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DECIDING SET-THEORETIC FORMULAE WITH
THE PREDICATE FINITE BY A TABLEAU CALCULUS

DOMENICO CANTONE - ROSA RUGGERI CANNATA

In this paper we give a decidable tableau calculus for the unquantified
theory MLSSF, which involves in addition to the constructs of Multilevel Syl-
logistic, namely € (membership), = (equality), < (set inclusion), U (binary
union), N (binary intersection), and \ (set difference), also finite enumerations
{-, -+, -} and the predicate Finite.

The notions of U -hierarchy and U-realization of a graph w.r.t. given U-
sets, as well as some of their properties, are discussed and used to show the
soundness and the completeness of the tableau calculus presented.

1. Introduction.

In the last few years, the decision problem for various classes of set-theore-
tic formulae has been studied very actively as part of a project aimed at the desi gn
and implementation of a set-theoretically based proof verifier with an inferential
core comprising, among others, decision procedures for sublanguages of set the-
ory (see [7]). Most theoretical results originated from such research have been
collected in [3]. Some of these procedures have already been implemented using
ad hoc techniques within the system ETNA, a set-theoretically based verification
system under development at the University of Catania and New York University

(cfr. [4]).
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Recently, in [6] we started an investigation aimed at the discovery of de-
cidable tableaux calculi for solving the satisfiability problem for fragments of
set theory and related areas.

The advantages of implementing decision procedures by means of decid-
able tableaux calculi over ad hoc methods are manyfold: ~

e tableaux naturally maintain information about proof attempts; such infor-
mation can be used either to reconstruct proofs or, in case of formulae which
are not theorems, to construct counter-examples (this can be particularly
useful in didactic applications, such as in the use of computers for teach-
ing logic or set theory courses);

e tableaux calculi can easily be extended by new rules, thus allowing, in
favourable cases, smooth generalizations to more expressive decidable
fragments; _

e implementation of decidable tableaux calculi can quite easily be equipped
with heuristics and various kinds of control to the user as, for instance, the
possibility of temporarily deactivating some of the rules or of introducing
new rules. '

The search of decidable tableaux calculi continues in this paper, where in
particular we will give a decidable tableau calculus for the unquantified theory
MLSSF, which involves in addition to the constructs of Multilevel Syllogistic,
namely € (membership), = (equality), C (set inclusion), U (binary union), N
(binary intersection), and \ (set difference), also finite enumerations {-, ---, -}
and the predicate Finite.

We recall that a decision procedure for MLSSF has already been given in
[5], though along different lines. Moreover, [1] solves the satisfiability problem
for the extension of MLSSF with rank and cardinality comparison and [2] solves
the decision problem for a restricted quantified theory extending MLSSF.

2. Preliminaries.

After introducing the von Neumann standard hierarchy of sets, we define
the notions of U -hierarchy and of U-realization of a graph w.r.t. given U -sets.
Finally, we relate these two concepts by proving some properties of realizations

with urelements.

Such notions have been first introduced in [6], where it was shown how
one can test formulae involving the iterated membership predicate € * for the
existence of models relative to a I/ -hierarchy and then transform such models in

others not involving urelements.
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Here we will slightly modify the definition of realizations in order to take
care of the new predicate Finite.

2.1. Hierarchies of sets, assignments, and models.

The satisfiability problem dealt with in the present paper refers to the von
Neumann standard cumulative hierarchy V of sets defined by:

Vo =60
Vy+r1 = P(V,), foreachordinal «,
Vi = U, V. for each limit ordinal A,

where P(S) is the powerset of S.

Let us introduce some basic terminology. The rank of a set s, denoted rk s,
is the least ordinal o such that s € V,, i.e. 5§ € V,4+1. By w we denote the
least infinite ordinal, namely the set of natural numbers. Sets having finite rank,
i.e. belonging to V,,, are said hereditarily finite sets. For every set s and every
ordinal o, we define s by transfinite recursion as follows:

sO =y
s@th = (@ for each ordinal «,
s® =, 5%, for each limit ordinal A.

Then we have easily:
Lemma 2.1. For any set s and ordinal o, rk s = rk s + a.

A (standard) assignment over a collection of variables V is any map from V
into V. An assignment M is said to be injective if Mx # My for any two distinct
variables x, y. A set theoretic formula ¢ is said to be satisfiable by an assignment
M over its variables if the formula resulting from ¢ by substituting in it sets Mx
in place of free occurrences of x and by interpreting set theoretic operators and
predicates according to their standard meaning is true. An assignment which
satisfies a given formula ¢ is said to be a model for ¢. A formula ¢ is said to
be injectively satisfiable if it has a(n) injective model.

As a technical tool, it will result to be convenient to introduce a collection
U = {v; : i € I'} of special individuals which are not sets, called urelements. In
such a case, we define the I{-hierarchy V¥ as follows:

Vg’ =U
V§‘+1 = Vg’ U P(Vﬁ‘) , for each ordinal «,

VY =, VY, foreach limit ordinal A.
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Notice that the standard von Neumann universe is a #-hierarchy. Elements
of a U{-hierarchy will be called U/ -sets. In particular, I/-sets not belonging to U
will be said to be proper. U-assignments, i-models and the concept of (injec-
tive) U-satisfiability can be defined in the most natural way.

2.2. Realizations.

Let G = (N, €) be adirected acyclic graph and let (V, T') be a partition of
N. Also, let (T1az, Trin) be a partition of T. We will make use of the following
notation: for any x € N, we put

G(x)={yeN:yE€x).

For any given family {u, : ¢ € T} of non-empty proper U-sets, with U a
collection of urelements, we define the concept of U -realization as follows.

Definition 2.1. The U-realization of G relative to {u; : t € T} and to the parti-
tions (V,T) and (Tins, Trin), is the U-assignment R“ over V.UT recursively
defined by:

RYx={RYz:zeVUT and zE€x} U Urexnrer,,, e for xin V;

(1) N |
RY; :{R”z:zeVUTandzet}U{u,} fortinT.

Observe that R¥ is well defined by (1) above, since the graph G is acyclic.
We can define a notion of height, for all x € V, by putting

V-height(x) =
_{O, ifygx,forallyev
max{V-height(y) : ye V Ay€x}+1, otherwise.

Next we introduce the concept of V -extensionality.

Déﬁnition 2.2. Let G = (N, €) be adirected graph and let V< N. G is said
to be V -extensional if for any two distinct v, v eV we have G(v) # G(V), i.e.
there exists w € N such that w € v <= w ¢ v,

- The following lemma states important properties of I/ -realizations.

Lemma 2.2, Let G = (V UT, €) be a directed graph, with VT = @. Also,
let {u; : t € T} be a family of U-sets. Assume that

(a) € is acyclic;

(b) G is V-extensional,;
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(c) us # upy and u, Nuy = B, for all distinct t,t' € T;

(d) u, & uy, foreveryt,t' €T,
(e) u; # R¥v and RYv ¢ u,, forallt € T and v e V U T, where RY is the

U-realization of G relative to {u, : t € T} and to the partitions (V, T) and
(Ttng> Trin)-

Then

(i) RY isinjective, i.e. R¥v % RYV for all distinct v,v' € VU T;

(ii;) RYve RYY &= veEV, forallv, v eVUT;

(iiz) RYx = RYyURY7 &= G(x) =G UG®R), forx,y,zeV;

(ii3) R%x = RYyNRYz &< G(x)=GO)NG{R), forx,y,z€V;

(iis) RYx = RYy\ RY7 &= G(x) =G\ G®©), forx,y,z€V;

(iis) R = {RYy1,....,R%%} < G& = {y1,..., m}, for x,
Vi,..., €V, withk > 0.

Remark 2.1. Notice that we can always satisfy conditions (c), (d), and (e) by
putting u, = {v,;}, where the v,’s are pairwise distinct urelements, for r € T'.

3. A decision procedure for MLSSF.

In this section we introduce the unquantified fragment of set theory denoted
by MLSSF and subsequently we prove its decidability.
The language MLSSF contains:
(a) adenumerable infinity of individual variables x, y, z, . . .;
(b) the predicate symbols €, =, C, Finite;
(c) the operators N, U, \, {-};
(d) the constant @ (empty set);

(e) parenthesis (to form compound terms);
(f) the logical connectives —, A, V, =, <> (to form compound formulae).

It can easily be seen that for decidability purposes we can limit ourselves to
considering only conjunctions of literals each of which has one of the following

types (where the constant ) may occur).

X €Yy, x ¢y, (‘ z=xUy, z=xNy,

2
@) z=x\y, x={y1,...,y}, Finite(x), —Finite(x).

We will call such formulae normalized conjunctions of MLSSF.
We characterize the meaning of the constant @ by assuming that any nor-
malized conjunction of MLSSF contains the literal @ = @ \ @ and by treating

then @ as another variable.
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The following theorem expresses the injective satisfiability of MLSSF nor-
malized conjunctions in terms of certain combinatorial conditions on realiza-
tions. Such characterization will then be turned into a decision procedure by fur-
ther imposing an upper bound on the cardinality of the set of nodes T'.

Theorem 3.1. Let ¢ be a normalized conjunction of MLSSF with variables V.
Then @ is injectively satisfiable in the standard universe of von Neumann (with
no urelements) if and only if there exist:
e a finite set of nodes T disjoint from V,
o a partition (Tr,r, Trin) of T, and
e adirected acyclic graph G = (N, €), with N =V UT,
such that if RY is a U-realization of the graph G relative to given pairwise
distinct singletons of urelements and to the partitions (V, T) and (Tins, TFin),
then the following conditions are satisfied:
(a) RY is an injective U-model of all literals in ¢ not involving the predicate
Finite; o .
(b) if Finite(x) occurs in ¢ then t ¢ x, for all t € T,.
(c) if —Finite(x) occurs in @ then t € x, for some t € Ting.
Proof. We first prove that the conditions of the theorem are sufficient. Thus,
let ¢ be a normalized conjunction of literals of the above types involving the

variables V = {x1, ..., x»}. Assume that we have
e asetT ={n,...,t}ofnodesdisjoint from V with a partition (T7,f, Trin),
and '

e adirected acyclic graph G = (N, €),with N =V UT,
such that conditions (a), (b), and (c) of the theorem are satisfied, with respectto a
U-realization RY relative to given pairwise distinct singletons u, of urelements,

forteT.
For each 1; € T, we define a set i, (with no urelements) by putting

3) wy = {{i, 0“7} 1 j < ).
Since € is acyclic, we can give the following recursive definition

Mx={Mz:2€VUT and2€x}U U,eynrer,, ¥ forxin V;

4) ~
Mt ={Mz:zeV UT and z €t} U {u,;} fortinT.

Notice that the realization M is an assignment in the standard universe of
von Neumann with no urelements: In order to apply Lemma 2.2 to the realization
M, we need to verify the following items:

(A) G is V-extensional,
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(B) u; #uyforalli #j,i,j€f{l,...r}
(C) u; ¢ up, foreveryt,t' €T}
(D) w, Nuy =@, for all distinct ¢,¢’' € T,
(E) u;, # Mv,forallteT andveV UT,;
(F) Mvéu, foreveryteT andveV UT.
Concerning (A), since by assumption RY is injective, then for all distinct
v, v € V we have RYv # RY¥V/, from which G(v) # G(v'), proving the V -
extensionality of G.
Concerning (B) and (D), observe that, by construction, foreachi = 1,...,r,
the set i, contains only elements of type {i, 3“*®} and also that if {i, 3@/} =
{i", @@+i0} theni =i’
Concerning (C), it is enough to observe that all sets u,, have the same rank w - 2.
Finally, in order to prove that (E) and (F) hold, it suffices to verify that for
allve VUT eitherrk Mv > w -2 or rk Mv < w. To this end, notice that if
Mt e T{Mv}, for some ¢t in T, then obviously rk Mv > @-2. On the other hand,
if Mt ¢ T{Mv}, forall t in T, then by induction on V-height(v) it can easily be
shown that rk Mv < w.
Thus, from Lemma 2.2, M is a model for all literals of ¢ not involving the
predicate symbol Finite.
It remains to show that M also models correctly all literals in ¢ of type Finite(x)
and —Finite(x). If Finite(x) occurs in ¢, then by (b) the set | ,z, A 1€ Ty U, is
empty, so that Mx is finite. If —Finite(x) occurs in ¢ then by (c) we have that
there exists ¢ € Ty,s such that t € x. Since by definition #, is infinite, it follows

that Mx is infinite too.
This completes the sufficiency part of the proof of Theorem 3.1.

Next we prove that the conditions stated in Theorem 3.1 are also necessary.
We will need the following definition and lemma.

Definition 3.1. Given an injective assignment M over a collection of variables
N, the membership graph of M relative to N is the graph Gy = (N, € i),
where € u is the relation over N defined by

WE v < MweMv, forallv,weN.

Lemma 3.1. Let M be an injective assignment over a collection N of variables
and let Gy = (N, € i) be its membership graph relative to N. Then

(a) €y is acyclic;
(b) if Mx = My U Mz then G(x) = G(y) UG(2), forx,y,z€V;
(c) if Mx = My N Mz then G(x) = G(y) NG(z), forx,y,z€V;
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(d) if Mx = My \ Mz then G(x) = G(y) \ G(), forx,y,z€V;
(e) if Mx = {My, ..., My} then G(x) = i, ...} for x, yq, ...

N, with k > 0.

Proof. (a)isanimmediate consequence of the definition of € 5 and the acyclic-
ity of the membership relation € . Properties (b), (c), (d), and (e) follow easily

from the definition of € ;. O

Now let us assume that the normalized MLSSF conjunction ¢ is satisfied
by a given injective model M and let V = {x,..., x,,} be the collection of

variables occurring in ¢.

We begin by defining M also over a new collection T of variables.
In what follows, we say that a set T distinguishes a collection S if T Ns
% Ns’, for any two distinct s, s’ € §. Consider the following procedure.

Procedure 1
Y =0,
Done = {J;
forveV do

pickd € (Mv' \ Mv) U (Mv \ MV');

L= u{d);
Done := Done U {v};
end if;
end for;
return ¥;;

end procedure 1

if X1 does not distinguish {Mv' : v’ € Done}U{Mv)} then
let v' € Done such that My N T = MvN %;;

Let X; be the set returned by Procedure 1. By induction on the number of
iterations of the for-loop, it can easily be shown that, at termination, the set 2
distinguishes {Mv : v e V},ie. ((Mv\ Mv')U (Mv' \ Mv)) N T, # {4, for all

distinct v, v’ € V. Moreover, |Z;| < |V]| — 1.
Let {o1,...,0} =X\ {Mv:veV).
Next, consider the following procedure.

Procedure 2
¥ i=f;
for weV do
if Mw is infinite then

Iy =% U{o};
end if;
end for;
return X;;
end procedure 2

pick o € Mw\ (Z; U(J{Mv:veV and My s finite});
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Let ¥, be the set returned by Procedure 2. Obviously, ¥; N ¥, = ¢ and
|, < |V]. Moreover, if —Finite(x) occurs in ¢ then Mx N %, # @ and if
Finite(x) occurs in ¢ then Mx N X, = @.

Let {o%+1,...,0r} = %,. In correspondence with each o;, for i =
1,...,r,weintroduce anew variable #; and extend M over the newly introduced

variables by putting

Mt =0;,, for i=1,...,r

Putalso T = {1, ..., tr}, Trin = {11, RN tk}, and TI,,f = {tk—Ha ey l,-}.

Let now Gy = (V U T, €) be the membership graph of M relative
to V U T. Plainly, by construction, conditions (b) and (c) of Theorem 3.1 are
satisfied. Moreover, by Lemma 3.1 (a), Gy is acyclic.

Let RY be a U-realization of the graph G, relative to given pairwise dis-
tinct singletons of urelements and to the partitions (V, T) and (Ty,f, Trin). In
order to complete the proof of the theorem we need to verify that R is an injec-
tive U -model of all literals in ¢ not involving the predicate symbol Finite. We
will accomplish this by verifying the hypotheses of Lemma 2.2.

We already have that € j is acyclic. Let us show that G, is V -extensional.
If v,v" € V are two distinct variables, then, by the construction carried out
in Procedure 1, there exists w € V U T such that Mw € ((Mv \ Mv') U
(Mv' \ Mv)). Hence we€ yv <= w ¢ mV’, proving the V -extensionality
of Gp. The remaining conditions of Lemma 2.2 follow immediately from
the particular choice of the U-sets involved in the definition of RY, as already
observed in Remark 2.1. Hence RY is an injective U{-assignment. Moreover,
since M satisfies ¢, then Lemma 3.1 and (ii; )~(iis) of Lemma 2.2 yield that R¥
satisfies all literals of ¢ not involving the predicate symbol Finite.

This completes the proof of Theorem 3.1. W

As a by-product of the preceding proof, we also have that the set T satisfies
the following cardinality relation

IT| <2|V].

Thus we can state the following

Corollary 3.1. Theorem 3.1 continues to hold even if the additional restriction
|T| < 2|V| is required.
The preceding corollary implies trivially the following theorem.

Theorem 3.2. The satisfiability problem for normalized conjunctions of MLSSF
is NP-complete.
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Notice that Theorem 3.1 can be easily generalized to handle the ordinary
satisfiability problem also for extended normalized conjunctions of MLSSF
which, in addition to clauses listed in (2), can involve clauses of types x = y
and x # y too. This is stated in the following theorem, whose proof is

immediate.

Theorem 3.3. Let ¢ be an extended normalized conjunction of MLSSF. Then
@ is satisfiable if and only if there exists an equivalence relation ~ over the
variables of ¢ such that

® ~ agrees with clauses in ¢ of typesx =y and x # y, i.e. ifx =y (resp.
X F#y)isingthenx ~y(resp. x #* y);

o § is injectively satisfiable, where @ denotes the result of identifying in ¢
equivalent variables.

By combining Theorems 3.2 and 3.3, we obtain

Corollary 3.2. The satisfiability problem Jor extended normalized conjunctions
of MLSSF is NP-complete.

4. Hintikka sets for MLSSF.

Let H be a set of literals of the following types:

5 C=FUY 2=xNy, z=x\y, x={y, ..., %) x=y,
X #y, X€y, xX¢&y, Finite(x), —Finite(x)

(extended MLSSF literals) containing the literal @ = @ \ @, let (V,T) be a
partition of the variables occurring in H such that @ € V, and let (Trng, Trin)
be a partition of T.

Assume that V U T is linearly ordered by < in such a way that

(6) v<t forallveV,treT and @ =minV.
<

Let ~, be the minimal equivalence relation among variables induced by the
literals of type x = y in H. For each variable x occurring in H put

repry(x) = min{y : y ~,_ x},
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where the minimum is taken with respect to the given ordering < (!). Extend
homomorphically the map repry to formulae, sets of formulae, and sets of vari-

ables, and put accordingly

~ ~

H =repry(H), V =repryg(V), ? =repry(T).

Also, put
f/‘—‘T\V, ?[{‘inZTFin\f;v i\:’I’nfz’Yv}”f\f;

Notice that if a ~, -class contains any variable from V/, its representative

will certainly be an elementin V. o
We now associate a graph Gy = (VUT’, €y) to H as follows.

Definition 4.1. Let H, (V,T), H, V, T be as above. The canonical graph of
H relative to (V, T) is the directed graph Gy = (V UT’, € ), where x € gy
holds whenever the literal x € y is in H.

Next we define the notions of V-based MLSSF set and of MLSSF-Hintikka
set relative to a given partition (V, T) of variables.

Definition 4.2. A set H of extended MLSSF literals is said to be V -based, where
V is a set of variables such that © € V, if all variables occurring in literals of
pex = yUy,x =yNy,x =y\y,y = {x,...., 5} (withk > 1),
—Finite(x) present in H arein V.

Definition 4.3. Let H be a set of extended MLSSF literals of type (5), let (V, T)
be a partition of the variables in H, and let (Ty,s, Tr;,) be the partition of T

defined by
Tpin ={t €T : theliterals t € v and Finite(v) are in H , for some v eV},
Ting =T \ Trin .

Then H is said to be an MLSSF-Hintikka set relative to (V, T') if the following
saturation rules are satisfied.:

Sl. ifz=yUy andx €y arein H, then x €7 isin H;

S2. ifz=yUy andx ey arein H, thenx €z isin H;

S3. ifz=yUy and x €z arein H, then either x €y or x €y’ isin H;

(1) In what follows, given a partition of type (V, T), we will always assume that@ e V
and that there is also an ordering relation < satisfying condition (6), even if this is not

explicitly stated.
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S4. fz=yNy and x €z are in H, thenx €y and x € y' are in H;
S5 ifz=yNy,x€y andxey arein H, then x €7 is in H;
S6. ifz=y\y,andxezarein H, thenx €y andx ¢ y arein H;
S7. ifz=y\y,xey, andx ¢ y' arein H, thenx €z isin H;
S8 ify = {x1,...,x) isin H for some k > 1, then x; € y is in H for all
ie{l,..., k};
SO ify={x1,....,xx}and z € y are in H for some k > 1, then z = x; is in
H for someie{l,..., k};
S10. ifx = y and ¢ are in H, then @1 and @y are in H OF
S11. for each unordered pair of distinct variables x,y in V U T, either x = y
isin H, orx # yisin H;
S12. for each unordered pair of distinct variables x, y, withx in VU T and y
inT, either x €y isin H, or x ¢ yisin H;
S13. foreach x # y in H, with x,yinV, eitherwex and w ¢ y are in H, or
w ¢ x and w €'y are in H, for some variable w in V U T,
S14. if —Finite(z) is in H, then there exists w, € T",’nf such that w, € z isin H.

Remark; By saturation rule S10, for every MLSSF-Hintikka set H we have
always H C H.

Lemma4.1. Let H be an MLSSF-Hintikka set relative to (V, T) and let Gy be
its corresponding canonical graph. We have:

(a) if no membership chain x €X1€ - €x,€x (foranyn > 0)isin ﬁ, then
G HNis acyclic; B

(b) if H does not contain any pair of complementary literals then Gy is V-
extensional.

Proof. Concerning (a), clearly to any cycle x € yx; - -- € H¥x € gX in Gy there
corresponds acyclex ex; € --- €x, € x of membership relations in H.
Concerning (b), assume that H does not contain pairs of complementary
literals. Let x, y be two distinct variables in V. By saturation rule S11, x # y
or y # x occurs in H, so that by saturation rule S13 there exists a variable
w €V UT’ such that w € x and w ¢ y are in H or w ¢xandw€ya£ein
H . Observe that, by hypothesis, if w ¢ yisin H,thenw €y cannot be in H, so
that w ;Z #Y. Thus w'€ yx if and only if w EZ HY, proving the V -extensionality

OfGH. O

Next we introduce the concept of consistent MLSSF -Hintikka set.

(2) @3 denotes the result of substituting in ¢ all occurrences of y by x.
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Definition 4.4. An MLSSF-Hintikka set H relative to (V, T) is said to be con-

sistent if the following consistency rules hold:

Cl. H contains no complementary literals X and —X, and

C2. H contains no semantic contradictions of type X # X, or X € x; € -+ €
Xn €X, forn > 0.

We now have the following theorem.

Theorem 4.1. Every consistent MLSSF-Hintikka set H relative to a partition
(V, T) such that H is V-based is satisfiable.

Proof. Let H be as in the hypothesis and let Gg = (V U i’ , € ) be its
canonical graph. Notice that from Lemma 4.1, G g is acyclic and V -extensional.

We prove that H is injectively satisfiable in the standard universe of von
Neumann with no urelements by qpplymg Theorem 3.1, So let RY be the U-
realization of G relative to (V, T”), to the partition (Tlnf, TFm) of T intro-
duced in Definition 4.3, and to given pairwise distinct singletons of urelements.

We need to show that RY injectively satisfies all literals in H not involving
the predicate Finite and that conditions (b) and (c) of Theorem 3.1 are satisfied.
By Lemma 2.2(i), RY is injective. Moreover, from saturation rules S1—S14, we

have easily:

Gyp(x) =Gyg(y)UGg(z),if x = y Uz occurs in ﬁ;
Ga(x) =Gg(y)NGg(z),if x = y Nz occurs in ﬁ;
Gyg(x) =Gyg()\ Gu(z),if x = y \ z occurs in }7;
Gu(x)={y1,..., Y}, if x ={y1,..., y&} occurs in H.

Therefore, from (iiz)—(iis) of Lemma 2.2 and the V -basedness of H , RY satisfies
all clausesin H of type x = yUz, x =yNz,x =y\z,and x = {y1,..., ¥}
Moreover, from (ii; ) of Lemma 2.2 it follows that also clauses in H of typex € y,
x ¢ y, are satisfied by RY.

Finally, by consistency of H and by saturation rule S14, if —Finite(z) is
in H, then w, € gz, for some w, € T,’nf. Moreover, by the definition of 77,
and Tr;n, if Finite(x) isin H, then tg ux,forallt e ﬁ’n #» proving respectively
conditions (b) and (c) of Theorem 3.1. Thus, from the same theorem it follows
that there exists an injective model M of H in the standard universe of von
Neumann. This model can obviously be extended to a model M’ of H by putting

Mx = M(repry(x)), forxeVUT,

thus completing the proof of our theorem. U
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S. A decidable tableau calculus for MLSSF.

In this section we provide a tableau calculus for collections of MLSSF lit-
erals in the style of Smullyan’s analytic tableaux (cfr. [8]).

Based on the decision test for MLSSF given in the precedin gsections and on
an effective way to construct complete tableaux, it will turn out that the tableau
calculus for MLSSF is decidable and can be used as a system which provides
both counter-examples and proofs.

The rules of our tableau calculus for MLSSF are those listed in Table 1.

We begin with some definitions and terminology.

Definition 5.1. Let S be a finite collection of MLSSF literals and let Vs be the
set of variables occurring in S. An initial MLSSF-tableau for S is a one-branch
tree whose nodes are labeled by the literals in S.

An MLSSF-tableau for S is a tableau labeled with MLSSF literals which

can be constructed from the initial tableau for S by a finite number of applica-
tions of the rules (T1) — (T15) of Table 1, where rule (T13) can be applied only
to literals of type x # y, with x, y € Vs, and rule (T14) only to variables in Vs.

Definition 5.2. Let T be an MLSSF-tableau for a given finite collection S of
MLSSF literals, and let Vs be the set of variables occurring in S.
A branch ¥ of T is said to be

e strict, if no rule is used more than once on © with the same literals;

o Vs-saturated, if the collection Hy of literals in © forms an MLSSF-Hintikka
set relative to a partition (Vs, T), for some set T of variables;

o Vs-closed, if either it contains a set of literals of the formx e x; € -+ €
Xn € X, for some variables x, x1, ..., X,, with n > 0, or it contains a pair
of complementary literals X, =X, or it contains a literal of type x # x, for

some variable x;
e Vs-complete, if either it is Vs-saturated, or it is Vs-closed;

e satisfiable, if there exists a model for the literals occurring on .

T is said to be

e strict, or Vg-saturated, or Vs-closed, or Vs-complete, if such are all its

branches;
o satisfiable, if one of its branches is satisfiable.

In order to prove the soundness and completeness of our tableau calculus,
we need to show that there is an effective procedure which generates a strict Vs-
complete tableau for any finite collection S of MLSSF literals.
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’

z=yUy
X€EYy
(T1)
XxXez

z=yny
XxXez
(T4)
XEy
xey

z=y\y
X€Ey

xX¢y
(T7)
X &€z

(T10)

xFy

(T13)

S3S
M.
<

gg
M
¥

z=yUy
xey
(T2)

xez

z=yny
XEY
xey
(T5)

X€z

y={x1,..., x}

(T8)

xXiey

X €Y

(T11)
x=yIX¢y

(T14)

Finite(x) l =Finite(x)

(T3)

(T6)

(T9)

(T12)

(T15)

z=yUy
X€Ey

X€y ' X€Ey

z=y\y
xXez

xXey
xX¢y

y={x1,..., %}

zey

z=x | | z=x

xey | x¢y

—Finite(z)
Finite(y1)

Finite(y)

w; €7
W, € ¥

we & Vi
Wy # X1

Wz F Xm

Table 1: Tableaux rules for MLSSF
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Lemma 5.1. For any finite collection S of MLSSF literals, the following pro-
cedure Complete(-) constructs a strict Vs-complete tableau for S, when called

with input S.

Procedure Complete(S);
Comment: S is a finite collection of MLSSF literals.

Vs := set of variables occurring in S;
7 := initial tableau for S;
PartialSaturation (T,7T);
while there exists a non-closed branch t in 7
such that —Finite(z) occurs in t, for some variable z € Vg,
and on which rule (T15) has not yet been applied to the literal ~Finite(z) do
pick such a branch t and variable z;
ApplyRuleT15(t, 7);
end procedure.

Procedure PartialSaturation(T, ¥);
apply strictly and in all possible ways rules (T1) — (T14) on all (new) branches

of 7 which extend ¢, applying rule (T13) only to literals of type x # y,
with x, y € Vg and rule (T14) only to variables in Vg;
end procedure.

Procedure ApplyRuleT15(z, z);
Comment: t is a non-closed branch, z is a variable in Vg,

and —Finite(z) occurs in t.
add to the branch 7 the following formulae
W, €2, W; €Y1, ..., Wy & Yk Wz £ X1, ..., Wy F Xm,
where {y1, ..., e} = {v€ Vs : Finite(v) isin t} and {x},..., xp} = Vs;
PartialSaturation(T , 1);
end procedure,

Proof. Let Vg be the set of variables occurring in S. It is enough to verify that
the call Complete(S) to the above procedure builds a strict Vs-complete tableau

Ts for S in a finite number of steps.
Concerning termination, one needs to observe that the branching factor of

Ts is bounded by |Vs| and that each branch cannot involve more than O(|Vs])

newly introduced variables.
To show Vs-completeness, let ¥ be a branch of 75 and let Hy be the

collection of literals on ¥*. Assume that ¢ is not Vs-closed. Then we need to
prove that ¥ is Vg-saturated.
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Saturation w.r.t. rules S1 - S13 follows from the repeated calls to procedure
PartialSaturation (-, -), either from Complete(-) or from ApplyRuleT15(-, ).

To show also saturation w.r.t. rule S14, let z be a variable in Vs for
which the literal —~Finite(z) belongs to Hy. Then in the while-loop of procedure
Complete(-), a call is made to ApplyRuleT15(¥', z), for some initial segment 1’
of ¥. Such a call will introduce in ¢ the following literals

(7 w; €2,
@& - Wz & Y1y vves Wy & Vi
9) Wy F XLy eony Wy F# Xy
where y, ..., yx are all the variables y in Vs for which Finite(y) is in 0’ (and
therefore in ¢#) and xy, ..., x,, are all the variables of Vs.
Without loss of generality, we can assume that w, = repry, (w,;). The

inequalities (9) imply at once w, ¢ Vs. Thus, to show that w, € Ty, 7> hamely

that w, € Ty,f \ Vs, it is enough to prove that W, € Typy. Butif w, € Ty, then
the literals w, € v and Finite(v) would be in Hy, for some v € Vs, which is

impossible because of the literals (8).
Finally, notice that strictness is enforced at each step. (]

In view of the preceding result, the following theorem entails the soundness
and completeness of our tableau calculus.

Theorem 5.1. (Soundness and completness). Let S be a Jfinite collection of
MLSSF literals involving the variables Vs and let T be a Vs-complete tab-
leau for S, relative to the partition (Vs, T), for some set T of new variables.
Then § is satisfiable if and only if T is not Vs-closed.

Proof. Plainly, rules (T1) - (T14) of Table 1 are sound, as can easily be verified.
Concerning rule (T15), notice that if M is any model satisying the literals

—Finite(z), Finite(y,), ---, Finite(y) ,
then obviously
MZ\((M.)’I U"'UM)’k)U{Mxl,-n,Mxm}) #gy

where {x1,...,xn} = Vs. Therefore M can be extended over a new variable
w, in such a way as to satisfy also the literals

W €2, Wy E V1, vy We & Yy We XY, ooyt Wy 7 Xy
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Assume now that § is satisfiable. The soundness of rules (T1) — (T15) yields that
the tableau 7 is satisfiable. Let ¢ be a satisfiable branch of 7. Then, obviously,
¥ (and in turn 7") is not Vs-closed.

On the other hand, if 7 is not Vg-closed, then it has a non- Vg-closed branch
v It is easy to see that the collection Hy of the literals occurring on ¢ forms a
consistent MLSSF-Hintikka set relative to the partition (Vs, T), for a set T of
new variables. Since Hy is V- based, from Theorem 4.1 it follows that Hy is
satisfiable and, a fortiori, S is satisfiable too. 0

Lemma 5.1 and Theorem 5.1 yield readily that by coupling the procedure
Complete(-) with a closure test, one obtains a decision procedure for normalized
extended conjunctions of MLSSF. But, needless to say, this approach constitutes
just the skeleton of a decision procedure, which can be enriched with strategies
and heuristics to achieve efficiency improvements.

6. Some additional rules for MLSSF.

A heuristic which allows to shorten proofs consists in extending our ini-
tial tableau rules (T1) — (T15) with new, more powerful ones, which allow to
concentrate in a single step multiple applications of the initial rules. This is ex-
emplified by the new rules in Table 2, which allow to avoid some unnecessary
splittings.

It is an easy matter to check that the new rules (T16) — (T22) are conse-
quences of our initial rules (T1) — (T15).

7. Conclusions.

We have presented a decision procedure for the extension of MLS with finite
enumerations and the predicate Finite. We adapted such a decision procedure in
the form of a decidable tableau calculus which we proved to be both sound and
complete. A simple heuristic consisting in extending our tableau calculus with
new rules able to avoid some unnecessary splittings has been presented.

Future work will include the implementation of the decision procedure for
MLSSF in the form of a tableau calculus within the system ETNA. We also
plan to develop and implement decidable tableaux calculi for other extensions
of MLS involving various combinations of the following set constructs: Pow
(powerset), Un (unionset), x (cartesian product), n (choice function), (") (unary
intersection), etc. (cfr.[3]). Additionally, we intend to look for suitable heuristics
and to investigate the possibility to enrich (semi-)automatically a given tableau
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(T16)
Finite(®)

/

z=yUy
Finite(y)
Finite(y")

(T19)
Finite(z)

/

z=y\y

Finite(y)
(T22)

Finite(z)

z=yuUy
Finite(z)
(T17)
Finite(y)
Finite(y")

/

z=ynNy
Finite(y)

(T20)
Finite(z)

y={x1,...,x}

Finite(y)

z=yny
Finite(y')

Finite(z)

Table 2: Extra rules for MLSSF
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calculus for a fragment of set theory with new useful rules which allow to avoid
unnecessary splittings, a sort of a completion strategy in the Knuth-Bendix style.
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