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A CHARACTERIZATION OF A CERTAIN CLASS
OF ARITHMETICAL MULTIPLICATIVE FUNCTIONS

BIAGIO PALUMBO

The object of this paper is the set of the “arithmetical multiplicative
functions”, i.e. the functions N — C for which f(mn) = f(m)f(n),
under the condition that m and » have no common factors. This set is a group
with respect to the Dirichlet’s convolution. We define for such functions the
concept of type (briefly, a number that expresses the fact that f(p") is zero
when # is large enough); moreover, we prove that the set of the completely
multiplicative functions which do not assume the value zero coincides with
the set of the functions whose inverses are of type 1.

1. Arithmetical functions and multiplicative functions.

Let us define an arithmetical function as a function whose domain is the set
N of natural (non zero) numbers and whose values are complex numbers. We
may introduce on the set / of all arithmetical functions a ring structure ([1], [11],
[6] ex. 4.8), by defining, V f, g € I, the operations + and x as follows:

(f +8)(n) = f(n) + g(n);
(fx ) =) r@se(3).
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In other terms, “+” is the ordinary sum of functions, while “x” is the so-
called convolution, or integral product, or Dirichlet’s product (of course the sum
is extended over all the divisors of n, alsod = 1 and d = n). Itis easy to
verify that the additive neutral element is the function 0, which assumes the value
0 for every n, and that the multiplicative neutral element is thé function & (n)

(sometimes called é(»n)) defined by

1 forn=1

a(n) = [

0 otherwise

Let # denote the ring (I, +, x) of the arithmetical functions; it is well
known that .# is a commutative and unitary ring, that it is an integrity domain
(i.e., without proper divisors of zero), and that it is a unique factorization ring
(shortly an UF-ring), because each decomposable element of .# can be written in
an “essentially” unique way as a product of indecomposable elements (the word
“essentially” means that we can insert in the factorization invertible elements and
their inverses as we like) ([1], [3],[11]).

Forevery f € % —{0} the order x (f) is defined as the smallest n for which
f(n) # 0 (we may also define x(0) = 00). The theorem of the order asserts
that for any f, g € .# itresults x(f x g) = x(f)x(g). A consequence of this
theorem is that a function f is invertible if and only if x (f) = 1, i.e. if and only
if £(1) # 0. Besides, if x'(f) is a prime, then f is necessarily indecomposable,
but if x (f) is composite, it is not true in general that f is decomposable. We
shall indicate by % the set of all invertible functions of .#, which is of course a
group with respect to the convolution.

A very remarkable subgroup of % can be defined with the set .Z of so-
called multiplicative arithmetical functions.

Definition. A function f € .Z, f # 0, is said to be multiplicative if for any
m,n € N with (m, n) = 1, we have f(mn) = f(m) f(n).

Obviously, (m, n) denotes the greatest common divisor of m and n. So
(m, n) = 1 means that m and n are coprime, i.e. without common factors other
than 1. Many of the most interesting arithmetical functions are multiplicative:
for example, the function d(n) (number of the divisors of n), the function o (n)
(sum of the divisors of n) and its generalization oy (n) (sum of the k-th powers
of the divisors of n), the Mobius function 1 (n), the Euler’s totient ¢ (n), and
so on. It is to be observed that the definition of multiplicative function implies
f-1) = f(1)f(),so f(1) may be either 1 or O; but, if f(1) = 0, we see
at once that f is identically zero: this is impossible by definition, and therefore
we obtain that for every multiplicative function f is mustbe f(1) = 1.
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It is well known that if f and g are two multiplicative functions, then f x g
is also multiplicative, and if f is multiplicative, so is its inverse function, which
we shall indicate by V. Since « is also multiplicative, we have that (%, x)
is a subgroup of (%, x).

Another important subset of .#, not closed with respect to X, is the class
& of the completely multiplicative functions: they are the arithmetical functions
for which f(mn) = f(m)f(n) for any m and n. We may also write:

fe¥ = fed, fP)=I[f(p)) VpeP, VieN

For example, given a k € Z, the function Ny, which is equal to n* for every
n, is completely multiplicative, and so is the function u(n) = 1 for every n. But
u x u = d, and d is not completely multiplicative. We may say that f € .# is
known if it is assigned for all numbers p/, i.e. for the powers of the primes, while
f € € is known if it is assigned for every prime p. For example, by defining
f(p) = p — 1, we obtain a completely multiplicative function f defined as

follows:
£ { 1 ifn=1
n)y= . a, _a
(p1 — D% (p2= D% (pr = D% ifn=pi'py - pr
Let us recall two well known theorems which we shall use later.

Theorem 1. If f €€, then (fg) x (fh) = f(g x h) forany g, he J.

Theorem 2. If f €€, then fD = uf.

2. The type of a multiplicative function.

Now we introduce the concept of rype. We say that a multiplicative function

fisofype n(f) =k, if:
(i) for every prime p, f(p*) # 0;
(ii) for every prime p and for every j > k, f(p’/) = 0.

In other words, we ask that f is zero for the powers of p large enough,
while this must never happen for the k-th powers of the primes (if n(f) > 2, it
is allowed that f(p/) = O for some j < k and for some prime p). Note that
there are multiplicative functions which have no type.

A simple example of a function of type 1 is the Mobius function, which is

the inverse function of u: it is defined by
u(l) =1

pu(p) =—1
u(p”)y=0 forn>1



42 BIAGIO PALUMBO

The only function of type 0 is «; other functions that have a defined type
are, e.g. the inverse function of d and the inverse function of o: both of them

" are of type 2 (see below).
Let us prove the following

Theorem 3 (theorem of the types). Let f, g € .#, and suppose n(f) = a,
n(g) = b; then n(f x g) = a+0b.

Proof. Seth = f x g (we know that A is also multiplicative); for each prime

p and for every natural k itis A(p%) = Y f(p*)g(p’). Ifk = a + b, we
s+t=k
have to write a + b in all possible ways as the sum of two non-negative integers

s and 7, but there is only one way of doing this with s not greater than a and ¢
not greater than b, precisely s = qa and ¢t = b. Then A ( p“+b) reduces only to
the term f(p®)g(p®), that is different from zero by hypothesis. If k > a + b,
once k is written as s +¢, we have necessarily s > a or ¢t > b, then each product
F(p*)g(p’) is zero by hypothesis. Hence the function 4 is of type a + b.

Remark. One might think to define an alternative “type” of a multiplicative
function as follows: n(f) = k if f(p/) = 0 for every prime p and for every
j > k,but f(p*) # 0 for at least a prime p. Using such a definition of type,
the Theorem 3 is not true in general; precisely, it must be corrected as follows:
n(f x g < n(f) + n(g). Anyway, in what follows we shall use the former.

definition of type.

From Theorem 3 we have, as announced, that n(e) = 2, where e = d-1:
in fact d = u x u; therefore e = u x u, and the thesis follows from n(u) = 1.
So we may easily write the explicit expression of e(n): it is sufficient to calculate

e(p) = u(MHu(p) + u(p)u(l) = -2,
e(p?) = n(u(P* + u(P)unp) + n(PHu) = L

to obtain
[e(1) = 1.
e(p) =-2
| e =1
L e(p") =0 forn > 2

We also deduce from the theorem of the types that if (f) > 0, then fCD
cannot have a type. One might think to assign a negative type to a function whose
inverse has a positive type (for example, n(u) = ~1, n(d) = —2); this seems
to be justified by the theorem itself, because n(a) = 0. But it is impossible
to extend the concept of type in such a way, for it is not true in general that
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n(f x g) = a + b for any a and b in Z: in fact, if it was so, by calculating
f x g with n(f) = 2 and n(g) = —2, we should always obtain n(f x g) =0,
which is of course false in general (e.g., e X ¢ does not coincide with «).

Nevertheless, for every non-negative integer k we may define .#; as the
class of the multiplicative functions of type k, and .#_; as the class of the
functions whose inverses are of type k; where the class .#; contains of course
only «. It is plain that these classes are all disjoint, but we may also note that the
union of all the classes . with k € Z) does not coincide with .# , for there exist
functions that have no type, and such that their inverses do not have a type either;
let us consider in fact the function ¢, that is the Euler’s totient, and let y be ¢~ 1
we may easily see that ¥ (p") = 1 — p, independently of the exponent n (it is an
example of a strongly multiplicative function, i.e. a multiplicative function for
which f(p") = f(p) for every p and for n > 1); it is plain that neither ¢ nor
Y have a type.

Apart from «, completely multiplicative functions have no type, for, if it
were f(p") = 0 for n large enough and for every prime p, f should be zero
for every p. Hence the class ¥ is disjoint with all the classes . with positive
k. One may ask now what is the behaviour of ¥ with respect to the classes .#
with negative k. We shall answer this question with the Theorem 4.

Let us define a subclass of &, which we will denote by %*, constituted by
the completely multiplicative functions that are never equal to zero, or (which
is the same) that are never zero for any prime p. For example, the function Ng,
which is equal to n* for each n, belongs to €*, while the function that is equal
to 1 if and only if n is odd is a completely multiplicative function but does not

belong to €™*.

Theorem 4. With the symbols already defined, we have €* = M_y; in other
words, a function is of type 1 if and only if its inverse is completely multiplicative
and never equal to zero.

Proof. If f € €*,then fV = uf (by Theorem 2); so:

1 if n=1
fCPm =4 (<1 fm) if n=p--p
0 otherwise

Since f is never equal to zero, f 1 is of type 1, so we have proved that
f € #_;. On the other hand, if f is a function of type 1, we have to prove
that its inverse (which we already known to be multiplicative) is completely
multiplicative and never equal to zero. Let g be f(V; by calculating (f x g)(p)
we have:

0=fMelp)+ fpg),
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from which g(p) = —f(p); now let us show by induction that g(p") =
[—f(p)]*. Since this is plainly true for n = 1, we must only see the passage

from n to n + 1; let us calculate (f x g)(p"*t1):
0=FMe@"™) + f(Pe®™ + F(PHe(P"™) + ...+ f(p" g (1)
But n(f) = 1, hence this equality reduces to 0 = g(p"*!) + f(p)g(p"),
i.e., for the inductive hypothesis, g(p"t!) = [—- F(P)I[—F (D))" = [—f (Pt
This proves that g is completely multiplicative, and now it is clear that it is never
equal to zero, since f(p) # 0 for every p.

As a corollary of Theorem 4, we may state that .#_; C €. A function f of
the set ¢ — .#_,, with the exception of e, does not belong to any of the classes
A in fact we have already said that this is true for k > 0; but it is obviously
true also for & < 0, because fD is equal to uf, which is zero for n = p?, p3,
etc., but is not different from zero for all the primes, and therefore has no type.

As a further application, let us give the explicit expression of the func-
tion T = oD, We know that ¢ = N x u, where N is the “identity func-
tion”, N(n) = n for every n (in fact for every n we have (N x u)(n) =
> N(d)u (—Z—) = > d = o(n)). But N is completely multiplicative, and so
d|n din :

NV js equal to uN. Therefore we have T = uN x u, which is a function of
type 2; now it is sufficient to calculate

T(p) = n(HNDu(p) + n(PIN(p)un(l) = —(p + 1),

T(p?) = w(HNDr(p® + u(P)N(P)u(p) + w(pH)N(pHu) = p,
- to obtain

(=1
t(p)=—(p+1)
T(pH =p

t(p")=0 forn>2 ,
The problem of characterizing in some way the classes .#} with k < —1 -
remains of course still open.

Notes and references. Pellegrino [11] used the symbol f ™" for the inverse
function of f with respect to x (and f*" for the convolution f x f x -+ - X fn
tlmes see [12]), but many of the authors that studied this subject used the symbol
f~ for the inverse function of £. In this paper the symbol f(~Vhas been used

instead of f~1.
The fact that # is an UF-ring was proved in 1959 by E.D. Cashwell and

C.J. Everett [3]. This proof is based on a homomorphism between .# and a ring
of polynomials in infinite variables.
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