
LE MATEMATICHE
Vol. LXIII (2008) – Fasc. I, pp. 107–121

ON THE EXISTENCE OF MILD SOLUTIONS OF
SEMILINEAR FUNCTIONAL DIFFERENTIAL INCLUSIONS.

A. G. IBRAHIM - A. M. SOLIMAN

In this paper the existence of local and global mild solution of a semi-
linear functional differential inclusion in the case when the kernel is not
necessarily compact is proved. Also, some topological properties of the
solution set are obtained.

1. Introduction

The existence of mild solution for a similinear differential inclusion and func-
tional differential inclusion in a Banach space has been studied by many au-
thors, see for example [1], [3], [5-13], [16], [17] and [19-23]. Let E be a
separable Banach space, r > 0, I = [0,T ], C(I,E) be the Banach space of all
continuous functions from I to E with the norm of uniform convergence and
C0 = C([−r,0],E). Let {A(t) : t ∈ I} be a family of densely defined, linear
operator (not necessarily bounded or closed) on E, which generates an evo-
lution operator K : ∆ = {(t,s) : I × I : 0 ≤ s ≤ t ≤ T} → L (E) (the space
of bounded linear operators from E into itself). Let F be a multifunction de-
fined from I×C0 with nonempty compact and convex values in E and for any
t ∈ I, τ(t) be the mapping from C([−r,T ],E) to C0 = C([−r,0],E) defined by
τ(t)u(s) = u(s+ t), ∀s ∈ [−r,0] and u ∈C([−r,T ],E).
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Consider the following functional differential inclusion

(P)

{
·
u(t) ∈ A(t)u(t)+F(t,τ(t)u) a.e. on I.

u(t) = ψ(t) t ∈ [−r,0],

where ψ ∈C0.

In [12] Ibrahim proved that, when {A(t) : t ∈ I} is a family of densely
defined, closed linear operator on E, the set of mild solutions S(ψ) of (P) is
nonempty. In this paper, we consider the case when {A(t) : t ∈ I} is a family of
densely defined, linear operator (not necessarily bounded or closed) on E. We
do not suppose that the evolution operator K is compact and instead of it we
assume that the oriented field F satisfies a compactness type condition. First,
we prove a local existence theorem. Then, under a stronger condition on F we
prove a global existence theorem. Finally, we give some topological proper-
ties of S(ψ). The results obtained in this paper generalizes many results in the
literature, see for example [4], [6], [12], [19] and [24].

2. Notations and some auxiliary facts

We will use the following definitions and notations, which can be found in [15]
and [24-27]:

- E is a separable Banach space, E∗ is the topological dual of E.

- P(E) is the set of all nonempty subsets of E.

- PC(E) is the set of all nonempty and closed subsets of E.

- PK(E) is the set of all nonempty and compact subsets of E.

- PCK(E) is the set of all nonempty, compact and convex subsets of E.

- r > 0,T > 0 and I = [0,T ].

- L1(I,E) is the Banach space of Lebesgue-Bochner integrable functions f :
I → E endowed with the usual norm and L (E) is the Banach space of
bounded linear operators from E into itself.

- C(I,E) is the Banach space of all continuous functions from I to E with the
norm of uniform convergence, C0 = C([−r,0],E) and ψ ∈C0.

- For any t ∈ I, we denote τ(t) the mapping C([−r, t],E)→C([−r,0],E) = C0
defined by τ(t)u(s) = u(s+ t), ∀s ∈ [−r,0] and u ∈C([−r,T ],E).
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- A multifunction G : E → P(E) with closed values is upper semicontinuous
(u.s.c.) if and only if G−(Z) = {x ∈ E : G(x)∩Z 6= φ} is closed whenever
Z ⊆ E is closed.

- A multifunction G : E → P(E) with closed values is lower semicontinuous
(l.s.c.) if and only if G−(Z) = {x ∈ E : G(x)∩Z 6= φ} is open whenever
Z ⊆ E is open.

- (S,A ,µ) is a σ -finite measure space. A multifunction F : S→PC(E) is said
to be measurable if, F−U = {s ∈ S : F(s)∩U 6= φ} ∈ A for any open
subset U of E.

- A multifunction F : S → PC(E) is called integrably bounded if there exists
an integrable non negative function g : S → [0,∞[ such that for a.e. s ∈
S,‖F(s)‖ ≤ g(s), where

‖F(s)‖= sup{‖x‖ : x ∈ F(s)}.

- Given a multifunction F : S →P(E), we denote Sp
F := { f ∈ Lp(E) : f (s) ∈

F(s) a.e.},1 ≤ p ≤ ∞. This set may be empty. It is nonempty if F is
measurable and integrably bounded.

- (B,≥) is a partially ordered set. A function χ : P(E)→B is called a mea-
sure of noncompactness (MNC) in E if

χ(coΩ) = χ(Ω)

for every Ω ∈P(E).

A MNC is called monotone if Ω0,Ω1 ∈ P(E),Ω0 ⊂ Ω1 implies χ(Ω0) ≤
χ(Ω1), nonsingular if χ({a}∪Ω) = χ(Ω) for every a ∈ E,Ω ∈ P(E) and is
called real if B = [0,∞] with the natural ordering and χ(Ω) < +∞ for every
bounded Ω.

If B is a cone in a Banach space, MNC is called regular if χ(Ω) = 0 is
equivalent to relative compactness of Ω.

- Let α be the Hausdorff MNC on E, which defined by

α(Ω) = inf{ε > 0 : Ω has a finite ε-net},Ω ∈P(E).

It is known that the Hausdorff MNC satisfies all the properties above.

- Let W be a closed subset of a Banach space E,χ : P(E) → B be a MNC
on E. A multifunction F : W →PK(E) is said to be χ-condensing if for
every Ω⊂W , we have

χ(F(Ω))≥ χ(Ω)⇒Ω is relatively compact.
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- A countable set { fn : n≥ 1} ⊂ L1(I,E) is said to be semicompact if:

(i) the set { fn : n ≥ 1} is integrably bounded i.e. there exists g ∈ L1 (I,E) such
that for every n≥ 1

‖ fn(t)‖ ≤ g(t) a.e. t ∈ I;

(ii) the set { fn(t) : n≥ 1} is relatively compact for a.e. t ∈ I.

- A function u ∈C([−r,T ],E) is called a mild solution of (P) if

u = ψ on [−r,0], and

u(t) = K(t,0)ψ(0)+
t∫
0

K(t,s) f (s)ds for every t ∈ I,

where f ∈ L1(I,E) and f (s) ∈ F(s,τ(s)u) a.e.

We also use the following Definitions and theorems:

Theorem 2.1 ([14], Corollary 3.3.1). If M is a closed convex subset of a Ba-
nach space E and F : M →PCK(M ) is a closed χ-condensing multifunction,
where χ is a nonsingular MNC defined on a subsets of M , then F has a fixed
point.

Proposition 2.2 ([14], Proposition 3.5.1). Let W be a closed subset of a Banach
space E and F : W →PK(E) be a closed multifunction which is χ-condensing
on every bounded subset of W, where χ is a monotone MNC in E. If the fixed
points set FixF is bounded, then it is compact.

Lemma 2.3 ([14], Proposition 4.2.1). Every semicompact set is weakly compact
in the space L1(I,E).

Definition 2.4. Let K : ∆ →L (E) be an evolution operator. The operator G :
L1(I,E)→C(I,E) defined by

G f (t) =
t∫
0

K(t,s) f (s)ds, t ∈ I,

is called the generalized Cauchy operator.

Theorem 2.5 ([4], Theorem 2). The generalized Cauchy operator G satisfies
the properties:
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(G1) there exists ζ ≥ 0 such that

‖G f (t)−Gg(t)‖ ≤ ζ

t∫
0

‖ f (s)−g(s)‖ds,∀ t ∈ I and f ,g ∈ L1(I,E)

(G2) for any compact K ⊂ E and sequence ( fn)n, fn ∈ L1(I,E), such that
{ fn(t) : n ≥ 1} ⊂ K for a.e. t ∈ I, the weak convergence fn

w→ f0 implies
the convergence G fn → G f0.

Lemma 2.6 ([14], theorem 5.1.1). Let Π : L1(I,E) → C(I,E) be an operator
satisfying condition (G2) and the Lipschitz condition (weaker than (G1))

(G1/) ‖Π f −Πg‖C ≤ ζ‖ f −g‖L1(I,E) , where ‖.‖ is the usual sup-norm.

Then for every semicompact set { fn : n≥ 1}⊂ L1(I,E) the set {Π fn : n≥ 1}
is relatively compact in C(I,E) and, if fn

w→ f0, then Π fn →Π f0.

Lemma 2.7 ([14], Theorem 4.2.2). Let the operator Π satisfy conditions (G1)
and (G2) and let the set { fn : n ≥ 1} be integrably bounded with property
α({ fn(t) : n≥ 1})≤ η(t) for a.e. t ∈ I, where η ∈ L1(I,R+) and α is the Haus-
dorff MNC. Then

α({Π fn(t) : n≥ 1})≤ 2ζ

t∫
0

η(s)ds for every t ∈ I,

where ζ ≥ 0 is the constant in condition (G1).

3. Local and global existence results for (P)

We will use the following assumptions on the data of (P) :
H(A) : {A(t) : t ∈ I} is a family of densely defined linear operators (not

necessarily bounded or closed), A(t) : D(A)⊂ E → E not depending on t, which
generates an evolution operator K : ∆ = {(t,s) : I× I : 0≤ s≤ t ≤ T}→L (E),
i.e. there exists an evolution system {K(t,s) : (t,s) ∈ ∆} such that on the region
D(A), each operator K(t,s) is strongly differentiable relative to t and s and

∂K(t,s)
∂ t

= A(t)K(t,s) and
∂K(t,s)

∂ s
=−K(t,s)A(t)

H(F) : F : I×C0 →PCK(E) is a multifunction such that

(1) F is scalary u.s.c. on I×C0.
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(2) for every nonempty bounded set Ω ⊂C0 it exists a function µΩ ∈ L(I,R+)
such that for every g ∈Ω

‖F(t,g)‖ ≤ µΩ(t) a.e. on I.

(3) there exists a function k ∈ L(I,R+) such that for every bounded set Ω⊂C0

α(F(t,Ω))≤ k(t)α({g(0) : g ∈Ω}) a.e. on I.

To prove our theorem we need the following lemma:

Lemma 3.1. Under assumptions H(F)(1) and H(F)(3) if we consider the se-
quences (xn),xn ∈ C([−r,d],E) and ( fn), fn ∈ L1(I,E), where fn ∈ S1

F(.,τ(.)xn)
,

such that xn → x0 and fn
w→ f 0, then f 0 ∈ S1

F(.,τ(.)x0).

Proof. We first prove that τ(.)xn → τ(.)x0. So, we have for every t ∈ I

‖τ(t)xn− τ(t)x‖ = sup
s∈[−r,0]

‖xn(t + s)− x(t + s)‖

≤ sup
−r≤h≤t

‖xn(h)− x(h)‖,

since, we have that xn → x0, then for every t ∈ I

lim
n→∞

sup
−r≤h≤t

‖xn(h)− x(h)‖= 0.

Then, τ(.)xn → τ(.)x0. Now, we can apply the Convergence Theorem (see for
instance [2], Theorem 1.4.1), which completes the proof.

Now, we prove the local existence theorem:

Theorem 3.2. If hypotheses H(A) and H(F) hold and if ψ ∈ C0, then there
exists d ∈ I and a mild solution u∗ ∈C([−r,d],E) of (P).

Proof. Let ε > 0 be a given number and let us consider the closed unit ball

B∗ := Bε(x∗),

where x∗ ∈C([−r,T ],E) is the function defined by

x∗ = ψ on [−r,0] and

x∗(t) = ψ(0), t ∈ I.

Let
B = {τ(t)x : x ∈ B∗, t ∈ I}.
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Clearly B⊂C0. Indeed B is a bounded subset of C0, because for every t ∈ I and
x ∈ B∗

‖τ(t)x‖ = sup
s∈[−r,0]

‖τ(t)x(s)‖

= sup
s∈[−r,0]

‖x(t + s)‖

≤ sup
h∈[−r,T ]

‖x(h)‖

≤ ‖x∗‖+ ε.

Thanks to condition H(F)(2), we have

‖F(s,z)‖ ≤ µB(s), for every z ∈ B and a.e. for s ∈ I,

where µB is the function defined in H(F)(2).Also, since the evolution operator
K is strongly continuous on ∆, then there exists a natural number N such that

‖K(t,s)‖L (E) < N for all (t,s) ∈ ∆. (1)

Now, we can choose d1 ∈ (0,T ] such that

N
d1∫
0

µB(s)ds≤ ε/2. (2)

Since the evolution operator K is strongly continuous on ∆, then there exists
d2 ∈ (0,T ] such that

‖(K(t,0)−K(0,0))ψ(0)‖ ≤ ε/2 for all t ∈ [0,d2] (3)

Take d = min(d1,d2). Now, consider the multifunction

Γ : C([−r,d],E)→P(C([−r,d],E)) such that

Γ(x) = {y ∈C([−r,d],E) : y = ψ on [−r,0] and

y(t) = K(t,0)ψ(0)+
t∫
0

K(t,s) f (s)ds, f ∈ S1
F(.,τ(.)x)}

From the assumption H(F) it is clear that S1
F(.,τ(.)x) is nonempty. It is obvious

that a function x ∈C([−r,d],E) is a mild solution of the set of (P) on [−r,d] iff
x ∈ Γ(x). So, we have to show that Γ has a fixed point.

In order to apply Theorem (2.1) we will follow the following steps:



114 A. G. IBRAHIM - A. M. SOLIMAN

Step 1: Γ is closed.
To prove that Γ is closed, i.e. the graph of Γ is closed, consider the sequence

(xn,yn) in Graph(Γ) such that (xn,yn)→ (x,y), our aim is to prove that

y ∈ Γ(x).

Let ( fn) be an arbitrary sequence such that fn ∈ S1
F(.,τ(.)xn)

. We want to prove
that the set { fn : n ≥ 1} is semicompact. So, we first prove that the set { fn :
n ≥ 1} is integrably bounded. Let Ω = {τ(t)xn : t ∈ I,n ≥ 1}. Since (xn) is a
convergence sequence, then, as we prove in Lemma (3.1), the sequence (τ(t)xn)
is convergent. Then, Ω is bounded in C0 and from H(F)(2) we have

‖ fn(t)‖ ≤ ‖F(t,τ(t)xn)‖ ≤ µΩ(t) a.e. on I.

Hence, the set { fn : n≥ 1} is integrably bounded. Second, the set { fn(t) : n≥ 1}
is relatively compact a.e. on I since from H(F)(3) we have for a.e. t ∈ I

α({ fn(t)}∞
n=1) ≤ α(F(t,{τ(t)xn}∞

n=1))
≤ k(t)α({τ(t)xn(0) : n≥ 1})
= k(t)α({xn(t) : n≥ 1}),

since for a.e. t ∈ I the sequence (xn(t)) is a convergent sequence, then α({xn(t) :
n≥ 1}) = 0.Then, the set { fn : n≥ 1} is semicompact. From Lemma (2.3), the
set { fn : n ≥ 1} is weakly compact in L1(I,E). So, we can assume w.l.o.g. that
fn

w→ f in L1(I,E). By Theorem (2.5), we have G fn → G f . Then applying
Lemma (3.1),

y = ψ on [−r,0] and

y(t) = K(t,0)ψ(0)+G f , f ∈ S1
F(.,τ(.)x), t ∈ [0,d]

Hence, y ∈ Γ(x).
Step 2: Γ has compact convex values.
Clearly, Γ has convex values. So, we will prove that Γ has compact val-

ues. Let x ∈ C([−r,d],E) and consider the sequences (zn) in Γ(x) and ( fn) in
S1

F(.,τ(.)x) such that

zn = ψ on [−r,0] and

zn(t) = K(t,0)ψ(0)+G fn, t ∈ I.

As in step 1, we can prove that the set { fn : n ≥ 1} is semicompact. So, w.lo.g.
it converges weakly in L1(I,E). Then, (G fn) converges in C(I,E). Then, (zn)
converges in C([−r,d],E). Then, Γ(x) is relatively compact. Since, Γ(x) is
closed, then it is compact.
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Step 3: Γ is condensing on bounded sets with respect to the well-defined,
monotone, nonsingular and regular MNC ν in the space C([−r,d],E) defined
by (see [14])

ν(Z) = max
D∈∆(Z)

β (D),

where Z is bounded subset of C([−r,d],E) and ∆(Z) is the collection of all
denumerable subsets of Z and β is the real MNC defined as

β (D) = sup
t∈[−r,d]

e−Lt
α({φ(t) : φ ∈D}),

where L > 0 is a constant chosen such that

q := 2N sup
t∈[0,d]

t∫
0

e−L(t−s)k(s)ds < 1.

To prove that Γ is condensing on bounded sets with respect to ν , let Z ⊂
C([−r,d],E) be a bounded set such that

ν(Γ(Z))≥ ν(Z),

we want to prove that Ω is relatively compact. Since ν is regular, it is enough
to prove that ν(Ω) = 0. From the definition of ν , there is a denumerable set
D = {yn : n≥ 1} ⊂ Γ(Ω) such that

ν(Γ(Z)) = β (Z).

For each n≥ 1, let xn ∈ Z such that yn ∈ Γ(xn). This means that

yn = ψ on [−r,0] and

yn(t) = K(t,0)ψ(0)+G fn, fn ∈ S1
F(.,τ(.)xn), t ∈ [0,d].

From H(F)(3) we have for a.e. s ∈ [0,d]

α({ fn(s) : n≥ 1})≤ α(F(s,{τ(s)xn : n≥ 1}))
≤ k(s)α({τ(s)xn(0) : n≥ 1})
= k(s)α({xn(s) : n≥ 1})
≤ eLsk(s) sup

ξ∈[−r,d]
e−Lξ

α({xn(ξ ) : n≥ 1})

= eLsk(s)β ({xn : n≥ 1}) = η(s).
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Then, invoking to Lemma (2.7) we get

α({G fn(t) : n≥ 1})≤ 2N
t∫
0

η(s)ds

= 2N
t∫
0

eLsk(s)β ({xn : n≥ 1})ds

≤ 2Nβ ({xn : n≥ 1})
t∫
0

eLsk(s)ds.

On the other hand,

β ({xn : n≥ 1})≤ ν(Z)≤ ν(Γ(Z)
= β (D)
= β ({yn : n≥ 1})
= sup

t∈[−r,d]
e−Lt

α({yn(t) : n≥ 1})

≤ sup
t∈[−r,0]

e−Lt
α({yn(t)}∞

n=1)+ sup
t∈[0,d]

e−Lt
α({yn(t)}∞

n=1)

= sup
t∈[−r,0]

e−Lt
α({ψ(t)})+ sup

t∈[0,d]
e−Lt

α({G fn(t)}∞
n=1)

≤ sup
t∈[0,d]

e−Lt2Nβ ({xn : n≥ 1})
t∫
0

eLsk(s)ds

= 2Nβ ({xn : n≥ 1}) sup
t∈[0,d]

t∫
0

e−L(t−s)k(s)ds

= β ({xn : n≥ 1})q.

Since q < 1, we get
β ({xn : n≥ 1}) = 0

Consequently,
ν(Z) = 0

Step 4: Let
H = {τ(t)xd : x ∈ B∗, t ∈ [0,d]},

where xd is the restriction of x on the interval [0,d]. We want to prove that Γ

maps H into itself.
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Let D = Γ(H) and y ∈ D. Then there is x ∈ H such that y = Γ(x). Then,

y = ψ on [−r,0] and y(t) = K(t,0)ψ(0)+G f , f ∈ S1
F(.,τ(.)x), t ∈ [0,d].

Using (1), (2) and (3), for a.e. t ∈ [0,d] we have

‖y(t)− x∗(t)‖ = ‖K(t,0)ψ(0)+
t∫
0

K(t,s) f (s)ds−ψ(0)‖

≤ ‖(K(t,0)−K(0,0))ψ(0)‖+
t∫
0

‖K(t,s)‖L (E)‖ f (s)‖ds

≤ ε/2+N
d1∫
0

µB(s)ds Since τ(s)x ∈ B

≤ ε

2
+

ε

2
= ε,

which proves that y ∈ H.
Now, apply Theorem (2.1) to Γ : H →PCK(H), which completes the proof.

The next theorem shows that under a stronger condition on F , we obtain a
global existence result.

Theorem 3.3. If hypotheses H(A), H(F)(1),H(F)(3) and instead of H(F)(2)
we have

H(F)(2)′ there exists a function γ ∈ L(I,R+) such that for every g ∈C0

‖F(t,g)‖ ≤ γ(t)(1+‖g(0)‖) a.e. on I.

hold and if ψ is continuous, then the set of mild solutions S(ψ) of (P) is a
nonempty subset of the space C([−r,T ],E).

Proof. Let x∗ be a function defined by

x∗ = ψ on [−r,0] and

x∗(t) = ψ(0), t ∈ I.

Let L > 0 be a real number such that

q∗ := max
t∈I

N
t∫
0

e−L(t−s)
γ(s)ds < 1,
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and ε > 0 be a given number such that

((N +1)‖ψ(0)‖+N‖γ‖L(I,R+)))(1−q∗)−1 ≤ ε,

Also, we consider the following norm in the space C([−r,T ],E) defined by

‖x‖∗ = sup
t∈[−r,T ]

e−Lt‖x(t)‖

Clearly, this norm is equivalent to the uniform norm. We denote the closed ball
in the space (C([−r,T ],E),‖.‖∗) with center at x∗and radius ε by B∗.

In order to apply Theorem (2.1), let Γ be a multifunction defined by

Γ : C([−r,T ],E)→P(C([−r,T ],E)) such that

Γ(x) = {y ∈C([−r,T ],E) : y = ψ on [−r,0]

and

y(t) = K(t,0)ψ(0)+
t∫
0

K(t,s) f (s)ds, f ∈ S1
F(.,τ(.)x)}

Similarly, as in the previous theorem, Γ is closed with compact convex values
and is condensing on bounded sets with respect to well defined, monotone, non-
singular and regular MNC ν in the space C(I,E). So, it is sufficient to prove
that Γ maps B∗ into itself.

Let x ∈ B∗ and y ∈ Γ(x). Then we can write

y = ψ on [−r,0] and

y(t) = K(t,0)ψ(0)+
t∫
0

K(t,s) f (s)ds, f ∈ S1
F(.,τ(.)x), t ∈ I.

Then,
e−Lt‖y(t)− x∗(t)‖ ≤

≤ e−Lt‖K(t,0)‖L (E)‖ψ(0)‖+ e−Lt
t∫
0

‖K(t,s)‖L (E)‖ f (s)‖ds+ e−Lt‖ψ(0)‖ ≤

≤ e−LtN‖ψ(0)‖+ e−Lt
t∫
0

Nγ(s)(1+‖x(s)‖)ds+ e−Lt‖ψ(0)‖ ≤

≤ (N +1)‖ψ(0)‖+N‖γ‖L1(I,R+) + e−LtN
t∫
0

γ(s)‖x(s)‖ds =
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= (N +1)‖ψ(0)‖+N‖γ‖L1(I,R+) +N
t∫
0

e−L(t−s)
γ(s)e−Ls‖x(s)‖ds≤

≤ (N +1)‖ψ(0)‖+N‖γ‖L1(I,R+) +N‖x‖∗
t∫
0

e−L(t−s)
γ(s)ds≤

≤ (N +1)‖ψ(0)‖+N‖γ‖L1(I,R+) + εq∗ ≤ ε.

which proves that y ∈ B∗.
Now, apply Theorem (2.1) to Γ : B∗→PCK(B∗), which proves that the set

of mild solutions S(ψ) of (P) is nonempty.

The next theorem gives some topological properties of S(ψ):

Theorem 3.4. Under the conditios in Theorem (3.3), the set of mild solutions
S(ψ) of (P) is compact subset of the space C([−r,T ],E).

Proof. To prove that the set of mild solutions S(ψ) of (P) is compact, By Propo-
sition (2.2), it is enough to prove that S(ψ) is bounded.

Since ψ is continuous on [−r,0], then it is bounded on [−r,0]. Also, let
x ∈ S(ψ). Then, we have for every t ∈ I

‖x(t)‖ ≤ ‖K(t,0)‖L (E)‖ψ(0)‖+
t∫
0

‖K(t,s)‖L (E)‖ f (s)‖ds, f ∈ S1
F(.,τ(.)x)

≤ N‖ψ(0)‖+N
t∫
0

γ(s)(1+‖τ(s)x(0)‖)ds from H(F)(2)′

≤ N‖ψ(0)‖+N
t∫
0

γ(s)(1+‖x(s)‖)ds

≤ N(‖ψ(0)‖+‖γ‖L1(I,R+) +
t∫
0

γ(s)‖x(s)‖ds).

Invoking Gronwall’s inequality, we get

‖x(t)‖ ≤ N(‖ψ(0)‖+‖γ‖L1(I,R+))e
N‖γ‖L1(I,R+) = M,

which completes the proof.
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