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A STUDY PARAMETRIC ON MULTIOBJECTIVE
NONLINEAR PROGRAMMING PROBLEMS

MOHAMED ABD EL-HADY KASSEM

This paper deals with multiobjective nonlinear programming problems,
with parameters in the objective functions, without differentiability assump-
tions on the considered functions. The stability notions like the solvability set
and stability sets of the first, second, third and fourth kind have been defined
and analysed, without differentiability, for this problem.

1. Introduction.

The qualitative analysis of some basic notions like the set of feasible para-
meters, the solvability set and stability sets of the first and second kind were in-
troduced in [4],[5]. Also, in [6],[7] the stability sets of the third and fourth kind
for a general class of convex parametric programming problems were defined
and analysed. The relations between multiobjective programming problems and
parametric programs have been studied in [2],[3]. In [1] the parametric multiob-
jective programming problems without differentiability was studied.

In this paper, the solvability set and the stability sets of the first kind, second
kind, third kind and fourth kind for multiobjective nonlinear programming prob-
lems without differentiability assumptions and with parameters in the objective

functions are introduced.
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2. Problem Formulation.

Consider the following multiobjective nonlinear programming (MONLP)
problem:

P(A): minFi(x, ) =[fi®) +rh&)], i=12,...,m,
subjectto M = {x € R" | gj(x) <0, j=1,2,...,k},

where f;(x), hi(x), i = 1,2,...,m and g;j(x), j = 1,2,...,k are real
valued functions convex on M and R*, respectively, and A € R™ is any vector

parameter.
The efficient solution of P (A) can be characterized in terms of the optimal

solutions of the following scalarization of problem P (1):
i | .
P(w,A): min Y wi[fi(x) + rihi(0)]
i=1
subjectto x € M,

m
where w; >0,i =1,2,...,mand w = (wg, Wy, ..., Wn) #0, ) w; =1.
i=1

3. The solvability set.
Definition 1. The solvability set of problem P(A), which is denoted by B, is
defined by

B = {'(w, 1) € R*™ | problem P (A) has efficient solutions } .

Let

E(w,)) = {X* eR"| D wi[ (™) + Aihi(x)] =

i=1
= ilélhl} ; w; [fi (x) + Aihi (x)]}.

!

Theorem 1. The set E(w, \) is convex and closed.
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Proof. Convexity. Let x!,x2 € E(w, 1), then the convexity of M and the
convexity of the functions f;(x) and h;(x),i = 1,2,...,m, yields

wi[firxt + A= »)xD) + Lhi(yx' + (1= y)xH)] <

i=1

<y L wAGD + A + (=) ) wilfiGD + Ak G =
:iléiﬁr};wi(ﬁ(x) Fahi(x), O0<y <l

Thus yx! + (1 —y)x2e E(w, A).
Closedness. Let {x¥} € E(w, A) be a sequence of points which converges to Xx.
Then

m m
k N — e
Z wi[ £ (FF) + 2ihi(F)] = min B Jwi[£i () + hihi ()],

i=1

3

m

}:w, [£iG5) +aihi (2] = min wi £i () + Aihi(x)].
® V=1 i=1 ,

From the finiteness of the sum and continuity of the functions f;(x) and h;(x),
i=1,2,...,m,we have

}m: ([ (lim x%) + di (Jim x9)] Z [£iGE) + Mk ()] =

i=1
m

}:w, fi(®) 4+ Mihi(0)]-

l=1

Thus x € E(w, A).
Theorem 2. If the set E(w, }) is bounded, then the set B is convex.

Proof. From the boundedness and closedness of E(w, A) (Theorem 1) and the
continuity of the functions f;(x) and h; (x), i = 1,2,...,m,exist x € E(w, A)
with f,(x) < fi(x% and B;(X) < h (xo) vx0 e E(w A). Assume that
(w!, A1), (w?, A?) € B, then there are x!, x* € E(w, A) such that

S wllA) +ahGeh] = mip Y wi (£ + 3o
i=1 i=1

and
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3

S WA + A2 (D] = = min Y Wi fie) + Ahi(x)].

i=1 i=1

Then for each y €[0, 1] we get

Y vw + A = WH[LE + @A+ 1 - yrDh@)] <

i=1

<y) w [fi(f) + (A + (L= yADR(D)] +

i=1

+(1-y) Z [£:®) + A+ A = »AD(E)] =
- 1 2 1 2
min ;(yw, + (1 =w)[fi@) + WA + 0 - PADh(x)]
Hence
[yw! + (1 —y)w?), Al + (1 = y)AH)]eB
Theorem 3. The set B is closed. )
Proof. Consider the sequence {(w*, A*)} < B converging to (w® A%). If
(w®, A%) ¢ B, then we can find
Do wAEY + AR 0] > Y wl[ £ + A0 ()],
i=1 i=1
for this inequality we consider the neighbourhood
Nwo.r0y (8) = {(w, Ml llw—w’) <6 and Jr— 2% <8

Z [HG) + 1k (0)] > Z [fi0) + At 0]

of (w® A%, 8 > 0. As we have {(w*, AF)} — (w9, 1°) there exists j such that
(wf, )»j) € N(wo,,\o) (8) and

> w60 + 4] > S ul (A6 + 4 o],
i=1 i=1

contradicting that (w/, A/) € B.
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4. Stability set of the first kind.

Definition 2. Suppose that (w, 1) € B with a corresponding efficient solution
% € E(w, A); then the stability set of the first kind of P () corresponding to X,
which is denoted by K (X), is defined by K;(X¥) = {(w,A) € B | x € E(w, }) is
an efficient solution of P(1)}.

Theorem 4. The set K{(x) is convex.
Proof. Let (w!, A1), (w?, A%) € K1 (%), then

m

Y wA® +Am@] < Y wi[f@ +AE)] VreM,
i=1

i=1

and

S W[ f® + Bh@D] < D wHfi) +Ahi(x)] YxeM.
i=1 i=1
Therefore,

S w! + A= w)[AE + @A+ 0= ADE)] <
i=1

<Y w! + A= wH[AE + A+ L= ADhi@)]
=1

1 .
VxeMand 0 <y <l1,ie,
[(yw!+ 1 —p)w?), A+ A —pyrD)] e Ki(D),

0 < y < 1, and hence the result follows.
Theorem 5. The set K1(X) is a cone with vertex at (w, A) = (0, 0).
Proof. Itis clear that (w, ) = (0, 0) € K{(x). Suppose that at (w, 2) e Ki(%):
then

m _ ) m »

SO wm[fiE + Rk D] < ) Wil i)+ Ahi(x)] VxeM,

i=1 i=1

and then

Wi fi(x) + Xihi(x)] VxeM,
1 .

5

wi[ fi (%) + Aihi(D)] <

i=1 i

NE

where w; = yW;, Aj = vii,y =0, ie.,
5,2 = (v, yA) e K1(F) Vy 20,

and hence the result follows.
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5. Stability set of the second kind.
Definition 3. Suppose that (w, 1) € Band J C {1,2,...,k}. Let o(w, A, J)
denote the side of constraints defined by

o(W; A, J)={xeR" | g;(x) =0, for jeJ; and g;(x) <0, for j ¢ J},

then the stability set of the second kind of P(A) corresponding to o (w, X0,
denoted by Ky (o (w, A, J)), is defined by

Ky(o(@, A, J)) = {(w,A) € B | Ky(o(w, A, J))
contains an efficient solution of P(1)}.

Proposition 1. If the functions f;(x) and h;(x), i = 1,2,...,m, are strictly
convex on M, and J; # Jo, then Ko(o (w!, AL, J1)) N Ky (o (w?, A2, 1)) = @.

Proof. Suppose that (0, 1) € Ko(o (w!, AL, J1)) N Ky (o (w?, A2, J2)), then
E@MNNow! AL ) #£0 and E@,2) No(w? A%, L) # 0,

which is a contradiction since E (&, A), by the assumption, is only a single point.

Remark 1. From the Definitions 2 and 3 we have

Ky(o(w, 2, 1) = Ki(x"),

ieD
where

D= {i | x* €o(w, A, J) is an efficient solution of P(/\)} .

Corollary 1. If D is a finite set, then the set Ky(6(w, A, J)) U {0} is a closed
cone. ,

Proof. Follows from Remark 1 and Theorem 5.
Theorem 6. The set Ko(o(w, A, J)) U {0} is star shaped [4], with the point
(w, A) = (0, 0) as its common visibility point.

Proof. Let (w,)) € Ky(o(w, A, J)), then from Remark 1, (w, X) € K1 (x*)
for at least one index s € D. Then (yw, yA) € K;(x*) U {0}, y = O from
the convexity of K;(x*),i.e., (yw, yA) € Ky(o (w, A, J)), and hence the result

follows.
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Remark 2. We have, fgom Definition 3, that
K26 @, 4, 1)) = Kalo (', A, 7)),
1€T
where 4
={i|J < JandG(w, 4, J) istheclosure of o (w, 4, )}.

Theorem 7. If fi(x) and h;(x),i = 1,2, ..., m, are continuous and strictly
convex on M, and K>(o (w, A, J)) C B U {0}, then

Ka(o (W, &, J)) C Ka2(6(w, A, J)) U {0},
where K»(o(w, x, D)) a_nd Ko(o (W, A, J)) are, respectively, the boundary and
the closure of K2(o (w, A, J)).
Proof. Ifeither K7 (o (w, X, J)) is closed or K, (o (w, X, 1)) = ki (%), the result
is clear. ) :
Let (w*, A*) be a boundary point of K»(o (w, A, J)); if (w*, A*) = (0, 0) the re-
sult is clear. Otherwise, choose a sequence (w®™, () > (0, 0) which converge
to (w*, A*) such that (w®, A®) € K (o (W, A, J)) with corresponding efficient
solutions x™ € K, (o (w, A, J)). Then

Z w(") f,(x(")) + )\'(”)h (x(n)) Z w(") fz(x) + )\(n)h ()C)]

i=1 i=1
Yx € M and n. Therefore,
m m
lim Y w[£G") + 4"k E"M)] < lim Zl w [ £ @) + AV hi(x)],

n—>00 4

Vx € M. From the finiteness of the sum and the continuity of f; and A;,i =
1,2,...,m, it follows that:

S wi £ Clim x®) + A7h(lim x™)] < D wi £ + Ak @]Vx e X,
=1 n—>00 n—00 —

1.e.,

S iA@Y + A hGN] < Y0 wifiG) +AThi()]
i=1 i=1

Vx e M where lim x™ = x* exists since BU{0} is closed, and it is an efficient
n—o0

by the fact that E(w*, A*) = {x*}. Therefore, x* € & (W, A, J) and hence the
result follows.
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6. Stability set of the third kind.

Definition 4. Suppose that the problem P () is solvable with a corresponding
efficient solution X, x* is any feasible point, and & > 0; then the stability set of
the third kind of P(X), which is denoted by K3(w, A, x*, 8), is defined by

K3(, &, x%,8) = {(w, 1) € R™™ | |y (x*, w, A) — ¥ (%, b, V|| < 8},

where

Yo, w, ) = wi[ i) + Ak (x)].
i=1

Lemma 1. The set K5(w, A, x*, 8) is convex.

Proof. Let (w!, A1), (w2, A%) € K3(w, X, x*8), then

™, wh A v @ 0, Dl <8, Iy E*, w’AY) — g, w, D) < 8.

Therefore,
A=l e*wh, A =& w ) < (1-y)8
and
ylIlvee*, w2 A% — (&, 0, )] <ys, O0<y <l
Hence,

I ™, yw' + (1= y)w?), Al + (1 = p)AH) — v &, 0, )| <
vl wh Al — & w, )+ (1 -y v, w A2 -y @& o, L) <
yS+(1—y)s=8.
Then

[(yw' + A = »)w?), A + 1 - y)AD)] e K3, &, x*, 5),

and hence the result follows.
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m
Now, under the assumption ¥ (x, w,%) = Y w;[fi(x) + Aihi(x)], the

i=1
determination of subset from the set K3(w, A, x*, §) is given as follows:

Jw @t w,2) - VG B D] =
N wz [fix™) + Aihi(x “] - u—’i[fi(f)'*'xihi(f)]u=

3

Wi [ fi (%) + Xk (6*)] +

MSE_

| Zw, [f:(%) + A (x%)] -

i=

1
—

i

+ S wi[ i) + ki )] — Z@f[ﬁ@”f”“(’”]“:

Ms LN

ii

(w; — ;) fi (") + Z(w,x — WA )i (x%) +

.~
Il
—_

> .@»

+YnA6 - @]+ 3w NCR RN EN] [E=

1

> {lhwi = @il 1Lfi N+ lwidi = Wik || 1 ) +

)

1=

F LG G = i@+ kil s ) = BB} < 8,

> {w = il 1L G+ llwiki = ial s )1} <

i=1
m

Z 1B 1 %) = FEN+ 1Dkl s %) = B D1}
If I (x*) denotes the set

1%y = {(w,») e R¥™ | Y {llwi — @illll i &9 +

i=1

+ lwiki — wiki | G < e},
then I (x*) C K3(w X, x*,8). In order that 1 (x*) # @, then itis clear that either

8 is large or Z | f;(x*) — fi(X)] and Z |l i (x*) — h; (%) are sufficiently small.
i=1

Remark 3. We note that 7 (x*) C K1(X).
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7. Stability set of the fourth kind.

Definition 5. Suppose that the problem P (1) is solvable at (w, ) € B with a
corresponding noninferior solution x, and § > 0, then the stability set of the
fourth kind of P (), which is denoted by K4(w, A, 8), is defined by

Ky, X,8) = {(w,\) e R*™ | Ix e M, || (x; w, A) — Y (%, W, M| < 8}.

Lemma 2. The set K4+(w, A, 8) is convex in A and closed in x.

Proof. The first part of the proof is clear from Lemma 1 at any feasible point x €
M. To prove the second part, let X, € K4(W, A, 8), n = 1, 2,...,be asequence
of points which converges to ¥; then ||y (%,, w*, A*) — ¥ (X; w, M)|| < 8, and
¥ (Xn, w*, A*) — ¥ (X, w*, A*)|| = 0 as n — oo. Therefore,

I (&, w*, A%) — ¥ (%, w, V)| =
”’#(f, w*> )"*) - W(fn, w*, A'*) + W(fn’ w*> )‘-*) — w(iv LD, X” <
I (X, w*, &%) = ¥ (%, w*, A + 1Y (R, w*, A%) — Y (X, W, V)| < 6,

which means that X € K4(w, X, 6). Hence, the result follows.
Remark 4. It is clear that K3(, A, x*, 8) C K4(w, X, §).
Following the same steps as those for determining I (x*), it is clear that if
we define V = UMI(x), then V C K4(w, A, §).
xXe

A simple expression for V can be deduced in the following case. If f;(x) and
hi(x) are construction mapping on M, i.e., there exist a proper fraction g such
that || f(x*) — f(X)Il < gllx — X|| and proper fraction p such that ||h(x*) —
h(x)|| < pllx — x|}, then using Cauchy’s inequality [8], it follows that

S oAzl — @l + Yilwids - @iil| <

I=1

5= lIx = E{qlw | + plwal} = o).

i=1
where Z; = || fi(x®)Il, ¥i = [h: (x|l
If I’(x) denotes the set

1’(x>={<w,x>eR2'"aZ Zillw; — il + Villwis = didill} < B0},

i=1
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vV = U I'(x).
xeM
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