sequence in K such that Ax,, Sx, € K and

lim Ax, = lim Sx, =t€K.

H>0O0 n—oo
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Lemma 4.2. Let (X, d) be a metric space, K be a subset of X and A, S :
K — X be mappings. If the pair {A, S} is relatively compatible of type (P),
Axn, Sx, € K and

lim Ax, = lim Sx, =t

n—o0 n—>0o0

for some t € K, then lim AAx, = St if S is continuous at t.
n—»0o0

Proof. From Definition 4.2, we have this lemma.,

Theorem 4.3. Let (X, d) be a complete convex metric space and K be a non-
empty closed subset of X. Suppose that S and T are continuous mappings from
X into itself with 0K C S(K) N T(K), where 0K denotes the boundary of
K, and A, B : K — X are continuous mappings with A(K) N K C S(K),
B(K)N K C T(K). Suppose further that the pairs {A, T} and {B, S} are rel-
atively compatible of type (P) satisfying

(4.1) d(Ax, By) < &d(Tx, Sy))

forall x,y in K, where ® : [0, 00) — [0, 00) is a nondecreasing and upper
semicontinuous function such that ®(t) < t and y_ ®"(t) < oo forallt > 0.

Ifforx e K, Tx € 0K = Ax, Bx € K and Sx € 0K = Ax, Bx € K,
then there exists a point 7 € K such that z = Az = Bz = Sz = T'z. Further, if
Tv=S8v=Av=Bv, then Tz =Tv.

Proof. Let x € 0K and pg € K be such that x = Tpy. Then Apy € K and
so Apg € A(K) N K C S(K), which implies that there exists a point p; € K
such that Sp; = Apg € K. Let p| = Apo and p;, = Bp;. If p, € K, then
p; € B(K)NK C T(K) and so there exists a point p, € K suchthat Tp, = Bpy,
andif pj ¢ K, since (M, d) is a convex metric space, by Lemma 4.1, there exists
a point p; € K such that Tp, € 3K and

d(Sp1, Tp2) +d(Tp2, Bpy) = d(Sp1, Bp1) .
If we continue this process, we obtain two sequences {p,}nen and {p;}nen in
K such that, forevery n € N, p, € K, p;, | = Apa, p5, = Bpr.—1 and the
following implications hold:

(1) p3, €K = p5, = Tpa,
i, € K = pr, €0K and

d(Span-1, Tpan) + d(Tpan, Bpan—1) = d(Span-1, Bpan—-1),

(2) pén.H €K = pén_H = Tpan+t1,



24 H. K. PATHAK - Y. J. CHO - S. M. KANG - B. S. LEE

d(Sp2n’ Tp2n+1) + d(Tp2n+1» Bp2n) = d(Sp2n, Bp2n) )
Now, we prove that there exists a point z € K such that

lim Tp;, = lim Spap+1 = 2.
n—oo n—o00

In fact, we deﬁne the sets Py, Pi, Qp, Q; as follows:

Py = {p2n €K : p}, = Tp2,, n €N},

Py = {py €K : py, # Tpam, n €N},

Qo = {p2n+1 €K : Pty = Spmt1, n €N},

Q1 = {pwm+1 €K : py,11 # Spam+1, n €N}
Then it is easy to show that

(P2ns P2n+1) € P1 x Q1 and  (pan-1, P2a) ¢ Q1 X Pr.

Thus we have
(Pans Pant1) € Po X Qo (P20, Pon+1) € Po X @1y (Pans P2nt1) € P X Qo
and

(Pan-1, Pn) € Qo X Py, (Pan—i, P2n) € Qo X P1,  (Pan—1, Pan) € Q1 X Py

() (P2n, Pan+1) € Py x Qo

d(T pon, Span+1) = d(Bpan—1, AP2n)
< & d(Tpan, SPan-1)).

(1) (P2, Pont1) € Po x Q1

d(T pan, SPan+1) = d(Tpan, Ap2n) — d(Sp2n+1, AP2n)
< d(Tpan, Ap2n)
= d(Bpan—1, Apan)
< ®(d(Spau-1, Tpan)).
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(iii) (pan, Pan+1) € P1 X Qo:

d(Tpan, Span+1) < A(T pans Bran-1) + d(Bpan—1, Span+1)
= d(T pan, Bp2n—-1) +d(Bp2n—1, AD2n)
< d(Tpan, Bpan-1) + ©(d(Span-1, TP2n))
< d(Spam-1, Tpan) +d(TPon, Bpaa—1)
= d(Span-1, Bpan-1).

Since pj, € P; implies that py,_1 € Qg, we have Sps,, = Apzn—2 and so

d(Tpan, SP2n+1) < d(SP2n—1, Bpan—1)
= d(Apan-2, Bpan—1)
< ®(d(Tpn-2, SPan-1)).

SimiIarly, we have
(iv) (pan—1, P2m) € Qo X Fo:

d(Span-1, Tp2n) < Pd(Tpon—2, Span-1)),
(v) (p2n—1, P2n) € Qo X Pr:
d(Span-1, Tpan) < D(A(TPrazs Sprn-1)),
(vi) (pan—1, P2n) € Q1 X Po:
d(Span—-1, Tp2n) < ®(d(Tp2u—2, Sp2n-3))-
Therefore, it follows that
(4.2) d(Tpan, Spant1) < "), d(Spans1, Tp2us2) < O"(r)

for every n € N, where r = max{d(T pz, Sp3, d(Tp2, Spl)} This implies that
foreveryn € N,

d(Tpan, Tpans2) < ®"7L(r) + &"(r).

Hence )_ @"(r) is finite, the sequence {Tpy,},en 1s a Cauchy sequence in K.
Since X is complete and K is closed, it follows that there exists a point z € K
such that z = lim T ps,. Then from (4.2), we have

n—oo

z= lim szn = lim szn_H.
n->00 n—0oo
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By hypothesis, there exists a sequence {n} in N such that Tp,,, = Bpan,—1 for
all k € N or Spas,—1 = Apan,—» for all k € N. Without loss of generality, we

can suppose that T p;,, = Bpy,,—1 for all k € N. From (4.1), we have

d(SSpan,-1, Az) < d(SSpon,—1, BBpys,—1) + d(BBpan,_1, AZ)
< d(8Span, -1, BBpon,—1) + ®(d(SBpan,—1, T2)).

Since the pair {B, S} is relatively compatible of type (P) and S is continuous,
we have

(4.3) d(Sz, Az) < ®(d(Sz, Tz)).
From (4.1), we have

d(Apany, Tpan,) = d(Apan,, Bpan,—1) < P (d(Spang—1, TP2n,))-
By the upper semi-continuity of ®(z), it follows that

(4.4) lim Apy,, = z.
k— 00

Again, using (4.1), we have
d(APan» BBpan—l) S d)(d(sznk! SBpan—l))-

Since the pair {B, S} are relatively compatible of type (P) and S is continuous,
it follows from (4.4) and Lemma 4.2 that

d(z, §2) < ®(d(z, S2)).

This implies that d(z, Sz) =0, i.e., z = Sz.
Since the pair {A, T} is relatively compatible of type (P) and A and T are
continuous, from (4.4) and Lemma 4.2, we have

Az = lim AApy,, =Tz.
k— 00
In view of (4.3), we have d(Sz, Tz) < ®(d(Sz,Tz)). Hence z = Sz = Tz =
Az. Besides, from (4.1), we have
d(Az, Bz) < ®(d(Sz,Tz)) = ®(0) = 0.

ThuszeKandz=Az=Bz=Sz=Tz
Finally, if Tv = Sv = Av = Bv, then d(Tv, Sz) = d(Av, Bz) <

b (d(Tv, §z)). Therefore, Tv = Sz = Tz. This completes the proof.

The following result is an immediate consequence of Theorem 4.3:
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Theorem 4.4. Let (X, d) be a complete convex metric space and K be a non-
empty closed subset of X and S and T be continuous mappings from X into X
such that 0K C S(K) N T(K). Suppose that, for everyne N, A, : K — X is
continuous mappings with Az,(K) N K C T(K) and A2,—1(K)N K C S(K)
and the pairs {A,,_1, T} and {A,,, S} are relatively compatible of type (P) such
that for anyn € N,

d(Apx, Any1y) < ®(d(Tx, Sy))

forall x,y € K, where O (t) is the same as in Theorem 4.3.

Ifforeveryn e N and x € K, Tx € 0K = A,x € K and Sx € 0K =
A,x € K, then there exists a point z € K suchthat 7 = Tz = Sz = A,z for all
ne€ N. Further, if Tv = Sv = A,v foreveryn e N, then Tz = Tv.

Remark 3. Theorem 4.4 is an extension of Theorem 1 in [8].

5. Applications.

Throughout this section, we assume that X, Y are Banach spaces, S C X
is the state space and D C Y is the decision space. Let R = (—o00, +00) and
denote by B(S) the set of all bounded real-valued functions on S.

Following Bellman and Lee [3], the basic form of the functional equation
of dynamic programming is as follows:

fx)=opt, H(x, y, f(T(x,y))),

where x and y denote the state and decision vectors, respectively, T the transfor-
mation of the process and f(x) the optimal return with the initial state x, where
- the opt denotes max or min.

In this section, we shall study the existence and uniqueness of common
solution of the following functional equations arising in dynamic programming:

(5.1) filx) = Sug Hi(x,y, fi(T(x,y)), x€S,
ye€

(5.2) gi(x) = sugFi(x,y,gi(T(x,y))), xes,
y€

where T : Sx D — Sand H;, F; :SxDxR—>R,i=1,2.
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Theorem 5.1. Suppose that the following conditions are satisfied:

(i) H; and F; are bounded fori = 1,2,
(11} 'Hl(x’ y’h(t))_H2(x’ y,k(t))l
< ®(max{|TLh(F) — Tok(t)|, IT1h(t) — A1h ()], | T2k(t) — A2k(2)],

1
S UTA() = Ak (D] + 1 Tok(1) — A1) -

Jorall (x,y)e S x D, h,k € B(S) and t € S, where ® is the same as in
Theorem 3.1 and mappings A; and T; are defined as follows:

Aih(x) = sup H;(x, y, (T (x,))), x€S, heB(S), i=1,2,
yeD

Tik(x) = sup Fi(x, y, k(T (x,y))), x€S, keB(S), i=1,2.
yeD

(iii) for any {k,} C B(S) and k € B(S),

lirglo sup [k, (x)—k(x)| = 0= lim sup |T;k,(x)=Tik(x)| =0, i =1, 2,
= n—00

xe§ xe8§

(iv) for any h € B(S), there exist ki, ky € B(S) such that
Arh(x) = Tiki(x), Axh(x) = Tiky(x), x€S,
(v) for any {k,} C B(S), if there exists h € B(S) such that

lim sup [A;k, (x) — h(x)| = lim sup |Tik,(x) — h(x)| =0, i=1,2,
n—oo ) n—oo

xes xes§

then
lim sup |T;T;k,(x) — A;Aik,(x)| =0, i=1,2.
n—>00

xes§

Then the system of functional equations (5.1) and (5.2) has a unique common
solution in B(S).

Proof. For any h, k € B(S), let
d(h, k) = sup{|h(x) —k(x)| : x € S).
Then (B(S), d) is a complete metric space. By virtue of (i) — (v), A; and T; are

self mappings of B(S), T; are continuous, i = 1,2, A{(B(S)) C T, (B(S)),
A2(B(S)) C T1(B(S)), and the pairs of mappings A;, T; are compatible of type
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(P),i =1,2. Let h; (i = 1, 2) be any two points of B(S), x € § and 5 be any
positive number. Suppose that there exists y; (i = 1, 2) in D such that

(5.3) Aihi () < H;(x, yi, hi () + 1,
where x; = T(x, y;), i = 1, 2. Also we have

(5.4) Ayhi(x) = Hi(x, y2, h1(x2)),
(5.5) Axha(x) = Ha(x, y1, ha(x1)).

From (5.3), (5.5) and (ii), we have

(5.6) Arhi(x) — Azha(x)
< Hi(x, y1, hi(x1)) — Ha(x, y1, ha(x1)) + 1
< |Hi(x, y1, h1(x1)) — Ha(x, y1, ha(x1))| + 7
< & (max{|Tih1(x1) — Toha(x)|, [T1h1(x1) — Arhi(xDI,

1
|Tohy (x1) — Azha(xp)l, 5[|T1h1(x1) — Axha(x1)| +

+ |Toha(x1) — Athi(xDI) +1
< ®(max{d(Trh1, Tohy), d(Tih1, Ar1h1), d(Tahy, Arhy),

1
§[d(T1h1, Azhy) + d(Toha, A1h1)])) + 1.

From (5.3), (5.4) and (ii), we have

(5.7) A1hi(x) — Azhy(x)
> —®(max{d(T1hy, Tahy), d(Tihy, Aihy), d(Taha, Axhs),

1 .
E[d(Tlhla Arhy) +d(Thhy, Arhy)]}) — 1.

Unification of (5.6) and (5.7) yields

(5.8) [A1h1(x) — A2k (x)]
< & (max{d(T1h1, Toh2), d(T1hy, Arhy), d(Taha, Azhy),

1
-2-[d(T1h1, Arha)+ d(Trhy, Arh1)1}) + 1.

Since (5.8) is true for any x € S and 7 is any positive number, we have, on taking
supremum over all x € S,

d(A1hy, Ayhy) < @ (max{d(T1hy, Tahy), d(Tihy, A1hy), d(Tahy, Ashy),

1
E[d(Tlhla Arhy) +d(Tohy, A1hD])).



30 H. K. PATHAK - Y. J. CHO - S. M. KANG - B. S. LEE

Therefore, by Theorem 3.3, A;, A,, Tj and 1> have a unique common fixed
point h* € B(S), i.e.,, h*(x) isa unique solution of the functional equations (5.1)

and (5.2). This completes the proof.
As an immediate consequence of Theorem 5.1 and Corollary 3.2, we can

obtain the following:

Theorem 5.2. Suppose that the Jollowing conditions are satisfied:
(1) H; is bounded fori = 1,2,
(i1) |Hi(x, y, h(1)) — Ha(x, y, k(1))
< d)({nax{lh(t) — k@I, 1h(t) — Ath(®)], k() — A2k(1)],
E[lh(t) — A2k ()] + k(r) — A1h(D)11})

Jorall (x,y) € S x D, h,k € B(S) and t € S, where ® is the same as in
Theorem 3.1 and A; is defined by

Aih(x) =sup Hi(x,y, h(T(x,y))), x€8, he B(S), i=1,2.
yeD

Then the functional equations (5.1) and (5.2) have a unique common solution in
B(S).

Remark 4. Theorem 5.2 is an extension of Theorem 2.1 in [4].

Theorem 5.3. Suppose that the Jollowing conditions are satisfied:
(1) H; and F; are bounded fori = 1, 2,
(ii) |H (%, y, k(1)) — Ha(x, y, k(2))] < @(Tih(t) — Tok(1))),
Jorall (x,y)eS x D, h,ke B(S) and t € S, where ® is the same as in
Theorem 4.3 and T; is defined as in Theorem 5.1 fori=1,2;
(iii) For any {k,} € B(S) and k € B(S),

lim sup |k, (x) —k(x)| = 0 = lim sup |Tik,(x)—Tik(x)| =0, i = 1,2,
n—o0 XES n—>0o0

xe§

and
lim sup |A;k,(x) — Aik(x)| =0, i=1,2,
n——>00 xeS
where A; is defined as in Theorem 5.1 fori = 1,2,
(iv) for any h € B(S) with SUP,es 1A (x)| = 1, there exist ky, ky € B(S) such
that

sup [h(x)| =1 and Tiki(x) =h(x), xe€8,i=1,2,

xes§
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(v) for any h € B(S) with sup,.g|h(x)| < 1, there exist ki, ky € B(S) such
that

sup [k;(x)| < 1,1 =1,2, Ajh(x) = Toki(x), Azh(x) = Tiky(x), x €S,

xe§
(vi) for any h € B(S) with sup, g [h(x)| <1,

sup |Tih(x)| =1 =sup|A;h(x)| <1, i,j=1,2,
es

xes X

(vii) for any {k,} C B(S), if there exists h € B(S) such that sup,.¢ |T;k,(x)]| <
1 and

lim sup |A;k,(x) — h(x)| = lim sup|Tik,(x) —h(x)|=0, i=1,2,
n—oo

n—=>00 ref§ xeS

then
lim sup |A;Aik,(x) = T; Tik,(x)| =0, i=1,2.
n—>o0 xeS$
Then the system of the functional equations (5.1) and (5.2) have a unique
common solution h* € B(S) and sup, ¢ |h*(x)| < 1.

Proof. Suppose that B(S) is a Banach space of all bounded real valued functions
defined on S with supremum norm and X is the closed unit ball in B(S). By the

conditions (i) — (vii), we know that A; : K — B(S) and 7; : B(S) —
B(S), i = 1,2, satisfy all the conditions of Theorem 4.3 and so they have a
unique common fixed point 4* € K, i.e., h*(x) is a unique common solution of
the functional equations (5.1) and (5.2). This completes the proof.

Remark 5. Theorem 5.4 is an extension of Theorem 3.2 in [2].
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