ON POSITIVE DEFINITE FUNCTIONS AND REPRESENTATIONS OF CLIFFORD ω -SEMIGROUPS

LILIANA PAVEL

It is known that a complex valued function f on a Clifford ω -semigroup, $T = \bigcup_n G_n$ is positive definite if and only if its restriction f^n to G_n , is positive definite for any positive integer n. Then, by the usual Gelfand-Naimark-Segal construction, f and $f^n (n \in \mathbb{N})$ give rise to the representations π_f of T, respectively π_{f^n} of G_n . In this note we study the relationship between the restriction of π_f to G_n and the representation of $\pi_{f^n} (n \in \mathbb{N})$.

Preliminaries.

A Clifford semigroup is an inverse semigroup T which is a disjoint union of groups, or, equivalently, an inverse semigroup in which each idempotent is central. A Clifford ω -semigroup is a Clifford semigroup T in which the semilattice E_T of idempotents is isomorphic to the semilattice $\omega = (\mathbb{N}, \vee), m \vee n = \max(m, n)$. If T is a Clifford ω -semigroup, T is a (disjoint) countable union of groups, $T = \bigcup_n G_n$ and $E_T = \{e_n | n \in \mathbb{N}\}$, where e_n is the identity element of the group $G_n, n \in \mathbb{N}$. The product in T is described by a family of group homomorphisms. For $m \geq n$ there is a homomorphism $\Omega_{mn} : G_n \longrightarrow G_m$, and $\{\Omega_{mn}\}_{m \geq n}$ is a coherent family, that is:

(i) Ω_{nn} is the identity mapping on G_n ;

Entrato in Redazione il 15 febbraio 1995.

1991 AMS Mathematics Subject Classification: 20M18, 20M30.

(ii) $\Omega_{mn}\Omega_{nk}=\Omega_{mk}$, for $m\geq n\geq k$.

For $g_m \in G_m$, $g_n \in G_n$ we have $g_m g_n = (\Omega_{jm} g_m)(\Omega_{jn} g_n)$, where $j = m \vee n$ and the product on the right takes place in G_j . The homomorphism Ω_{mn} has an internal description in T by $\Omega_{mn} g_n = e_m g_n = g_n e_m$. We note that e_0 is the identity element of T.

As usual, we shall denote by $\mathbb{C}(T)$ the *-algebra of all complex valued function with finite support on T. For $t \in T$, δ_t is the function which assumes the value 1 at t and is 0 everywhere else on T. The involution and the product on $\mathbb{C}(T)$ are defined as follows:

$$a^* = \sum_{t \in T} \overline{a(t)} \delta_{t^*}, \quad ab = \sum_{t,s \in T} a(t)b(s) \delta_{ts}$$

(where $a = \sum_{t \in T} a(t)\delta_t$, $b = \sum_{s \in S} b(s)\delta_s$).

Definition 1. A complex-valued function f on T is called hermitian if $f(s^*) = \overline{f(s)}$ holds, for all $s \in T$.

Definition 2. A hermitian function on T is said to be positive definite if

$$\sum_{i,j=1}^{m} \alpha_i \overline{\alpha_j} f(s_i^* s_j) \ge 0$$

whenever $s_1, \ldots, s_m \in T$ and $\alpha_1, \ldots, \alpha_m \in \mathbb{C}$ (see [5]).

Proposition 1. Any positive definite function on an ω -Clifford semigroup (or only on a semigroup which is a disjoint of groups) is bounded.

Proof. Let g be in $T = \bigcup_n G_n$. Then, $\exists n$ such that $g \in G_n$. With the definition of positive definite functions we have that $|f(g)|^2 \le f(e_0) \cdot f(e_n)$. In particular, for $g = e_n$ it results that $|f(e_n)| \le |f(e_0)|$, so

$$|f(g)|^2 \le |f(e_0)| \cdot |f(e_n)| \le |f(e_0)|^2$$
.

Proposition 2. Let $f: T \to \mathbb{C}$ be a positive definite function on the Clifford ω -semigroup $T = \bigcup_n G_n$, the product of T being described by the coherent family $\{\Omega_{mn}\}_{m\geq n}$. For $m \in \mathbb{N}$ let $f^m: G_m \to \mathbb{C}$ be the restriction of f to G_m . Then $\forall n \in \mathbb{N}$ and $\forall m \geq n$, the function $g_{mn}: G_n \to \mathbb{C}$, $g_{mn} = f^m \circ \Omega_{mn}$ is positive definite on the group G_n .

Proof. It is straightforward.

The next proposition can be obtained as a consequence of a result of A.L.T. Paterson ([5], Corollary 3.1). We shall give here an independent proof. We preserve the notations as above.

Proposition 3. The function $f: T \longrightarrow \mathbb{C}$ is a positive definite function on T if and only if for any $n \in \mathbb{N}$, $f^n: G_n \longrightarrow \mathbb{C}$ is a positive definite function on G_n .

Proof. It is obvious that if f is a positive definite function, then $\forall n \in \mathbb{N}$, f^n is a positive definite function.

For the converse, we shall first proceed by induction in order to prove that for any $s_1, \ldots, s_p \in T$, there exists $n(p) \in \mathbb{N}$ such that $s_1, \ldots, s_p \in G_{n(p)}, (p \ge 1)$. For p = 1, this is clear $(s_1 \in T = \bigcup_n G_n \Longrightarrow \exists n \in \mathbb{N}$ such that $s_1 \in G_n$ and we take n(1) equal to one of these n(1). Assume that p > 1 and that the assertion has already been proved for smaller values of p. Let s_1, \ldots, s_{p+1} be in T. By the induction hypothesis, $\exists n(p) \in \mathbb{N}$ such that $s_1, \ldots, s_p \in G_{n(p)}$ and $s_{p+1} \in G_l$. Let us denote by $s_{n(p)}$ the product $s_1 \cdots s_p$. We have:

$$s_{n(p)} \cdot s_{p+1} = (\Omega_{(n(p)\vee l)n(p)}(s_{n(p)})) \cdot (\Omega_{(n(p)\vee l)l}(s_{p+1})) \in G_{n(p)\vee l}.$$

If $n(p) \ge l$, by taking into account that $G_{n(p)}$ is group and $s_{n(p)} \cdot s_{p+1} \in G_{n(p)}, s_{n(p)} \in G_{n(p)}$ we can take n(p+1) = n(p).

If $n(p) \leq l$, arguing as above, we conclude that $s_{n(p)} \in G_l$. Considering the inverse of $s_2 \cdots s_p$, respectively $s_3 \cdots s_p$ in $G_{n(p)}$ $(s_2, \ldots, s_p \in G_{n(p)})$ by the inductive hypothesis) we have:

$$s_{n(p)} \cdot (s_2 \cdots s_p)^{-1} = s_1 \cdot e_{n(p)} \in G_{n(p) \vee l} = G_l$$

and respectively,

$$s_{n(p)}(s_3 \cdots s_p)^{-1} = s_1 \cdot s_2 \cdot e_{n(p)} = (s_1 \cdot e_{n(p)}) \cdot s_2 \in G_l.$$

It follows that $s_2 \in G_l$. Similarly, we obtain $s_3, \ldots, s_p \in G_l$ and after all $s_1 \in G_l$. Therefore, we can take n(p+1) = l.

Now, let $s_1, \ldots, s_m \in T$ be and $\alpha_1, \ldots, \alpha_m \in \mathbb{C}$. Then, as above, $\exists n(m) \in \mathbb{N}$ such that $s_1, \ldots, s_m \in G_{n(m)}$. Since $f^{n(m)} : G_{n(m)} \longrightarrow \mathbb{C}$ is positive definite on $G_{n(m)}$ it follows that

$$\sum_{i,j=1}^{m} \alpha_i \overline{\alpha_j} f(s_i^* s_j) = \sum_{i,j=1}^{m} \alpha_i \overline{\alpha_j} f^{n(m)}(s_i^* s_j) \ge 0$$

and the proposition is proved.

Finally, we mention that for any positive definite function f on T, we shall denote also by f its prolongement by linearity to the *-algebra $\mathbb{C}(T)$. It is clear that this function is a positive functional on $\mathbb{C}(T)(f(a^*a) \geq 0, \forall a \in \mathbb{C}(T))$.

Main results.

Let T be an inverse semigroup (in particular a Clifford ω -semigroup). A representation of T on a Hilbert space \mathcal{H} is a star homomorphism of T into $\mathcal{L}(\mathcal{H})$, the algebra of all linear operators an the Hilbert space \mathcal{H} . In [9] one proved that if π is a representation of T, then $\pi(T) \subset \mathcal{B}(\mathcal{H})$, the subalgebra of $\mathcal{L}(\mathcal{H})$ of bounded linear operators on \mathcal{H} . (In fact, for any $t \in T$, $\pi(t)$ is a partial isometry on \mathcal{H}). For an arbitrary representation π of T one may consider its natural extension (by linearity) to the algebra $\mathbb{C}(T)$ (denoted also by π) which will be a representation of the involutive algebra $\mathbb{C}(T)$ on \mathcal{H} .

Let $f: T \longrightarrow \mathbb{C}$ be a positive definite function on T. By the usual Gelfand-Naimark-Segal construction, f gives rise to a representation π_f on a Hilbert space \mathcal{H}_f . More precisely, if f is non-degenerate (i.e. $f(a^*a) > 0$, $\forall a \in \mathbb{C}(T)$, $a \neq 0$) we can define on $\mathbb{C}(T)$ the inner product:

$$\langle a,b\rangle_f = \sum_{t,s\in T} f(t^*s)a(t)\overline{b(s)} \quad (a,b\in\mathbb{C}(T)).$$

We remark that if f is degenerate, one may consider the quotient space $\mathbb{C}(T)/\mathcal{N}_f$, $\mathcal{N}_f = \{a \in \mathbb{C}(T) | f(a^*a) = 0\}$ and the inner product defined similarly on the equivalence classes. Everywhere here, for simplicity (of language) f will be non-degenerate. It follows that $\mathbb{C}(T)$ equipped with the inner product $\langle \cdot, \cdot \rangle_f := \langle \cdot, \cdot \rangle$ is a pre-Hilbert space. Its completion will be denoted \mathcal{H}_f . The representation π_f of T on \mathcal{H}_f is defined by:

$$\pi_f(t)(a) = \delta_{t^*}a, \quad \forall t \in T, a \in \mathbb{C}(T).$$

Now, if $T = \bigcup_n G_n$ is a Clifford ω -semigroup, and π an arbitrary representation of T on a Hilbert space \mathcal{H} , for any $n \in \mathbb{N}$, let π_n be the map obtained as follows:

$$\pi_n: G_n \longrightarrow \mathcal{B}(\mathcal{H}_n), \quad \pi_n(g_n) := \pi(g_n),$$

where \mathcal{H}_n is the closed subspace $[\pi(G_n)\mathcal{H}]$ spanned by $\pi(g_n)a$, $g_n \in G_n$, $a \in \mathcal{H}$. In the particular case when $\pi = \pi_f$ we obtain for any $n \in \mathbb{N}$ a representation $\pi_{f,n}$ of G_n on the Hilbert space $\mathcal{H}_{f,n}$ (the closed subspace $[\pi(G_n)\mathcal{H}_f]$ spanned by $\pi(g_n)a$, $g_n \in G_n$, $a \in \mathcal{H}_f$). On the other hand, by taking into account that for any $n \in \mathbb{N}$, f^n is a non-degenerate positive definite function on the group G_n (Proposition 3), f^n gives rise to a representation π_{f^n} of G_n on the Hilbert space \mathcal{H}_{f^n} .

In the next theorem we shall analyse the relation between $\pi_{f,n}$ and π_{f^n} , $(n \in \mathbb{N})$.

Theorem. Let $T = \bigcup_n G_n$ be a Clifford ω -semigroup and f a positive (non-degenerate) function on T. Then, for any $n \in \mathbb{N}$, the following statements hold:

- (1) There exists a surjective continuous intertwining operator of the representations $\pi_{f,n}$ and π_{f^n} ($\exists \widetilde{\beta} : \mathcal{H}_{f,n} \longrightarrow \mathcal{H}_{f^n}$, a linear continuous map onto \mathcal{H}_{f^n} such that $\pi_{f^n}(g) \circ \widetilde{\beta} = \widetilde{\beta} \circ \pi_{f,n}(g)$, $\forall g \in G_n$).
- (2) The representation $\pi_{f,n}$ is a direct sum of an essential representation equivalent to π_{f^n} and a zero representation.

Proof. (1) In order to define a linear continuous operator on $\mathcal{H}_{f,n}$ to \mathcal{H}_{f^n} , by taking into account the definitions of these spaces, it is enough to define it on the set $\{\delta_{g^*t} \mid g \in G_n, t \in T\}$. Thus, if $g \in G_n$ and $t \in T = \bigcup_n G_n$, it follows that there exists $m \in \mathbb{N}$ such that $t \in G_m$. Denoting t by t_m , we put

$$\beta(\delta_{g^*t_m}) = \begin{cases} \delta_{g^*\Omega_{nm}(t_m)} & \text{if } m \leq n \\ 0 & \text{otherwise} \end{cases}$$

We extend this map by linearity to a map defined on the subspace $[\pi(G_n)\mathbb{C}(T)]$, which is clearly a continuous operator (since $\langle a,b\rangle_{f^n}=\langle a,b\rangle_f, \ \forall a,b\in\mathbb{C}(G_n)\subset\mathbb{C}(T)$). It follows that we can construct its extension by continuity to $\mathcal{H}_{f,n}$, denoted by $\widetilde{\beta}$. The algebra $\mathbb{C}(T)$ being unitary, $\widetilde{\beta}$ will be onto \mathcal{H}_{f^n} . We have only to verify that $\widetilde{\beta}$ is an intertwining operator of the representations $\pi_{f,n}$ and π_{f^n} . As above, it is enough to see that for any $g,h\in G_n$ and $t:=t_m\in T$, $t\in G_m$ we have:

$$(\widetilde{\beta} \circ \pi_{f,n}(g))(\delta_{h^*t_m}) = (\pi_{f^n}(g) \circ \widetilde{\beta})(\delta_{h^*t_m}).$$

Indeed, by a short computation, we obtain:

$$(\widetilde{\beta} \circ \pi_{f,n}(g))(\delta_{h^*t_m}) = \widetilde{\beta}(\delta_{g^*h^*t_m}) =$$

$$= \begin{cases} \delta_{g^*h^*\Omega_{nm}(t_m)} & \text{if } m \leq n \\ 0 & \text{otherwise} \end{cases}$$

and

$$(\pi_{f^n}(g)\circ\widetilde{\beta})(\delta_{h^*t_m})=\pi_{f^n}(\widetilde{\beta}(\delta_{h^*t_m}))=$$

$$= \delta_{g^*} \widetilde{\beta}(\delta_{h^*t_m}) = \begin{cases} \delta_{g^*h^*\Omega_{nm}(t_m)} & \text{if} \quad m \leq n \\ 0 & \text{otherwise} \end{cases}$$

(2) It is clear that the closed subspace of $\mathcal{H}_{f,n}$, Ker $\widetilde{\beta}$ (and also its orthogonal complement, $(\operatorname{Ker} \widetilde{\beta})^{\perp}$) is invariant under $\pi_{f,n}(G_n)$. Consequently,

$$\pi_{f,n} = \rho_{f,n} \oplus \alpha_{f,n}$$

where $\rho_{f,n}$ is an essential representation of $\mathcal{K}_{f,n} := (\operatorname{Ker} \widetilde{\beta})^{\perp}$ and $\alpha_{f,n}$ is a representation of $\mathcal{L}_{f,n} := \operatorname{Ker} \widetilde{\beta}$. For $\delta_{h^*t_m}$ in $\mathcal{L}_{f,n}$ and $g \in G_n$, we have:

$$\alpha_{f,n}(g)(\delta_{h^*t_m}) = \pi_{f,n}(g)(\delta_{h^*t_m}) = \delta_{g^*h^*t_m}$$
.

With the definition of $\widetilde{\beta}$ it follows that $\alpha_{f,n}$ is the zero representation of $\mathcal{L}_{f,n}$. We also have that $\rho_{f,n} \cong \pi_{f,n}$, $\widetilde{\beta} : \mathcal{K}_{f,n} \longrightarrow \mathcal{H}_{f,n}$ being a bijective (continuous) intertwining operator.

Application.

It is known that if T is an inverse semigroup with identity element e, every (*-) representation of $\mathbb{C}(T)$ is a direct sum of an essential representation and a zero representation, and every essential representation is a direct sum of cyclic representations, each of which being unitarily equivalent to π_f for some state f. With the previous theorem, we obtain that the restriction of every (*-) representation of $\mathbb{C}(T)$ to $\mathbb{C}(G_n)$ (in particular of the universal representation) is a direct sum of cyclic representations of $\mathbb{C}(G_n)$ and a zero representation.

REFERENCES

- [1] B.A. Barnes, Representations of the l^1 -algebra of an inverse semigroup, Trans. Amer. Math. Soc., 218 (1976), pp. 361–396.
- [2] C. Berg Z. Sasvary, Functions with a finite number of negative squares on semigroups, Monatshefte für Math., 107 (1989), pp. 9–34.
- [3] J. Duncan A.L.T. Paterson, C*-algebras of inverse semigroups, Proceedings of the Edinburgh Math. Soc., 28 (1985), pp. 41–58.
- [4] J.M. Howie, An introduction to semigroup theory, Academic Press, London, 1976.
- [5] A.L.T. Paterson, An integral representation of positive definite functions on a Clifford semigroup, Math. Ann., 234 (1978), pp. 125–138.

- [6] L. Pavel, Representations of Clifford ω -semigroups, Studii si Cercetari Matematice, 42-3 (1990), pp. 251–255.
- [7] K. Sakai, On quasi-positive definite functions and unitary representations of groups in Pontrjagin spaces, Journal of Math. of Kyoto Univ., 19-1 (1979), pp. 71–90.
- [8] M. Takesaki, Theory of operator algebras I, Springer-Verlag, New York, 1979.
- [9] J.R. Wordingham, *Topics in semigroup algebras*, Ph. D. Thesis, University of Stirling, 1982.

Department of Mathematics, University of Oslo, P.O. Box 1053, Blindern, 0316 Oslo (NORWAY)