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ON POSITIVE DEFINITE FUNCTIONS AND
REPRESENTATIONS OF CLIFFORD w-SEMIGROUPS

LILIANA PAVEL

It is known that a complex valued function f on a Clifford w-semigroup,
T = U, G, is positive definite if and only if its restriction f” to G, is positive
definite for any positive integer n. Then, by the usual Gelfand-Naimark-Segal
construction, f and f"(n € N) give rise to the representations 7y of T,
respectively 7sn of Gp. In this note we study the relationship between the
restriction of 7y to G, and the representation of s« (n € N).

Preliminaries.

A Clifford semigroup is an inverse semigroup 7" which is a disjoint union
of groups, or, equivalently, an inverse semigroup in which each idempotent is
central. A Clifford w-semigroup is a Clifford semigroup T in which the semi-
lattice Et of idempotents is isomorphic to the semilattice w = (N, V), mvn =
max(m, n). If T is a Clifford w-semigroup, T is a (disjoint) countable union of
groups, T = | J, G, and E; = {e,|n € N}, where e, is the identity element of
the group G,, n € N. The product in T is described by a family of group ho-
momorphisms. For m > n there is a homomorphism Q,,, : G, —> G, and
{0 }m>n is a coherent family, that is:

(1) 2,y is the identity mapping on G,;
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(1) QLmn Lk = i, form >n > k.

For gm € G, gn € G, we have gngn = (R2jm8m)(2jngn), Where j = m V n
and the product on the right takes place in G;. The homomorphism £2,,, has an
internal description in T by Q..8, = €m&n = &neém. We note that eg is the
identity element of T'.

As usual, we shall denote by C(T') the *-algebra of all complex valued function
with finite support on 7. For ¢t € T, §, is the function which assumes the value
1 at ¢ and is O everywhere else on T'. The involution and the product on C(T)

are defined as follows:

a* =Y a®)s, ab= > a®b(s)s;s

teT t,seT

(wherea = Y, .r a(t)8;,b =) .5 b(s)dy).

Definition 1. A complex-valued function f on T is called hermitian if f(s*) =
f(s) holds, forall sT.

Definition 2. A hermitian function on T is said to be positive definite if

m

> i f(sts;) = 0

whenever s1, ...,sm €T and ay, ..., o, € C (see [5]).

Proposition 1. Any positive definite function on an w-Clifford semigroup (or
only on a semigroup which is a disjoint of groups) is bounded.

Proof. LetgbeinT =, G,. Then, 3n such that g € G,. With the definition
of positive definite functions we have that | f(g)|* < f(eo)- f(en). In pamcular
for g = e, it results that | f(e,) < | f(eo)l|, soO

1F@P < 1f ()l - 1f(en)] < £ ()l

Proposition 2. Let f : T —> C be a positive definite function on the Clifford
w-semigroup T = | J, G,, the product of T being described by the coherent
family {Qmn}mon. FormeNlet f™ : G, —> C be the restriction of f 1o Gp.
ThenYn € N and Ym > n, the function gmp : Gn —> C, gmn = f™ 0 Qpp is
positive definite on the group G,,.
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Proof. ltis straightforward.

The next proposition can be obtained as a consequence of a result of A.L.T.
Paterson ([5], Corollary 3.1). We shall give here an independent proof. We
preserve the notations as above.

‘ Proposition 3. The function f : T — C is a positive definite function on T if
and only if for any n €N, f" : G, —> C is a positive definite function on G,.

Proof. 1t is obvious that if f is a positive definite function, then Yn €N, f7” is

a positive definite function.
For the converse, we shall first proceed by induction in order to prove that for

any s1, ..., Sp € T, there exists n(p) € Nsuch that sq, ..., 5p € Gpp), (p = 1).
For p = 1, this is clear (s; € T = |J, G» = 3n € N such that s; € G, and
we take n(1) equal to one of these n). Assume that p > 1 and that the assertion
has already been proved for smaller values of p. Let s, ..., sp41 bein T. By
the induction hypothesis, 3n(p) € N such that sy, ..., s, € Gu(p) and 5,11 € Gy.
Let us denote by s,(p) the product sy -« -s,. We have:

Sn(p) * Sp+1 = (Lup)vdne) Snp))) * (v (Sp+1)) € Gupyvi -

If n(p) > [, by taking into account that G, is group and S,(p) * Sp+1 €

Gu(p)» Sn(p) € Gn(py We can take n(p + 1) = n(p).
If n(p) < I, arguing as above, we conclude that s,(,y € G,. Considering the

inverse of s - - - 5p, respectively s3--+5, in Gu(p) (52,...,85, € Gpp) by the
inductive hypothesis) we have: :

Sn(p) * (S2+ - sp)__1 = 51 en(p) € Guipyvi = Gi
and respectively,
Sn(p)($3 - 5,) " =51 052 enpy = (51 - €np)) '32 € G.
It follows that s, € G;. Similarly, we obtain s3, ..., s, € G; and after all 51 € G,.

Therefore, we can take n(p + 1) = 1.
Now, let s1,...,5, € T beand «y, ..., a, € C. Then, as above, In(m) €

N such that 51, ..., Sm € Gpgm. Since f nim) . Gnmy —> C is positive definite
on G, it follows that

Z o0 f(s]'s;) = Z o O f”("’)(s 5;) =0

i,j=1 i,j=1
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and the proposition is proved.

Finally, we mention that for any positive definite function f on T', we shall
denote also by f its prolongement by linearity to the *-algebra C(T). Itis clear
that this function is a positive functional on C(T)(f(a*a) > 0,Va e C(T)).

Main results.

Let T be an inverse semigroup (in particular a Clifford w-semigroup). A

representation of 7 on a Hilbert space H is a star homomorphism of T into
L(H), the algebra of all linear operators an the Hilbert space H.. In [9] one
proved that if 7 is a representation of T, then 7 (T') C B(H), the subalgebra of
L () of bounded linear operators on H. (In fact, forany t € T, () is a partial
isometry on 7). For an arbitrary representation 7z of 7' one may consider its
natural extension (by linearity) to the algebra C(T") (denoted also by ) which
will be a representation of the involutive algebra C(T) on H.
Let f : T —> C be a positive definite function on 7. By the usual Gelfand-
Naimark-Segal construction, f gives rise to a representation 7y on a Hilbert
space Hy. More precisely, if f is non-degenerate (i.e. f(a*a) > 0,YaeC(T),
a # 0) we can define on C(T') the inner product:

(a,b)y = ) f(*)a®b(s) (a,beC(T)).

t,seT

We remark that if f is degenerate, one may consider the quotient space
C(T)/Ny, Ny = {a € C(T)| f(a*a) = 0} and the inner product defined simi-
larly on the equivalence classes. Everywhere here, for simplicity (of language)
f will be non-degenerate. It follows that C(T') equipped with the inner product
(-, ) := (-, ) is a pre-Hilbert space. Its completion will be denoted Hy. The

representation 77 of T on H; is defined by:
nf(t)(a) = é<a, VieT,acC(T).

Now, if T = |, G» is a Clifford w-semigroup, and 7 an arbitrary representation
of T on a Hilbert space H, for any n € N, let 7, be the map obtained as follows:

Tn: Gn —> B(Hp), 7n(gn) := 7(8n),
where H, is the closed subspace [ (G,)H] spanned by 7 (gn)a, g € Gp,aeH.

In the particular case when 7w = 7y we obtain for any n € N a representation
s, of G, on the Hilbert space Hy, (the closed subspace [7(Gn)Hy] spanned
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by m(gn)a, g, € Gn, a € Hy). On the other hand, by taking into account that
for any n € N, f" is a non-degenerate positive definite function on the group G,
(Proposition 3), f" gives rise to a representation 7s» of G, on the Hilbert space
Hyn.

In the next theorem we shall analyse the relation between 7, and 7¢», (n € N).

Theorem. Let T = |J, G, be a Clifford w-semigroup and f a positive (non-
degenerate) function on T. Then, for any n € N, the following statements hold:

(1) There exists a surjective continuous intertwining operator of the represen-
tations my, and e (3 é : Hgn —> Hyn, a linear continuous map onto
Hyn such that wpn(g) o B = Bomsn(g), Vg € Gy)

(2) The representation 1y, is a direct sum of an essential representation equiv-
alent to s« and a zero representation.

Proof. (1) In order to define a linear continuous operator on Hy,, to 'an,'by
taking into account the definitions of these spaces, it is enough to define it on the
set {8+, | g€ Gy, t €T}, Thus,if g€ G, and t € T = |, G, it follows that
there exists m € N such that ¢ € G,,. Denoting ¢ by 1,,, we put

Og*Qumtmy I m =<

B (6g*t,,. ) = {

0 otherwise

We extend this map by linearity to a map defined on the subspace [7(G,)C(T)],
which is clearly a continuous operator (since (a,b)s» = (a,b)s, Ya,b €
C(Gn) C C(T)). It follows that we can construct its extension by continuity
to Hy,», denoted by B. The algebra C(T') being unitary, 8 will be onto H . We
have only to verify that 8 is an intertwining operator of the representations 7y, ,
and ms-. As above, it is enough to see that forany g,h€ G, and ¢ := 1, €T,

t € G,, we have:
(B 0 710(8)) Bhiy) = (770 () 0 BY(Shsy ).
Indeed, by a short computation, we obtain:
(B © 710 (8)) Bhery) = B(Sgenns,) =

_ {8g*h*9nm(tm) lf m f n
0 otherwise

and ~ N
(2 (8) © B)Bher,) = 7pn (B(Ss,)) =
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~ é *B* Qi () if m<n
= 84+ B (Snes,) =l 8 .
0 otherwise
(2) Itis clear that the closed subspace of Hy,,, Ker ,B (and also its orthogonal
complement, (Ker ,B)l) is invariant under 7y, (G,). Consequently,

TTfn = Pfn &, Qfn

where py, is an essential representatlon of K¢pn = (Ker B')L and oy, is a
representation of Ly, := Ker ﬂ For 8+, in Ly, and g € G,,, we have:

tfn(8) Bpre,) = pn(8) Bpr,) = Sgrnns,,

With the definition of B it follows that oy, is the zero representation of Lg,.
We also have that pf, = 75, ﬁ Kfn —> ’Hf,, being a bijective (continuous)

intertwining operator.

Application.

It is known that if T is an inverse semigroup with identity element e, every
(*-) representation of C(T') is a direct sum of an essential representation and a
zero representation, and every essential representation is a direct sum of cyclic
representations, each of which being unitarily equivalent to 77y for some state f.
With the previous theorem, we obtain that the restriction of every (*-) represen-
tation of C(T') to C(G,) (in particular of the universal representation) is a direct
sum of cyclic representations of C(G,) and a zero representation.
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