ON POSITIVE DEFINITE FUNCTIONS AND REPRESENTATIONS OF CLIFFORD ω-SEMIGROUPS

LILIANA PAVEL

It is known that a complex valued function f on a Clifford ω-semigroup, $T = \bigcup_n G_n$ is positive definite if and only if its restriction f^n to G_n, is positive definite for any positive integer n. Then, by the usual Gelfand-Naimark-Segal construction, f and $f^n (n \in \mathbb{N})$ give rise to the representations π_f of T, respectively π_{f^n} of G_n. In this note we study the relationship between the restriction of π_f to G_n and the representation of $\pi_{f^n} (n \in \mathbb{N})$.

Preliminaries.

A Clifford semigroup is an inverse semigroup T which is a disjoint union of groups, or, equivalently, an inverse semigroup in which each idempotent is central. A Clifford ω-semigroup is a Clifford semigroup T in which the semilattice E_T of idempotents is isomorphic to the semilattice $\omega = (\mathbb{N}, \vee)$, $m \vee n = \max(m, n)$. If T is a Clifford ω-semigroup, T is a (disjoint) countable union of groups, $T = \bigcup_n G_n$ and $E_T = \{ e_n | n \in \mathbb{N} \}$, where e_n is the identity element of the group G_n, $n \in \mathbb{N}$. The product in T is described by a family of group homomorphisms. For $m \geq n$ there is a homomorphism $\Omega_{mn} : G_n \longrightarrow G_m$, and $\{ \Omega_{mn} \}_{m \geq n}$ is a coherent family, that is:

(i) Ω_{nn} is the identity mapping on G_n.

Entrato in Redazione il 15 febbraio 1995.

1991 AMS Mathematics Subject Classification: 20M18, 20M30.
(ii) $\Omega_{mn}\Omega_{nk} = \Omega_{mk}$, for $m \geq n \geq k$.

For $g_m \in G_m$, $g_n \in G_n$ we have $g_m g_n = (\Omega_{jm} g_m)(\Omega_{jn} g_n)$, where $j = m \lor n$ and the product on the right takes place in G_j. The homomorphism Ω_{mn} has an internal description in T by $\Omega_{mn} g_n = e_m g_n = g_n e_m$. We note that e_0 is the identity element of T.

As usual, we shall denote by $\mathbb{C}(T)$ the \ast-algebra of all complex valued function with finite support on T. For $t \in T$, δ_t is the function which assumes the value 1 at t and is 0 everywhere else on T. The involution and the product on $\mathbb{C}(T)$ are defined as follows:

$$a^* = \sum_{t \in T} \overline{a(t)} \delta_t, \quad ab = \sum_{t, s \in T} a(t) b(s) \delta_{ts}$$

(Where $a = \sum_{t \in T} a(t) \delta_t$, $b = \sum_{s \in S} b(s) \delta_s$).

Definition 1. A complex-valued function f on T is called hermitian if $f(s^\ast) = \overline{f(s)}$ holds, for all $s \in T$.

Definition 2. A hermitian function on T is said to be positive definite if

$$\sum_{i, j=1}^{m} \alpha_i \overline{\alpha_j} f(s_i^\ast s_j) \geq 0$$

whenever $s_1, \ldots, s_m \in T$ and $\alpha_1, \ldots, \alpha_m \in \mathbb{C}$ (see [5]).

Proposition 1. Any positive definite function on an ω-Clifford semigroup (or only on a semigroup which is a disjoint of groups) is bounded.

Proof. Let g be in $T = \bigcup_n G_n$. Then, $\exists n$ such that $g \in G_n$. With the definition of positive definite functions we have that $|f(g)|^2 \leq f(e_0) \cdot f(e_n)$. In particular, for $g = e_n$ it results that $|f(e_n)| \leq |f(e_0)|$, so

$$|f(g)|^2 \leq |f(e_0)| \cdot |f(e_n)| \leq |f(e_0)|^2.$$

Proposition 2. Let $f : T \rightarrow \mathbb{C}$ be a positive definite function on the Clifford ω-semigroup $T = \bigcup_n G_n$, the product of T being described by the coherent family $\{\Omega_{mn}\}_{m \geq n}$. For $m \in \mathbb{N}$ let $f^m : G_m \rightarrow \mathbb{C}$ be the restriction of f to G_m. Then $\forall n \in \mathbb{N}$ and $\forall m \geq n$, the function $g_{mn} : G_n \rightarrow \mathbb{C}, g_{mn} = f^m \circ \Omega_{mn}$ is positive definite on the group G_n.

Proof. It is straightforward.

The next proposition can be obtained as a consequence of a result of A.L.T. Paterson ([5], Corollary 3.1). We shall give here an independent proof. We preserve the notations as above.

Proposition 3. The function \(f : T \rightarrow \mathbb{C} \) is a positive definite function on \(T \) if and only if for any \(n \in \mathbb{N} \), \(f^n : G_n \rightarrow \mathbb{C} \) is a positive definite function on \(G_n \).

Proof. It is obvious that if \(f \) is a positive definite function, then \(\forall n \in \mathbb{N}, f^n \) is a positive definite function.

For the converse, we shall start proceed by induction in order to prove that for any \(s_1, \ldots, s_p \in T \), there exists \(n(p) \in \mathbb{N} \) such that \(s_1, \ldots, s_p \in G_{n(p)}, (p \geq 1) \).

For \(p = 1 \), this is clear \((s_1 \in T = \bigcup_n G_n \implies \exists n \in \mathbb{N} \text{ such that } s_1 \in G_n \text{ and we take } n(1) \text{ equal to one of these } n) \). Assume that \(p > 1 \) and that the assertion has already been proved for smaller values of \(p \). Let \(s_1, \ldots, s_{p+1} \) be in \(T \). By the induction hypothesis, \(\exists n(p) \in \mathbb{N} \) such that \(s_1, \ldots, s_p \in G_{n(p)} \) and \(s_{p+1} \in G_1 \).

Let us denote by \(s_{n(p)} \) the product \(s_1 \cdots s_p \). We have:

\[
s_{n(p)} \cdot s_{p+1} = (\Omega_{(n(p)\vee l)n(p)}(s_{n(p)})) \cdot (\Omega_{(n(p)\vee l)}(s_{p+1})) \in G_{n(p)\vee l}.
\]

If \(n(p) \geq l \), by taking into account that \(G_{n(p)} \) is group and \(s_{n(p)} \cdot s_{p+1} \in G_{n(p)} \), \(s_{n(p)} \in G_{n(p)} \) we can take \(n(p+1) = n(p) \).

If \(n(p) < l \), arguing as above, we conclude that \(s_{n(p)} \in G_1 \). Considering the inverse of \(s_2 \cdots s_p \), respectively \(s_3 \cdots s_p \) in \(G_{n(p)} \) \((s_2, \ldots, s_p \in G_{n(p)} \text{ by the inductive hypothesis}) \) we have:

\[
s_{n(p)} \cdot (s_2 \cdots s_p)^{-1} = s_1 \cdot e_{n(p)} \in G_{n(p)\vee l} = G_l
\]

and respectively,

\[
s_{n(p)}(s_3 \cdots s_p)^{-1} = s_1 \cdot s_2 \cdot e_{n(p)} = (s_1 \cdot e_{n(p)}) \cdot s_2 \in G_1.
\]

It follows that \(s_2 \in G_l \). Similarly, we obtain \(s_3, \ldots, s_p \in G_l \) and after all \(s_1 \in G_1 \).

Therefore, we can take \(n(p+1) = l \).

Now, let \(s_1, \ldots, s_m \in T \) be and \(\alpha_1, \ldots, \alpha_m \in \mathbb{C} \). Then, as above, \(\exists n(m) \in \mathbb{N} \) such that \(s_1, \ldots, s_m \in G_{n(m)} \). Since \(f^{n(m)} : G_{n(m)} \rightarrow \mathbb{C} \) is positive definite on \(G_{n(m)} \) it follows that

\[
\sum_{i,j=1}^{m} \alpha_i \overline{\alpha_j} f(s_i^* s_j) = \sum_{i,j=1}^{m} \alpha_i \overline{\alpha_j} f^{n(m)}(s_i^* s_j) \geq 0
\]
and the proposition is proved.

Finally, we mention that for any positive definite function \(f \) on \(T \), we shall denote also by \(f \) its prolongement by linearity to the \(*\)-algebra \(\mathbb{C}(T) \). It is clear that this function is a positive functional on \(\mathbb{C}(T)(f(a^*a) \geq 0, \forall a \in \mathbb{C}(T)) \).

Main results.

Let \(T \) be an inverse semigroup (in particular a Clifford \(\omega \)-semigroup). A representation of \(T \) on a Hilbert space \(\mathcal{H} \) is a star homomorphism of \(T \) into \(\mathcal{L}(\mathcal{H}) \), the algebra of all linear operators on the Hilbert space \(\mathcal{H} \). In [9] one proved that if \(\pi \) is a representation of \(T \), then \(\pi(T) \subset \mathcal{B}(\mathcal{H}) \), the subalgebra of \(\mathcal{L}(\mathcal{H}) \) of bounded linear operators on \(\mathcal{H} \). (In fact, for any \(t \in T \), \(\pi(t) \) is a partial isometry on \(\mathcal{H} \)). For an arbitrary representation \(\pi \) of \(T \) one may consider its natural extension (by linearity) to the algebra \(\mathbb{C}(T) \) (denoted also by \(\pi \)) which will be a representation of the involutive algebra \(\mathbb{C}(T) \) on \(\mathcal{H} \).

Let \(f : T \rightarrow \mathbb{C} \) be a positive definite function on \(T \). By the usual Gelfand-Naimark-Segal construction, \(f \) gives rise to a representation \(\pi_f \) on a Hilbert space \(\mathcal{H}_f \). More precisely, if \(f \) is non-degenerate (i.e. \(f(a^*a) > 0, \forall a \in \mathbb{C}(T), a \neq 0 \)) we can define on \(\mathbb{C}(T) \) the inner product:

\[
(a, b)_f = \sum_{t,s \in T} f(t^*s)a(t)b(s) \quad (a, b \in \mathbb{C}(T)).
\]

We remark that if \(f \) is degenerate, one may consider the quotient space \(\mathbb{C}(T)/\mathcal{N}_f \), \(\mathcal{N}_f = \{ a \in \mathbb{C}(T) | f(a^*a) = 0 \} \) and the inner product defined similarly on the equivalence classes. Everywhere here, for simplicity (of language) \(f \) will be non-degenerate. It follows that \(\mathbb{C}(T) \) equipped with the inner product \(\langle \cdot, \cdot \rangle_f := \langle \cdot, \cdot \rangle \) is a pre-Hilbert space. Its completion will be denoted \(\mathcal{H}_f \). The representation \(\pi_f \) of \(T \) on \(\mathcal{H}_f \) is defined by:

\[
\pi_f(t)(a) = \delta_t \cdot a, \quad \forall t \in T, a \in \mathbb{C}(T).
\]

Now, if \(T = \bigcup_n G_n \) is a Clifford \(\omega \)-semigroup, and \(\pi \) an arbitrary representation of \(T \) on a Hilbert space \(\mathcal{H} \), for any \(n \in \mathbb{N} \), let \(\pi_n \) be the map obtained as follows:

\[
\pi_n : G_n \rightarrow \mathcal{B}(\mathcal{H}_n), \quad \pi_n(g_n) := \pi(g_n),
\]

where \(\mathcal{H}_n \) is the closed subspace \([\pi(G_n)\mathcal{H}] \) spanned by \(\pi(g_n)a, g_n \in G_n, a \in \mathcal{H} \).

In the particular case when \(\pi = \pi_f \) we obtain for any \(n \in \mathbb{N} \) a representation \(\pi_{f,n} \) of \(G_n \) on the Hilbert space \(\mathcal{H}_{f,n} \) (the closed subspace \([\pi(G_n)\mathcal{H}_f] \) spanned
by \(\pi(g_n) a, g_n \in G_n, a \in \mathcal{H}_f \). On the other hand, by taking into account that for any \(n \in \mathbb{N} \), \(f^n \) is a non-degenerate positive definite function on the group \(G_n \) (Proposition 3), \(f^n \) gives rise to a representation \(\pi_{f^n} \) of \(G_n \) on the Hilbert space \(\mathcal{H}_{f^n} \).

In the next theorem we shall analyse the relation between \(\pi_{f^n} \) and \(\pi_{f^n}, (n \in \mathbb{N}) \).

Theorem. Let \(T = \bigcup_n G_n \) be a Clifford \(\omega \)-semigroup and \(f \) a positive (non-degenerate) function on \(T \). Then, for any \(n \in \mathbb{N} \), the following statements hold:

1. There exists a surjective continuous intertwining operator of the representations \(\pi_{f,n} \) and \(\pi_{f^n} \) \((\exists \tilde{\beta} : \mathcal{H}_{f,n} \rightarrow \mathcal{H}_{f^n}, \) a linear continuous map onto \(\mathcal{H}_{f^n} \), such that \(\pi_{f^n}(g) \circ \tilde{\beta} = \tilde{\beta} \circ \pi_{f,n}(g), \forall g \in G_n \).)

2. The representation \(\pi_{f,n} \) is a direct sum of an essential representation equivalent to \(\pi_{f^n} \) and a zero representation.

Proof. (1) In order to define a linear continuous operator on \(\mathcal{H}_{f,n} \) to \(\mathcal{H}_{f^n} \), by taking into account the definitions of these spaces, it is enough to define it on the set \(\{ \delta_g^{*t_n} | g \in G_n, t \in T \} \). Thus, if \(g \in G_n \) and \(t \in T = \bigcup_n G_n \), it follows that there exists \(m \in \mathbb{N} \) such that \(t \in G_m \). Denoting \(t \) by \(t_m \), we put

\[
\beta(\delta_g^{*t_m}) = \begin{cases}
\delta_g^{*\Omega_{nm}(t_m)} & \text{if } m \leq n \\
0 & \text{otherwise}
\end{cases}
\]

We extend this map by linearity to a map defined on the subspace \([\pi(G_n)\mathbb{C}(T)] \), which is clearly a continuous operator (since \(\langle a, b \rangle_{f^n} = \langle a, b \rangle_f, \forall a, b \in \mathbb{C}(G_n) \subset \mathbb{C}(T) \)). It follows that we can construct its extension by continuity to \(\mathcal{H}_{f,n} \), denoted by \(\beta \). The algebra \(\mathbb{C}(T) \) being unitary, \(\beta \) will be onto \(\mathcal{H}_{f^n} \). We have only to verify that \(\beta \) is an intertwining operator of the representations \(\pi_{f,n} \) and \(\pi_{f^n} \). As above, it is enough to see that for any \(g, h \in G_n \) and \(t := t_m \in T, t \in G_m \) we have:

\[
(\beta \circ \pi_{f,n}(g))(\delta_h^{*t_m}) = (\pi_{f^n}(g) \circ \beta)(\delta_h^{*t_m}).
\]

Indeed, by a short computation, we obtain:

\[
(\beta \circ \pi_{f,n}(g))(\delta_h^{*t_m}) = \beta(\delta_g^{*h^{*t_m}}) = \\
= \begin{cases}
\delta_g^{*h^{*\Omega_{nm}(t_m)}} & \text{if } m \leq n \\
0 & \text{otherwise}
\end{cases}
\]

and

\[
(\pi_{f^n}(g) \circ \beta)(\delta_h^{*t_m}) = \pi_{f^n}(\beta(\delta_h^{*t_m})).
\]
\[
= \delta_{g^*\tilde{\beta} (\delta_{h^*l_m})} = \begin{cases}
\delta_{g^*h^*\Omega_{nm}(l_m)} & \text{if } m \leq n \\
0 & \text{otherwise}
\end{cases}
\]

(2) It is clear that the closed subspace of \(\mathcal{H}_{f,n}\), \(\text{Ker} \tilde{\beta}\) (and also its orthogonal complement, \((\text{Ker} \tilde{\beta})^\perp\)) is invariant under \(\pi_{f,n}(G_n)\). Consequently,

\[
\pi_{f,n} = \rho_{f,n} \oplus \alpha_{f,n}
\]

where \(\rho_{f,n}\) is an essential representation of \(\mathcal{K}_{f,n} := (\text{Ker} \tilde{\beta})^\perp\) and \(\alpha_{f,n}\) is a representation of \(\mathcal{L}_{f,n} := \text{Ker} \tilde{\beta}\). For \(\delta_{h^*l_m}\) in \(\mathcal{L}_{f,n}\) and \(g \in G_n\), we have:

\[
\alpha_{f,n}(g)(\delta_{h^*l_m}) = \pi_{f,n}(g)(\delta_{h^*l_m}) = \delta_{g^*h^*l_m}.
\]

With the definition of \(\tilde{\beta}\) it follows that \(\alpha_{f,n}\) is the zero representation of \(\mathcal{L}_{f,n}\). We also have that \(\rho_{f,n} \cong \pi_{f,n}\), \(\tilde{\beta} : \mathcal{K}_{f,n} \longrightarrow \mathcal{H}_{f,n}\) being a bijective (continuous) intertwining operator.

Application.

It is known that if \(T\) is an inverse semigroup with identity element \(e\), every \((\ast\)-) representation of \(\mathbb{C}(T)\) is a direct sum of an essential representation and a zero representation, and every essential representation is a direct sum of cyclic representations, each of which being unitarily equivalent to \(\pi_f\) for some state \(f\). With the previous theorem, we obtain that the restriction of every \((\ast\)-) representation of \(\mathbb{C}(T)\) to \(\mathbb{C}(G_n)\) (in particular of the universal representation) is a direct sum of cyclic representations of \(\mathbb{C}(G_n)\) and a zero representation.

REFERENCES

Department of Mathematics,
University of Oslo,
P.O. Box 1053, Blindern,
0316 Oslo (NORWAY)