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DIFFERENTIAL RECURRENCE FORMULAE
FOR ORTHOGONAL POLYNOMIALS

ANTON L.W. VON BACHHAUS

Part I - By combining a general 2nd-order linear homogeneous ordinary dif-
ferential equation with the three-term recurrence relation possessed by all or-
thogonal polynomials, it is shown that sequences of orthogonal polynomials
which satisfy a differential equation of the above mentioned type necessarily
have a differentiation formula of the type:

gn ()Y, (x) = fn(xX)Yn(x) + Yp_1(x).
Part Il — A recurrence formula of the form :
rn(x)Y,;(x) +Sn(x)Y,;+1(x) + tn(x)Y,;_l(x) =0,

is derived using the result of part L.

Introduction.

The aim of this paper is to deduce a differential recurrence formula (differ-
entiation formula) of the form

(%) : 2 ()Y, (x) = fu(®)Yn(x) + Yo1(x)
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for a large class of orthogonal polynomial sequences. It should be noted that the
formula (%) is not a special case of the formula derived in section four (pp. 14—
19) of [7]. In particular see example 2 on page 18 of [7]. As a matter of fact the
above mentioned formula from [7] has been proved only in the hypergeometric
case, whereas the differentiation formula derived in this paper is valid for all se-
quences of orthogonal polynomials which satisfy any 2nd-order linear homoge-
neous ordinary differential equation e.g., for the generalized Hermite polynomi-
als (p. 157 of [4]) or the Heine polynomials (pp. 203-204 of [4]) neither of which
are of the hypergeometric or Strum-Liouville type. Al-Salam and Chihara, [1],
have shown that the classical orthogonal polynomials have a differentiation for-
mula of the form 7 (x) P, (x) = (@nX + Bn) Pa(x) + ¥ Po_1(x), where 7 (x) is a
fixed polynomial, which is at most of 2nd-degree. The differentiation formula in
this paper includes the Al-Salam formula as a special case. It is well known that
the classical orthogonal polynomials satisfy a differential equation of the form
a(x)Y"(x) + a1(x)Y'(x) + ap(x)Y (x) + 1, Y (x) = O (see S. Bochner’s paper
[3]). Where ay(x), a;(x), ap(x), are polynomials of degree at most 2,1, and 0,
respectively. The only orthogonal polynomial solutions of this differential equa-
tion are the classical orthogonal polynomials. The differentiation formula given
here is valid for sequences of orthogonal polynomials satisfying the general dif-

ferential equation:
Y, (x) + pa(x)Y, (x) + ga(¥) Y, (x) = 0,

which allows for an n dependency in the coefficient of the first derivative term
i.e. pn(x). Furthermore, the coefficient of the Y,(x) term i.e. g,(x) is not
restricted to being a constant but may depend on x.

Part I: The differentiation formula.

A well known necessary and sufficient condition for orthogonality of a
sequence of polynomials is that they satisfy the three-term recurrence formula:

(1 (x = B)Yu(x) = AnYn1(x) + Cp ¥ (%),

see [6]. Differentiating (1) one obtains:

2) (x = B)Y,(x) + Y, (x) = A, Y, 1 (¥) + CuY,_ (x).
Differentiating (2) results in:

3) (¥ = BY! () +2Y,(x) = A Y/, (x) + CuY, (%),
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A general 2nd-order linear homogeneous differential equation, where the 7 sub-
script indicates that it may depend on the parameter n as well on x, is:

C)) U (X)X, (X) + Ba(x) Y, () + ¥ (X) Y (x) = 0,

which may be rewritten as:

Bn(x) Y (x)

Y// Y —
() ()+n() (x)+n() (x) =0,
assuming o, (x) is not identically zero.
Let Pn(x) and 2 ™) be written as p,(x) and g, (x) respectively:
oty (x) oy (x)
(6) Y, (x) + Pn ()Y, (x) + gu(x) Y, (x] = 0.

By using (1), (2), (3) and (6) one can obtain a necessary condition for orthogonal
polynomials satisfying a 2nd-order linear homogeneous differential equation (6).
Solve (3) for (x — B,)Y, (x) and substitute that result, as well as (1) and (2) into
(6) multiplied by (x — B,) obtaining:

~2Y,(x) + A, Y!\ (%) + C, ¥ (x) +
7 + Pa )] = Ya() + AuYy () + G, L]+
0 ()| An¥ar1 () + CuYus(0)] = 0.
Leiting n — n — 1 in (6) yields:
®) Y1 00) + Pact (Y1 (5) + gum1 () Yoo (x) = 0.
Letting n — n + 1 in (6) gives:
) Y1 @) + Prt ()Y, 41 (%) + @t () Yags () = 0

Solve (8) and (9) for ¥,” ,(x) and Y, Y.’ 1 (x) and substitute these into (7):

“20,6) = An[ a1 (Y4 (1) + g1 ()Y (¥) ] =
1 - C, [p,,_l(x)Y,:_l(X) + qn—l(x)Yn-l(x)] +
(10)
+ 20| = 1)+ ATy @)+ G ()] +

()| AnYas1 () + CaYaa(0)] = 0,
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rearranging:
~2¥,2) = Pa()Ya(X) + An[Gas1(6) = 4200 |1 () +
AD 4 Cofgan1® = 400 Y1) + A Pt @) = o) | Fria 00+

+ Co[ Pt @) = Pa@) i1 ).

From (1):
(12) AnYny1(x) = (x — B))Yo(x) — Gy Yy (%),
From (2):

(13) AnY, 1 (x) = (x — B))Y,(x) + Yu(x) = Cp¥,_; ().

Substituting (12) and (13) into (11):
2X;(0) = Pa(OIYa(®) + [4ni1(0) — @ @) |
[ = B @) = Cu¥ors 0] + Cagn-1(6) = 000 | aca () +
+ [pr10) = 2@ ][ = B0 + Ta(0) = Ca¥ay @) | +

+ Col Pre1®) = P Yo @),

(14)

or grouping:
([P0 = ot @]x = B 2} Y0 =
(15) = P10 + [@1010) — 0 @) |5 = B | Tal) +

+Calan 1) = 4101 (@) [Yaet (0 + o a1 @) = P ) |13 ).

From (1):

16 Y, =2 B,)Y, AY,

(16) 1) = o[ = BOYa®) = Antya (0]
From (2):

1 |
(17) Y/, (x) = —é—[(x _BOY.(x) + Yu(x) — A,,Y,§+1(x)].

n
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Substitute (16) and (17) into (15):
{0 = prnio) ] = B 2} 7o) =
" = {1 + [ ® = 4@ |06 - B Y ) +
#4010 = e @[5 = BIa(6) = A Tria (0] +

+ [ Pra1®) = o @ ][ = BIY ) + o) - A¥ @]

Letting n — n + 1 in (15):
{[Pr100) = prsa @] = Bun) = 2} ¥y,100 =
A9 = {pra® + [@r200) = Gu1 @ |6 = Bust) s (o) +
+ Cott 42 = G120 | 1a(6) + Coit[a0) = prasa®) |71 ).

Substituting (19) into (18) multiplied by [[ Pt () = praa (x)] (x — Bps1) — 2} :

{[Pr169) = Prsa @] = Brer) - 2}

[P = P @] = B =2} 100 =
={[Pr01® = Pr2 ] = Bra) -2}
(o1 @ + [4010 = @] = B a0 +
+{[Pr1®) = pra (0] x = B — 2}
(210 = 4@ ][ = BT @) - AXan )] +
F{[2es1®) = Prsa )6 = Bayn) — 2}
[Pr1@) = a0 = BY () +
F{[Prn® = pusa@ |5 = Bun) 2}
[Pim1() = a1, = A s @) = pra(0)]

(P2t + [001200 = 401 0] & = i) s (0 +

(20)

+ 1[40 = 4112 (0) [125) + Cosa [ @) = puia 0 [ 13 0.
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Grouping coefficients of Y. (x), ¥Y,(x) and Y,41(x), cancelling, and factoring
gives:

{ {[Prs169 = prsa® |(x = Burn) —2}:
[P = pamr ) |(x = B =2} +
+ Ay Cur1 [pn-1 (x) — pn+1(x)] [pn (x) - pn+2(x)] } =
= {{ [Pr1(0) = Prsa(®) | = Barn) =2}
@1 {pre1@ + [a2m1® = 0a0) (5 = B} =
— AnCrsi [pn_lcx) = pra® |[an ) - qn+2(x>]]Yn (x) ~
— A, {{ (P11 = Prs2()] @ = Bust) = 2} [ 0109 = Gun (0] +
+ [pn_x(x) - pn+1(x)][pn+z(x) +

+[an 4200 = g1 (0] = B,,H)}]Ym(x).
Using (1) to eliminate Y, 41 (x) in (21) gives:

{ {[Prr10) = prsa) | x = Br) -2}
A = P @ - B -2} +
+ AnCost| Pa-1(0) = s (0] [ o) = pn+2<x>]}Y,: (x) =
22) = { {[Pr100) = Prra®)] & = B =2}
|pm1® + [a10) = @@ |6 = B} -

P11 @ = Pt ] {AnCosi [ (6) = g2 0] +

+ {Pra @) + [ans200) = g1 @) |6 = Bus) }x = Bn)}}Yn ) +
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+ cn{ {[Pr16) = Pra@ | = Barn) = 2} [01m1 ) = guin ()] +
+ | Pre1®) = P10 {prsa) +

+ [Qn+2(x) - Qn+1(x)](x - n+l)}} n—1(X).

Note: For the classical orthogonal polynormals (21) and (22) reduce to, respec-
tively:

—20,) = {p() + |91 () = a0 |6 = B} Va0 +

(23)
+ An @10 = @1 (0] s ()
and
o —2Y,(x) = {p(x) + '[qn+1(x) ~ 4n (x)](x — Bu) }Ya(x) +

+ Co 01 ®) = @1 (0] Yacs (0.

Hence a necessary (but not sufficient) condition for orthogonal polynomials sat-
isfying a 2nd-order linear homogeneous differential equation is that they have a
recurrence formula of the form:

(25) Gr(x)Y,(x) = Fr(x)Y,(x) + H,(x)Y,_1 (x)
or
(26) Jn(x)Y,:(x) =1,(x)Y,(x) + Kn(x)Yn+l(x),

where the F,, (x), G,(x), H,(x), I,(x), J,(x) and K, (x) are given above in (21)
and (22).

Now consider a special case of (25) i.e., H,(x) = 0 (F,(x), G,(x) # 0).

Then from (25):

(27) Gn(x)Y,(x) = Fa(x)Y, ().

This (27) is a 1sr-order linear differential equation but it is known that orthogonal
polynomials satisfying linear homogeneous ordinary differential equations do

not satisfy 1sr-order differential equations.
(See [5]). Therefore no sequences of orthogonal polynormals are possible in this
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case, therefore H,(x) # 0.
Since H,(x) # 0 (25) may be written in a simpler form:

(28) gn(X)Y,(x) = fu(X)Yn(x) + Yue1(x),

where the H, (x) has been incorporated into the new g,(x) and f,(x). Equation
(28) may also be written in the form:

(29) hn ()Y, (%) = in(X) Y (X) + Ypp1 (x).
Note: p,(x) and g,(x) are not assumed to be polynomials or even rational func-

tions. It remains to be shown what restriction must be placed on them so that
sequences of orthogonal polynomial solutions are possible.

Part II: A recurrence formula for orthogonal polynomials of the form
ra(X)Y)(x) + s, Y,;H(x) +1,Y,_;(x)=0.

(30) (x = B,)Y,(x) = AnYn+l(x) + Ch Y1 (x).
(31) gn ()Y, (x) = fu(x)Vn(x) + Yo1 ().
(32) Y, (x) + pn(X)Y,(x) + gn(x) Y, (x) = 0.

Differentiate (30) and (31):

(33) (x = B))Y,(x) + Yu(x) = AnY, 11 (¥) + Ca¥,_; (x)
B4) gn(DY,/(x) +8,()Y,(x) = f, ()Y, (x) + fo ()Y, (x) + ¥, _ ().

Dividing (34) by g.(x) gives:

&Y (x) n fix) Y, () + Ja(x)

Y )
gn(x) gn(x) gn(x) n—](x)

(335 Y,/ (x) = Y, (x)+

gn(x)
Substitute (35) into (32):

£10) £
Y,
o) T e ()

+ pa(X) Y (x) + @ (x) Y (x) = 0.

_ 8, (x)
(36) 8n (%)

Y (x) + Y (x) + Y, _;(x)+
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Grouping gives:

Ja(X)

L@ N +
gn(x)

gn(x)

Y )+ peOY () = 0.
gn(x)

Solving (33) for Y, (x) and substituting the result into (37):

8:.(%) ., [ (X) , ) _
_gn o Y, (x)+ ,:—gn ) + Gn (x)] [A,Y, 1 (x) + CpY,_; (%)
Ja(x)

gn(x)

_ &™)
gn(x)

Y, (x)+ [ + qn(x)] Ya(x) +

(37)

(38)

(x — By)Y,(x)] + Y, (x) + Y,_1(x) + pp(x)Y,(x) = 0.

gn(x)
Grouping gives:

{fn(x) _&&) Pa(x) — [f—(i‘-) +q,,(x):l (x — B,,)} Y,(x) +
2 (x)  g.(x) 8n (%)

fr(x) /
(39) + A, [gn ot (x)} Y, () +
S (x) ] } ,
Cn n - Y = u.
+[ me+q“)+&@> 10 =0
Formula (39) is of the form: |
(40) ()Y, (x) + 5, ()Y, (x) + 1, (x)Y,_;(x) = 0.

Conclusion.

The differentiation formula derived in part [ and the recurrence formula de-
rived in part II are both necessary conditions for all orthogonal polynomials sat-
isfying a 2nd-order linear homogeneous ordinary differential equation, whether
it is of the hypergeometric or strum-Liouville type or not. Using the differentia-
tion formula and the three-term pure recurrence formula it is possible to derive

the general differential equation of [2].
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