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NEFNESS OF ADJOINT BUNDLES FOR
AMPLE VECTOR BUNDLES

HIDETOSHI MAEDA

Let £ be an ample vector bundle of rank r > 2 on a smooth complex
projective variety X of dimension »n. This paper gives a classification of pairs
(X, £) whose adjoint bundles Kx + det € are not nef in the case when r =
n—2.

1. Introduction.

Let £ be an ample vector bundle of rank r on a smooth complex projective
variety X of dimension n. Ye and Zhang investigated the nefness of the adjoint
bundle Kx + det& and proved the following

Theorem 0.1. ([9], Theorem 1). If r > n + 1, then Kx + det & is always nef.

Theorem 0.2. ([9], Theorem 2).Ifr = n, then Kx+det € is nefunless (X, £) =
(P, Ops (1)®").

Theorem 0.3. ([9], Theorem 3). Ifr = n — 1, then Kx +det & is nef except the
following cases.

(1) (X, &) = (P, Op (H®CD).
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(2) (X,&) = (P, Op(2) @ Op (1)),

(3) X = Q", a smooth hyperquadric in P**!, and £ = O@n(l)eB(””l).

(4) There is a vector bundle F on a smooth curve C such that X = Pc(F) and
Er = Op-1 (1®D for any fiber F(Z P~ 1) of X — C.

Moreover, when r = n — 2, Zhang proved the following

Theorem 0.4. ([10], Theorem 1.1). If r = n — 2, then Ky + det € is nef except
the following cases.

(1) There exists a birational morphism [ : X — Z and the exceptional locus
of f is a divisor F such that (F,&p) = (P"!, Ope-1 (1)®"=D), £ is the
contraction morphism of F (blowing-down of F') to some smooth point on
Z.

(2) There exists a surjective morphism f : X — W such that dimW = 1 or
2 and the generic fiber F is a smooth projective variety. F is either P"™!,
P2, or a hyperquadric.

3) X =P", Q" or a Del Pezzo manifold.

If we compare Theorems 0.1, 0.2 and 0.3 with Theorem 0.4, Theorem 0.4
does not seem a satisfactory result due to the lack of descriptions of £ in some
cases. The purpose of this paper is to give a complete description of pairs (X, &)
whose adjoint bundles Ky +det £ are not nef in the case when r = n—2, and to
improve on the Theorem 0.4. The precise statement of our result is as follows:

Theorem. Let £ be an ample vector bundle of rank r > 2 on a smooth complex
projective variety X of dimension n. Ifr = n — 2, then Kx + det & is nef except
the following cases.

(1) (X, &) = (P, Ops (1)8#-2)y,

(2) (X,&) = (P, Op« (2) ® Ops (1)®0—9),

(3) (X, &) = (P", Op=(3) @ Op (1)203),

@) (X, &) = (P, Opi ()% @ Opr (1)),

(5) (X,&) =(Q", Ogr (1)%¢~D),

6) (X, €)= @Q", Ogr (2) @ O (1)),

7 (X, )= Q4S® Og+(2)), where S is a spinor bundle on Q.

(8) There exists an effective divisor E on X such that

(E,Ep) = (P", Opr (1))
and that Og(E) = Opn-1(—1).

(9) X is a Fano manifold of index n — 1 with Pic(X) = Z and £ = L®"~2,
where L is the ample generator of Pic(X).
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(10) There is a vector bundle F on a smooth curve C such that X = Pc(F) and
Ep = Op-1 (D®D for any fiber F(Z P* 1) of X — C.

(11) There is a vector bundle F on a smooth curve C such that X = Pc(F) and
Er = Opr-1(2) ® Opn-1 (1)@ for any fiber F(= P"~1) of X — C.

(12) There is a surjective morphism f : X — C onto a smooth curve C such
that any general fiber F of f is a smooth hyperquadric Q"= in P* with
Er = OQH—I(l)Ga(n—2).

(13) There is a vector bundle F on a smooth surface S such that X = Pg(F)
and Er = Opn2 (1)@= for any fiber F(ZP"2) of X — S.

The idea of my proof comes from the investigation of ample vector bundles
with special zero loci (see [4], Section 3).

The present paper was prepared when I was visiting the University of Milan
in the fall of 1994. I would like to thank the Italian CNR and the JSPS for
financial support.

After the first version of this paper was written, Professor M. Andreatta sent
me his joint preprint [2] with M. Mella, in which they have proved a very similar
result. Their method is different from mine and is based on the Theorem of [1].

I would like to express my gratitude to the referee for improving the original
theorem as well as for the other suggestions.

2. Preliminaries.

In this paper varieties are always assumed to be defined over the complex
number field C. We use the standard notation from algebraic geometry. The
words “vector bundles” and “locally free sheaves” are used interchangeably. The
group of line bundles on X is denoted by Pic(X). The tensor products of line
bundles are denoted additively. The pull-back i*£ of a vector bundle £ on X by
an embedding i : Y < X is denoted by £y. The canonical bundle of a smooth
variety X is denoted by Kx. A smooth projective variety X is called a Fano
manifold if its anticanonical bundle — Ky is ample. For a Fano manifold X, the
largest integer which divides —Kx in Pic(X) is called the index of X.

A polarized manifold is a pair (X, L) consisting of a smooth projective
variety X and an ample line bundle L on X. A polarized manifold (X, L) is
said to be a scroll over a smooth variety W if (X, L) = (Pw(F), H(F)) for
some ample vector bundle F on W, where H (F) is the tautological line bundle
on the projective space bundle Py (F) associated to F. A polarized manifold
(X, L) is called a Del Pezzo manifold if Kx = (1 —n)L, where n = dim X.

Let X be a smooth projective variety of dimension n and Z;(X) the free
abelian group generated by integral curves on X. The intersection pairing gives
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a bilinear map Pic(X) x Z;(X) — Z and the numerical equivalence = is
defined so that the pairing ((Pic(X)/ =) ® Q) x (Z;(X)/ =) Q) — Q
is non-degenerate. The closed cone of curves N E(X) is the closed convex cone
generated by effective 1-cycles in the R-vector space (Z;(X)/ =) Q R. L €
Pic(X) is called nef if the numerical class of L in (Pic(X)/ =) ® R gives a non-
negative function on NE(X) —{0}. Let Z be a 1-cycle on X. We denote by [Z]
the numerical class of Z in (Z;(X)/ =) @ R. A halfline R = R [Z](R; =
{x eR | x > 0}) in NE(X) is called an extremal ray if

(1) KxZ <0, and

(2) if z1, 20 e NE(X) satisfy z; + z2 € R, then z1, 22 € R.

A rational curve [ on X is called an extremal rational curve if (—Kx)l <n -+ 1
and R, [/] is an extremal ray. Let

NEX)t ={zeNE(X) | Kxz > 0}.

Then we have the following basic theorem.

Theorem 1.1. (Cone Theorem). Let X be a smooth projective variety. Then
NE(X) is the smallest closed convex cone containing NE(X)t and all the

extremal rays:

NE(X)=NEX)" + ZR;,
Where the R; are extremal rays of NE(X) for X. For any open convex cone U
containing N E (X)* — {0} there exist only a finite number of extremal rays that
do not lie in UU{0}. Furthermore, every extremal ray is spanned by a numerical
class of an extremal rational curve.

For the proof, we refer to [5], Theorem 1.5. We need also the well-known
Lemma 1.2. Let £ be an ample vector bundle of rank r on a rational curve C.
Then c1(E) >r.

Let X be a smooth projective variety. If R is an extremal ray, then its length
[(R) is defined as follows.

[(R) := min{(—Kx)C | C is a rational curve such that [C] € R}.

We note that 0 < /(R) < dim X + 1 from Theorem 1.1 and the definition of
an extremal rational curve. Let £ be an ample vector bundle of rank r on X
and (X, £) the set of extremal rays R such that (Kx + det&)R < 0. Then it
follows from Theorem 1.1 that the set (X, £) is finite. For any extremal ray R
in (X, £) we define a positive integer

A(X,E, R) = (—Kx — det)C,
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where C is an extremal rational curve such that (—=Kx)C = I(R). If Q(X, &) is
non-empty, then we define a positive integer

A(X, &) = max{A(X,E, R) | Re Q(X, &)}

Suppose that A(X, £) = 1. Then for any extremal ray R in (X, £) there exists
an extremal rational curve C such that (Kx + det&)C = —1. Let

(1.3) m = min{(det £)C | C extremal rational curve with,
(Kx +det&)C = —1}.

Then m > r by Lemma 1.2. Set
(1.4) L =(m—1)Kx+mdetf.

Then we have the following
Proposition 1.5. L is ample and Kx + mL is not nef.

For the proof, we refer to [8], Proposition 3.5. We note that its proof is valid
without assuming the spannedness of £.

3. Proof of the Theorem.

Let £ be an ample vector bundle of rank » = n — 2 > 2 on a smooth
projective variety X of dimension n. Assume that Ky + det &£ is not nef. Then,
since Ky + det & is not non-negative on NE(X) — {0}, by the cone theorem 1.1
we can find an extremal ray R with (Kx + det&)R < 0, and so Q(X, &) # 0.

Q.1 If A(X, £) > 2, then it follows from [10], Proposition 1.1’ that (X, &)
is one of the following

2.1.1) (X, &) = (P*, Op (1)®~2)),

(2.1.2) (X, E) = (P*, Ops (2) ® Ops (1)),

(2.1.3) (X, &) = (Q", Ogr (1)),

(2.1.4) There is a vector bundle F on a smooth curve C such that X =

Pe(F) and Ef = Op-t (1)®=? for any fiber F(Z P"~!) of X — C.

(2.2) From now on, we assume that A(X, £) = 1. In this case we can
construct an ample line bundle L on X and a positive integer m > r = n — 2
such that Ky + mL is not nef by Proposition 1.5. Since n =r +2 > 4, we use
[3], Theorems 1, 2, 3 and 3’ to see that (X, L) is one of the following
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(2.2.1) (X, L) = (P", Op:(1)).

(22.2) (X, L) = (Q", Ogn (1)).

(2.2.3) (X, L) is a scroll over a smooth curve C.

(2.2.4) There exists an effective divisor E on X such that (E,Lg) =

(P"~!, Op»-1(1)) and that Ky + (n — 1)L is trivial in Pic(E).

(2.2.5) (X, L) = (P, Om(2)).

(2.2.6) (X, L) is a Del Pezzo manifold with Pic(X) = Z

(2.2.7) There is a surjective morphism f : X — C onto a smooth curve

C such that any general fiber F of f is a smooth hyperquadric Q”" in P"

with LF = (9@1 1(1)

(2.2.8) (X, L) is a scroll over a smooth surface S.
In case (2.2.1) m mustbe n,n — 1, or n — 2 because Ky + (n + 1)L is nef. In
case (2.2.2) or (2.2.3) m must be n — 1 or n — 2 because Kx +nL is nef. In case
(2.2.4),(2.2.5), (2.2.6), (2.2.7), or (2.2.8) m must be n—2 because Kx+(n—1)L
is nef. We proceed now by cases.

(2.3) Case (2.2.1).
Take an arbitrary extremal rational curve C with (Ky + detE)C = —1.

Then (det£)C = (—Kx)C —1 > n because —Kx = Op-(n+1),andsom > n
by (1.3). Thus m = n. By (1.4),
ndetf =L — (n— 1)Ky
= Op(1) + (n — DOpe(n + 1)
= Opr (n?),

and hence det& = Ops(n). Let & = £ @ Op«(1). Then &£’ is an ample vector
bundle of rank n — 1, and Ky + det&’ = Op-. Sincen = r +2 > 4, we
use [7], Main theorem 0.3 and Proposition 7.4 to see that £’ is either Op« (3) &
Opn (1)20=2) or Opa (2)92 @ Op« (1)®*=3. Thus £ = Op(3) ® Opr (1)9@=3)
or Op (2)®? @ Op- (1)9=9 | So we are in case (3) or (4).

(2.4) Case (2.2.2).

Take an arbitrary extremal rational curve C such that (Ky+det&)C = —1.
Then, since ~Ky = Og~(n), we have (det€)C = (—Kx)C —1 >n —1,s0
that by (1.3) m = n — 1. By (1.4), :

(n—1detE =L —(n—2)Kyx
= Og: (1) + (n — 2)Ogr (n)

= O ((n — 1)?),
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and so det = Ogr(n — 1). Set & = £ @ Ogr(1). Then &’ is an ample
vector bundle of rank n — 1 such that Kx + det&’ = Og. It follows from [7],
Main theorem 0.3 and Proposition 7.4 that £’ is either Ogn (2) © Ogr (1)®"~2
or (S ® Og:(2)) & Ogs(1), where S is a spinor bundle on Q*; hence £ =
Ogr (2) ® Ogr (1)®-3 or § ® Ogr(2). Consequently we are in case (6) or (7).

(2.5) Case (2.2.3).

We can write (X, L) = (Pc(F), H) for some ample vector bundle F on
C, where H is the tautological line bundle on P¢(F). Let  be the projection
X — C. Then Kx = —nH +a*(K¢c + det F), so Kr +nHp = OF for every
fiber F(= P*~1) of w. Now, by (1.4),

L=(m-1)Kx+mdeté,
hence
Op = Kp+nHp = Kp +n(m—1)Kp +nmdetEr
=nm(Kr +det&p) + (1 —n)Kr.

Thus m(K g +det Eg) = Opr-1(—(n— 1)) and K +det £ is not nef. By virtue
of Theorem 0.3, & is either Opn-1 (1)~ or Opn-1(2) ® Opn-1 (1)@= In the
former case, since Kr + det&p = Op-1(—2), we have 2m = n — 1. Recalling
that m > n — 2, we have 2(n — 2) < n — 1. Therefore n < 3, contrary to the

hypothesis that n = r + 2 > 4. Consequently £ = Opr-1(2) @ Opr-t (1)®¢=3
for any fiber F and we are in case (11).

(2.6) Case (2.2.4).
Since Kx + (n — 1)L is triyial in Pic(E), we have

(Kx)e +(n—1)Lg = O,
and hence (Kx)g = Ops-1(1 — n). Moreover, by the adjunction formula,
Op(E) = Kg — (Kx)g = Opr-1(=n) — Opr-1 (1 — 1) = Opn-1(=1).
Since (n — 2)det€ = L — (n — 3)Kx by (1.4), we have

(n—2)detég = Lg — (n —3)(Kx)E
== O]Pn—l(l) -+ (n - 3)01[»:—1(71 - 1)
= Opr1((n — 2)%),
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so detEg = Opn-1(n — 2). This implies that £ is a uniform bundle of splitting
type (1,...,1). Thus &g = Opn-1(1)®@=2 by virtue of [6], p. 55, Theorem
3.2.3 and we are in case (8).

(2.7) Case (2.2.5).

Take an arbitrary extremal rational curve C with (Kx + det€)C = —1.
Then (det&)C = (—Kx)C — 1 = 4 since — Ky = Op(5), and som > 4 by
(1.3). But this is impossible because in this case m = n — 2 = 2.

(2.8) Case (2.2.6).

Wehave Kx+(n—1)L = 0. Let M be the ample generator of Pic(X) = Z.
Then there exists a positive integer a such that L = aM. Thus Ky + a(n —
1)M = 0. Since the index of the Fano manifold X is less than or equal to
dim X+1,wehavea(n—1) < n+1. Supposethata > 2. Then2(n—1) < n+1,
and so n < 3, contrary to assumption. Thus a = 1 and L is the ample generator
of Pic(X). This implies that X is a Fano manifold of index n — 1.

Since m = n — 2 in this case, we have by (1.4)

(n—2)deté =L — (n—3)Ky,
hence '
(n—2)detE =L+ (n—3)n— DL = (n-2)>L.

Thusdet€ = (n—2)L. Now let £ "= E@L.Then £ is an ample vector bundle
of rank n — 1 and we have Ky + det £’ = Oy, so that by [7], Main theorem 0.3
and Proposition 7.4 we see that £ = L®®»~D_and hence that £ = L®"-2 We

are in case (9).

(2.9) Case (2.2.7).

By (1.4),
n—-2) d¢t8 =L — (n—3)Kx.

Let F be any general fiber of f. Then its canonical bundle is the restriction of
K X Thus

(n—2)detégp =Lp — (n—3)Kp
= OQn—l (1) + (l’l - 3)0@:—1 (n - 1)
= Og-1((n — 2)%),

so det&r = Ogn-1(n — 2). Since EF @ Op(—1) is trivial on any line on Q"1,
Er ® Op(—1) is trivial by [8], Lemma 3.6.1. Thus £p = Ogm-1(1)®"~2 and
we are in case (12).
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(2.10) Case (2.2.8).
We can write (X, L) = (Ps(F), H) for some ample vector bundle F on S,

where H is the tautological line bundle on Ps(F). Let 7 be the projection X —
S.Then Ky = —(n—1)H +7*(Kg+detF),and so Krp + (n — 1) Hp = Op
for any fiber F(= P"~2) of w. We have by (1.4)

L=m-3)Kx+ (n—2)deté&,

hence

Or=Kr+m—DHr=Kr+ n—1)(n—3)Kp+ (n—1)(n —2)detEf

= (n— 1)(n —2)(Kr + det&r) + (2 — n)Kp,

ie., (mn—1)(n—2)(Kp +detEf) = (n — 2)Kr. Thus Kr + det EF is not nef.
Applying Theorem 0.2 to £, we have £ = Opr-2(1)®"~2 and we are in case
(13). This completes the proof.

(1]
[2]

3]

(4]

[5]
[6]
(7]

[8]

REFERENCES

M. Andreatta - E. Ballico - J. A. Wisniewski, Vector bundles and adjunction, In-
ternat. J. Math., 3 (1992), pp. 331-340.

M. Andreatta- M. Mella, Contractions on a manifold polarized by an ample vector
bundle, preprint.

T. Fujita, On polarized manifolds whose adjoint bundles are not semipositive, Al-
gebraic Geometry, Sendai, 1985 (T. Oda,ed), Adv. Stud. Pure Math., vol.10, Ki-
nokuniya, Tokyo, 1987, pp. 167-178.

A. Lanteri - H. Maeda, Ample vector bundles with sections vanishing on projective
spaces or quadrics, Internat. J. Math. (to appear).

S. Mori, Threefolds whose canonical bundles are not numerically effective, Ann.
of Math., 116 (1982), pp. 133-176.

C. Okonek - M. Schneider - H. Spindler, Vector Bundles on Complex Projective
Spaces, Progr. Math., vol.3, Birkhduser, Boston, 1980.

T. Peternell - M. Szurek - J. A. Wisniewski, Fano manifolds and vector bun-
dles, Math. Ann., 294 (1992), pp. 151-165.

J. A. Wisniewski, Length of extremal rays and generalized adjunction, Math. Z.,
200 (1989), pp. 409-427.



82 HIDETOSHI MAEDA

[91 Y.-G. Ye - Q. Zhang, On ample vector bundles whose adjunction bundles are not
numerically effective, Duke Math. J., 60 (1990), pp. 671-687.
[10] Q.Zhang, A theorem on the adjoint system for vector bundles, Manuscripta Math.,
70 (1991), pp. 189-201.

Graduate School of Mathematics,
Kyushu University,

4-2-1 Ropponmatsu, Chuo-ku,
Fukuoka 810 (JAPAN)



