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COHERENCE AND EXTENSIONS OF
STOCHASTIC MATRICES

ANGELO GILIO - FULVIO SPEZZAFERRI

In this paper areview of some general results on coherence of conditional
probability assessments is given. Then, a necessary and sufficient condition
for coherence of two finite families of discrete conditional probability distri-
butions, represented by two stochastic matrices P and Q, is obtained. More-
over, the possible extensions of the assessment (P, ) to the marginal distrib-
utions are examined and explicit formulas for them are given in some special
cases. Finally, a general algorithm to check coherence of (P, Q) and to derive
its extensions is proposed.

1. Introduction.

Given two sets of integers I = {1,2,...,l}and J = {1,2,...,m}, let
{A;, i € I} and {B;j, j € J} be two finite partitions of the certain event 2 and
consider the two families of conditional events 7y = {B;/A;, i €I, j € J}and
Fr ={A;i/Bj, i€l, jeJ}. Givenanl x m stochastic matrix P = {p;;}, we
can introduce a-coherent probability assessment on F; assigning, for each i, j,
the probability p;; to the event B;/A;. Analogously, using an m x [ stochastic
matrix Q = {qj;}, we can introduce a coherent probability assessment on F;.
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In this way, a probability assessment, denoted by (P, @), is defined on F; U 7.
However, we observe that (P, Q) is not generally coherent.

A concrete interpretation of the above partitions is obtained considering
two random variables X and Y, whose values are respectively {xi, ..., x;} and
{¥1,..., yn}, and defining A; = (X = x;)and B; = Y = yj)(ie€l, jeJ).
The problem of finding the marginal distributions of X and Y, i.e. the probabil-
ities of the unconditional events A;, B;, from the conditional ones represented
by P and Q, has been considered in [20].

The assessment (P, Q) has been considered as representing the knowledge
base of an expert system in [11], where, using the coherence principle of de
Finetti [7], the probabilistic consistency and the extension to a complete prob-
abilistic model have been analyzed. Some results on the characterization of co-
herent conditional probabilities are given in [4] and [5]. The probabilistic treat-
ment of uncertainty in artificial intelligence, based on de Finetti’s approach, has
been adopted in many papers (see for example [3], [10], [19]).

In this paper we reconsider the problem introduced in [11] obtaining further
results on coherence of (P, Q) and on its extensions to marginal distributions.
In Section 2 some preliminary results on coherence are given. We first recall a
general result, given in [18], on coherence of a conditional probability, based
on a condition introduced in [6], and we give a different proof of it. Then,
applying this result, in Section 3 we obtain a necessary and sufficient condition
for coherence of (P, Q). In Section 4 the special case of P and Q each one
having at least one positive column is considered and an explicit condition for
the existence of a coherent extension to the marginal distributions is given. The
general case is analyzed in Section 5 using a suitable partition of the matrices
P and Q. In Section 5.1 we briefly review some results on coherence of (P, Q)
obtained in [11]. Finally, a general algorithm to check coherence of (P, Q) and
to derive the marginal distributions is proposed in Sections 5.2 and 5.3.

2. Some results on coherence.

In this Section some results on coherence of conditional probability assess-
ments are considered.

Denote by K and arbitrary family of conditional events and by P a real
function defined on X. We denote by 2 and @ the certain and the impossible
events and by E the contrary of the event E. Moreover, the symbol A B denotes
the logical product of the events A and B.

Given n conditional events Ey/Hjy, ..., E,/H, belonging to X, denote by
Ci, ..., Cs the atoms generated by E;, H; (i = 1,2,...,n) and contained in
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H\U...UH,. Letting p; = P(E;/H;) (i =1, ..., n) we associate the following
loss function to the point P = (p1, p2,..., Pn)

L= iiHi(Ei — pi)%,
1

where the same symbol denotes the event and its indicator. Moreover, let
L, ..., L be the values of L corresponding to the atoms Cy, ..., Cs.

Based on de Finetti’s penalty criterion (see [7]), in [8] the real function P is de-
fined coherent if, foreveryn = 1,2,... and ¥ = {Ey/H,, ..., E,/H,} C K,
there does not exist a point (p}, p3, ..., p;) # (P1, P2, ..., pp) such that L} <
L, for every subscript h, with L} < L for at least a subscript k. Moreover,

in the same paper the generalized atoms (i, ..., Qs relative to F and P are
introduced, defining Qp = (p1, ..., ¥nn), Where

1, if C,<CEH,
(D) o =10, if C,CEH, h=1,2,...,5,

Di, lf Ch g -I_{i
and the following result is proved:

Proposition 1. The real function P defined on the class of conditional events K
is coherent if and only if, for everyn = 1,2, ... and

f: {El/Hl,...,En/Hn} EIC’

the point P = (p1, p2, ..., Pn) is a mixture of the generalized atoms relative to
F and P.

Coherence can be alternatively defined by means of the betting criterion
(see [71, [13], [14], [15], [16], [17], [21]) and it can be shown that the two
definitions are equivalent (see [8]).

We observe that the family K considered in Proposition 1 is not required
to have any algebraic property. Alternative ways to check coherence when the
family X has some particular structure can be given.

We recall that a real function P defined on £ x H, where £ is an algebra of
events and H C £ is a non empty family of events not containing @, is named a
conditional probability if the following properties are satisfied

i) P(E/H)>0and P(H/H)=1,E€&, HeH,

ii) PAUB/H)=P(A/H)+P(B/H),if AB=0,A,Bef, HeH,
iiiy P(AB/H) =P(A/BH)P(B/H), A, Be&, H, BH cH.
As well known, conditions i), ii) and iii) are not sufficient for coherence of P.
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Remark. Using the betting criterion Holzer ([14]) has proved that, when H is
an additive class, the conditional probability P is coherent.

Given a conditional probability P, the following condition, which is related
to coherence of P, has been introduced in [6] by Csdszér:

2) [1PE/ 8 =[] PE/HL),
i=1 i=1

where E; €€, H;e'H, E; C H;H;,i,and H,.; = H,.
In the same paper (Theorem 8.5) Csdszar has also proved the following propo-

sition:

Proposition 2. P sarisfies (2) if and only if there exists a conditional probability
P*, extension of P, defined on & x H*, where H* is an additive class containing
H. ' '
Remark. Proposition 2 has been proved assuming that £ is a o -algebra and P
is o-additive, but, as explicitly noted in Csdszar’s paper (Sec. 9, p. 360), the
same result holds in a finitely additive framework.

The relationship between coherence of P and Csaszar’s condition has been
considered in [18] and can be expressed by the following theorem:

Theorem 3. A conditional probability P defined on € x H, where £ is an
algebra of events and H C & is a non empty Jamily of events not containing
@, is coherent if and only if, for each n, condition (2) is satisfied.
We will give a proof of Theorem 3 based on the concept of generalized atom

(for a different proof see [1]). '
Proof. Assume that P is coherent. Given the events Ei/H;,E;/H; 1, wWith E; €
€ Hie€H, E; S HiHi41 (0 = 1,2,...,n) and H,y = Hy, let P(Ei/H;) =
Pi» P(Ei/Hi41) =¢q; (i =1,2,...,n) and denote by Qi, ..., Q; the general-
ized atoms relative to E;/Hj, Ei/Hiyrandto pj,q; (i =1,2,...,n).
From (1) wehave Qy = (ay1, .. ., ap,, bpi, ..., b)), where,fori =1,2,... n,
andh =1,2,...,s, we put

1, if C,CEH,

a =10, if CyCEH ,
pi, if C, CH,

I, if Cn CEH
bni =10, if CyCEHpy .
qi lf Ch g _Hu,'.H
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From Proposition 1, coherence of P implies that the point

(pl""’pn’ql,°'-7qn)

is a mixture of the points Q1, ..., Qy, thatis:
5 s
Pzzz)\hahi, Qi:Z/\hbhi, (i:]wza'”vn)
h=1 h=1

N
where A, > 0and ) A, =1.
h=1
Given an event A we denote by 7 (A) the set of integers A such that C, C A.

Since E; € H;H;41, we have:

Z Ap = Z Ap = pi — pi Z Ap = pi Z A,

hel(E;) hel (E; H;) hel (F) hel (Hy)

and

Z)»h= Z A =q;i — qi Z Ah = qi Z Ak,

hel(E;) hel(E;H;v1) hel (Hipy) hel(Hiy)

therefore p;S; = q; Sy+1, where S; = > A, (i=1,2,...,n) and
hel(H;)

I_Ii Pfo=1_L‘1iSi+1-

We observe that [ [, S; =[], S,+1 and, since ), §; > Z Ap = 1, there exists a
=1

subscript i’ such that Sy > 0. If S; > 0 for each i, then [l i =11, ¢, that is
2).

If instead S; = O for some i, then there exist two integers j and k, with j, k €
{1,2,...,n},suchthat §; = 0, S;4; > Oand Sy > 0, Sx41 = 0. Therefore,
since p;S; = q;Sj+1 = 0 and px S = gk Sk+1 = 0, we have g; = py = 0, which
implies (2).

Conversely, assume that (2) is satisfied. Then P can be extended to P* defined
on £ x 'H*, where H* is an additive class (see Proposition 2). We now prove
that, for each n, given the family ¥ = {E,/Hy, E;/H,, ..., E,/H,}, E; € £,
H; € 'H*, and letting P*(E;/H;) = pi, the point P = (p1, p2,..., pn) is a
mixture of the generalized atoms relative to F and P.

Consider the atoms Cy, ..., Cs generated by E;, H; (i = 1,2,...,n) and



124 ANGELO GILIO - FULVIO SPEZZAFERRI

contained in Hy = H;U...UH, and the generalized atoms Qp = (ap1, ..., Apn)
(h = 1,2,...,5) relative to F and P. Then, letting A, = P*(Ch/Hyp),
(h=1,2,...,5)itis, for each i

PY(EiHi/Ho) = Y 2, P(Hi/H)= Y hu

hel (E; H;) hel(H;)
From the relation

P*(EiH;/Ho) = P*(E;/H;)P*(H;/Ho) = p;P*(H;/Ho),

5
using (1) it follows that p; = > Anapi, i = 1,2,...,n. Therefore, from
h=1
Proposition 1, P* is coherent. Hence its restriction P is coherent too.

From Theorem 3, a useful result on coherence of P which will be used in
the next Sections is the following (see [2], Corollary 1.3):

Corollary 4. Let H = IT; U{Q}UTT,, where Ty and T1, are two partitions of 2
contained in . Then, a conditional probability P, defined on & x H, is coherent
if and only if condition (2) is satisfied for the H; ’s such that P(H;) = 0, with
Hiell,and H11 €Tl (r,s =1,2,r Z 5).

3. Coherence and extensions of (P, 0).

Before considering the problem of the extension of (P, Q), from Theorem 3
a necessary and sufficient condition for its coherence is given. :

Corollary §. Given the (I x m and m x 1) stochastic matrices P and 0, the
conditional probability assessment (P, Q), defined on Fy U Fy, is coherent if

and only if
(3) Piljlqjliz 0 PininDpingr **° Pij, Gy = Piyji9jiiy *** PineijnDinin *** PinjiDriv s

where t < min(l,m), ir€l, jeJ (k =1,2,...,t) and i, Fip, jr # Jnif
r # h.

Proof.  Corollary 5 follows from Theorem 3 extending the assessment (P, Q) to
a conditional probability P on £ x H, where £ is the algebra generated by the
family H = {A;, B;, i €1, j € J}, and showing that condition (2) reduces to
(3).

The extension of (P, @) to a conditional probability P is obtained observing
that the atoms of £ are the events A;Bj (i €1, j e J). Then, the probability
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P(E/H), for each E/H € £ x 'H, is defined using the quantities P(A; B;/H)
and the additive property, where

0, if H#AyB,
P(A;Bj/H) = { pij, if H=A
djis if H= BJ

It can be verified that P satisfies the properties i), ii) and iii) of a conditional
probability (see also [9], Example 8).

Consider E; € £, H € H, E; € HH4+1 (i = 1,...,n) with H,;,y =
H;. To avoid the trivial cases of equal factors in both sides of (2) we consider
E;,H;, H; 1 (i =1,...,n) such that E; # @ (which implies that H; H; .; # )
and H; # H;,i. Then, the possible choices for E;, H;, H;y; are H; = Ap(=
Br), Hi+1 = By(= Ap) forsome (h, k), withhel, ke J,and E; = H;H; 11 =
ApB; (i = 1,...,n). Moreover, we observe that, if the integer » is odd, being
H,.1 = H;,wecannot have H; H;+1 = A, By fori = n. Therefore, the relevant
cases for condition (2) are obtained when 7 is even and E;, H;, H;;; are such
that P(E;/H;) = pm(= qun), P(Ei/Hi+1) = qun(= pik), for some (h, k),
withhel,keJ, (i =1,...,n). Sothatin the non trivial cases condition (2),
with n = 2¢, becomes (3). Moreover, if (3) is satisfied for every ¢, with iy # iy,
Jk # Jp for k # h, then (3) is satisfied also when iy = i, or ji = j, for some
(h, k). In fact, if for instance iy # in, jx # jn fOor k # h, with the only exception
i; = i for a subscript he{2,...,1t},then (3) follows from the equalities

Dij\ vy * ** Pis_yJii Disnin = Pirjso Qjsaine, - Pizji Diviy
DPi i 9jiisg, - Picji iy = Pivjibjiic " PigpyjiDjzine

Finally, we note that it is sufficient to consider (3) for t+ < min ([, m). In
fact, observing that ¢ > min (I, m) implies i, = i, or jp = j, for at least one
pair of subscripts (A, k), it can be shown, by a similar argument as the previous
one, that the equality (3), when ¢ > min ([, m), can be obtained from suitable
equalities (3), with # < min (/, m). Therefore condition (2) is equivalent to (3)
and Corollary 5 is proved.

Remark. If the assessment (P, Q) is coherent, then, as shown in the proof of
Corollary 5, (P, ) can be extended to a conditional probability P on £ x H

satisfying condition (2). Now, from Proposition 2, P can be extended on & x H*,
where H* is an additive class containing the certain event

Q=AUAU...UA =B UBU...UB,,.
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Therefore, P can be extended to the events Ai, B; (i € 1,j € J) providing
marginal distributions of X and Y. Denoting the extension by the same symbol
P, we define f; = P(A;) and g = P(B;) (iel, jeJ). We observe that the
marginal distributions { f;}, {g;} satisfy the following linear system:

@) pifi=giig, £i20, 620, fi=>g=1 (el jeJ),

so that compatibility of (4) is a necessary condition for coherence of (P, Q).
Conversely, if (4) admits a solution {fi}, {g;}, then we can extend (P, Q) to a
conditional probability P on £ x H, where & is the algebra generated by the
family H = {2, A;, Bj, i €1, jeJ}, defining P(A4;) = fi and P(B;) = g;.
Then, in order to verify the coherence of (P, @), we can apply Corollary 4, with
Iy ={A;,ie€l}and I, = {B;, j € 7}, which amounts to verify (3) for iy, ji
such that f;, =g, = 0. : ’

From the previous remark the following result is immediately obtained.

Proposition 6. If there exists a strictly positive solution { f;}, {g;} of system (4),
then (P, Q) is coherent.

4. A special case for P and Q.
Assume that P and Q satisfy the following property:

Property 7. There exist two indices ho, ko such that p;,, > 0, qik, > 0
(i€l, jeJ). Then we have the following theorem:

Theorem 8. If P and Q verify Property 7, then the system (4) is compatible if
and only if the following condition is satisfied.: _

(5) Pijqjko PkohoGQhoi = PihgQhoko Pkojqji (€1, j€J).

Moreover, if system (4) is compatible, then it has a unique solution given by

(6) I = Qnoi/Piny) (Zr Ghor/ Prh(,)”l ,

* _.1 I3 .
8 = (Proj/qjky) (Zr pko"/quo) (tel,jel).
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Proof. Let{f;, gj, i €1, j €I} be asolution of (4). Then, since
8hy = Zi Ding fis Jiy = Zj 9k &>

from Property 7 we have
Ehy = O, fko > 0

Therefore
Pij(Gnoi [ Ping) = Pij([i/8ho) = Qi (Ghoke/ Pioho) (Phoj/Diks)s

that is (5).
Conversely, the sufficient part follows by verifying that (6) is a solution of system

(4). In fact, from (5) we have

7 Ghou! Puno = D, Gou(Phov Ghoko/ Phaho Gui,) (4 € T)
and, using (5) and (6), from (7), for each i, j, it follows

-1
Pij I = 4ji (Pko jGhoko/ ProhoTjks) (Zu Thou/ puho> =

-1
= jS(pkoj/ijo) (Zu Zv qvupkov/qvko) = qjlg;’

that is the values f*, gj’-“ (i €1, jeJ) are asolution of (4). Moreover, from (6),
we have

8 fF>0<=qni >0 and gj’-‘>0(=)pkoj>0 (Gel jel).

To show the uniqueness of solution (6), assume that {f;, g;, i € I, j€ J}isa
solution of (4), so that

9) Dihe fi = qn,i8h, (€.
From (8) and (9) we have
8ho!l fro = Proho/ Ahoke = &1yl Fr

and

Pino fi = Qhoi o 8o/ i) = Pino ¥ (fio/ )5
from which it follows that
fi = (fu/fy) Gel).

Then, since > ; fi = ), f* = 1, we obtain f; = f* (i € I). The same
argument can be applied to show that g; = gj’-" (jeld).
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Remark. Property 7, adapted to the continuous case, has been used in [12] to
uniquely determine the joint density of'a random vector (X, ¥) from the condi-

tional densities.

Remark. If condition (5) is satisfied, system (4) is compatible. However, as
noted in the remark at the end of Section 3, compatibility of system (4) does not
imply coherence of (P, Q). For an example, see [11]. By the same remark and
from (8) we have that in order to check coherence it is sufficient to verify (3) for

In, jx such that Ghoi, = Dkojy = 0.

Remark. Note that in the important case in which P and Q are strictly positive,
if condition (5) is satisfied, the solution (6) of system (4) is strictly positive and
(P, Q) is coherent. So that, in this case, compatibility of system (4) is equivalent
to coherence of (P, Q).

5. The general case.

Given two arbitrary stochastic matrices P and Q, consider the subsets / \ 1o
and J \ Jy defined as

I\IOZ_{iEIIEj. such that ¢g;; =0, p;; > 0} and
J\Jo={jeJ :3i suchthat pij =0,qj; > 0}.

Then
(10) . pij=0 ifandonlyif g; =0 (el jel).

The system (4) can be represented in the following way:

(4a) pijfi =qjig, i€l\l, jelJ\Jy,
(4b) pijfi =qjig, i€l\I, jelk,
(4c) pijfi =qig, i€l jeJ\ Jy,
(4d) piifi =4qjig, i€l jeJy,

fi =0, g >0, Zfi=zgi=1,

and from definition of sets / \ Iy and J \ Jy the following necessary condition
for the compatibility of (4a), (4b) and (4c) is obtained

(11) fi=0, iel\ly g =0 jel\J.
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Moreover, given a solution {f;, g;, i € I, j € J} of system (4), from (11) it
follows that the set of values { f;, g;, i € Iy, j € Jo} is a solution of the following
system

(12) pijfi =qjig, fi 20,820, Y fi=) g=1 (iel, jel).
Based on the above representation, the following submatrices can be introduced
P, ={pij}, Qa=1qu}, i€l\l, jeJ\J,

Py={py}, Qs=1{qi}, i€I\l, jel,
P. = {pij}, Qc=1{qii}, i€l jeJ\J,
Py ={pij}, Qa=Iq;i}, i€k, je.

Without loss of generality, we can assume that

PZ[Pa Pb}’ Q:[Qa QCJ
P. Py Qp Qu

In a previous paper (see [11], Section 4.3.1) the relationship between coher-
ence of (P, Q) and compatibility of system (4) has been analyzed in the special
case Ip = I, Jo = J. In Section 5.1 we briefly review this special case. In Sec-
tion 5.2, assuming P, and @y stochastic, the general case Iy C I and/or Jy C J

is analyzed using the results of Section 5.1. Finally, the case of P and Q; not
stochastic is considered in Section 5.3.

S.1. Pand Qsuchthat [y =1, Jy = J.

Before analyzing the case Iy = [I,Jyp = J we recall the definition of
connected matrix (see [20]): an [ x m matrix W = {w;;} is connected if for
every pair of distinctintegers ji, j,41 inthe set J there exists asubset S C I xJ,

where
S={CGn, jn), h=1,...,q, i, #i;, if r#s, with rns=1,...,q,
and j,#js if r#s, with rns=1,...,9g+1},
such that
Wi, j, Wi j, Wiy jy Wiy js * * * Wiy j, Wi, joyy > 0.
Therefore a matrix W is connected if there are no row and column permutations
which change W to the form

l: Ars or,m—-s ]
0l—-r,s Bl-r,m-—s
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for some r,s,suchthat ] <r <l/and 1 <s < m.
Two cases can be considered:

(i) P (and therefore ) connected
We observe that in this case (4) is equivalent to the following system X

pijfi = q;ig, fi >0, g >0, Zfi:Zgj=1 (iel, jel).

In fact, any solution of X' is a solution of (4) too. Conversely, let {fi, gj, i €
1, j € J}be asolution of system (4). Now, given two distinct integers ji, jg+1 in
the set J, from the definition of connected matrix, there exists asubset S C I xJ,

where
S={UnJjn), h=1,...,q, i, #i; if r#s, with rns=1,...,q,
and j, #j, if rss, with rs=1,...,q+1},

such that
Piyji Pivjy Pinjo Dinjs ** * Pigjy Pigjgss > O-

Then, from (10), we have
GjrisQjris DjainDisiz * * * DjgigDjgariy > 0
and hence
& = Piji/9j:i) firs fiy = @iy / Piyj2) 8jas &1 = (Pinjn/ Qjnin) fins

Jio = jin/ Pijs)8&jss + + + » 8, = Piyjo/ Ui fi» iy = iy / Pigjoss) &l -
Then g; = Agj,.,, where

A= (pileszilpizqujaiz e piqjquq+1iq)/(qj1i1piszquizpi2j3 “r i, piqjqﬂ)'

Since ji, jg+1 are arbitrarily chosenand ) g; = 1, it follows that g; > 0, j € J.
Applying the same procedure to Q we also obtain f; > 0, i € I. Therefore
{fi,gj, iel, jeJ}isasolution of system X,
Let N (P) be the number of positive elements of P. Since P is connected, then
(see [20])

) NP)=1l+m—1,

ii) itis possible to select at least one set D C I x J such that the matrix U with
elements u;; = p;;, or 0, according to whether (i, j) e D,or (i, j) eI x J\ D,
1s connected and N(U) =1 +m — 1.
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In order to find conditions on compatibility of X, let V be a matrix with
elements v;; = g;;, or 0 according to whether (i, j)€ D,or (i, j)e I x J \ D.
Then define the matrices T = (4;) = wvy-lv,z = (zji) = voyr-ly,
where y is the smallest integer such that T and Z are strictly positive. In [20] it
has been shown that:

(@) y < min (I, m);
(b) X is compatible if and only if the following condition, which does not
depend on the choice of the set D, is satisfied:

(13) Lij/zji = pij/qji,» Y@, J):pij >0

(c) if Xis cvompatible, the (unique and positive) solution is

Fr= (Zh t,-;,/z;,,->_1, g = (Zk ij/tkj)

We have shown that, if system (4) is compatible, its solution is strictly pos-
itive. Therefore, by Proposition 6, the compatibility of system (4) implies the
coherence of (P, ). Summarizing, in order to check the coherence of the as-
sessment (P, @) we have to define two connected matrices U and V, to compute
T and Z and to verify condition (13).

-1

(ii) P (and therefore Q) not connected

In this case there exists an integer k, with 2 < k < min (/, m), such that,
under a suitable row and column permutation, the following partition of P and

Q can be obtained

FPl 0 ... 07 Q0 0 ... 07
o P, ... 0 o @ ... 0
L0 0 ... P L0 0 ... QO_
where Py, ..., Py, Q1, ..., Ok are connected stochastic matrices. We denote by

I, x Jy the set of pairs of integers (i, j) such that p;; (g;;) is an element of
P, (Qn) (h=1,...,k). We have the following result

Proposition 9. The assessment (P, Q) is coherent if and only if each assessment
(Pn,Qp) (h=1,...,k) is coherent.
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The proof of Proposition 9 has been given, for k = 2,in a previous paper
(see [11], Proposition 7). The general case is proved by iteratively applying
Proposition 7 of the quoted paper.

For each 4, to check coherence of (Py, Q4) we can apply the procedure
described in case (i) to analyze the compatibility of the following system:

pijfi = qjigj, Zfi =Zgj =1, fi 20,8 =0 (il je).
Assume that, for each A, the above system is compatible and denote by (¢, v,)
its solution, where ¢, -y, are strictly positive vectors. Then (P, Q) is coherent
and, for each (6y,...,6;), with 8, € [0,1] (h = I,...,k)and > 6, = 1,a
solution (¢, «) of (4), where :

b= O101,...,0d), Y=V, V),

is obtained. Each pair of vectors (¢, «) provides a coherent extension of the
assessment (P, Q) to the marginal distributions.

We observe that if (at least) one of the above systems is not compatible, then
(P, Q) is not coherent.

Moreover, if (at least) one of the above systems is compatible, then for each
(@1, ..., 6r), with 8, = 0 if the A-th system is not compatible, a solution (¢, ~)

of (4) is obtained.

5.2. P; and Q stochastic matrices.

Observing that the elements of P, and Q, satisfy (10), we can apply the
procedure described in Section 5.1, with P = P, and Q = Q,, to check the
compatibility of (12) and the coherence of (P,, Qs). If (12) admits (at least)
one strictly positive solution {f,-, g, i €ly, j€Jy},then (Py, Qy) is coherent.
Moreover, being pij=0,ifiely, jeJ\ Jyand qgii =0,ifiel\ Iy, jeJy,
it is straightforward to verify that the values

(14) fi=fiicly, fi=0,iel\ I, g =g, j€N, g =0,jeJ\ Jy,

are a solution of system (4). Using (14), the assessment (P, Q) can be extended
to a conditional probability P on £ x H, where £ is the algebra generated by
the family H = {Q, A;, B;, i€l, jeJ},defining P(A;) = f;, P(Bj) = g;.
Recalling Corollary 4, P is coherent if condition (2) is satisfied for the subscripts
I, such that f; = g = 0, thatisi € I \ Iy,j € J \ J,. Since from
Corollary 5 condition (2) on P reduces to condition (3) applied to (P, Q), then,
fori el \ Iyand j € J\ Jy condition (2) reduces to condition (3) applied to
(Pa, Q). To summarize, (P, Q) is coherent if (12) admits (at least) one strictly
positive solution and (P,, Q,) satisfies condition (3).
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5.3. P, and/or Q; not stochastic.

1 - Assume that P is not stochastic and denote by I; C I the set of indices

i such that )~ p;; = 1. Then, foreach i € I \ Iy, there exists j € J \ Jp such
jedo

that p;; > 0, so that a necessary condition for compatibility of (4c) is f; = O,

i € Iy \ I, and condition (15) below takes the place of (11).

(15) fi=0, iel\I; g =0, jel\J.

2 - If I is empty, then f; = 0, i € I, and system (4) does not have solutions;
so that the assessment (P, () is not coherent.

3 - If Iy is not empty, let P = {p;;} and Q¢ = {gq;;} (i € I, j € Jp). Observe
that P‘f is stochastic: then, if Q‘f is stochastic too, we apply the procedure de-
scribed in Section 5.2 to the partition of the matrices P and @ induced by the sets
I; and Jy.

4 - If Q‘f is not stochastic, denote by J; C Jp the set of indices such that
2 gji = 1. Then, for each j € Jy \ Ji, there exists i € I \ I; such that gji > 0.

iell

So that compatibility of (4b) requires that g; = 0, j € Jy \ J1, and the following
condition takes the place of (15):

5- Asinstep 2, if J; is empty, then system (4) is not compatible and (P, Q) is
not coherent.

6 - If J; is not empty, let P} = {p;;} and Q¢ = {g;;} (i e I, j € J}). Ob-
serve that Q4 is stochastic: then, if also P4 is stochastic we apply the procedure
described in Section 5.2 to the partition of the matrices P and Q induced by the
sets 11 and Jy.

7-1d P‘Zj is not stochastic, then the previous steps 1-6 are applied to matrices
P‘:,f and Qg.

The above algorithm stops at step 3 or step 6 if a pair of stochastic matrices,
denoted by P¢ and Q¢, is identified. The algorithm stops at step 2 or at step 5 if
the condition f; =0,i€/l,or g; =0, j € J, is respectively obtained.

In the first case the coherence of (P, Q) is checked by applying the procedure
described in Section 5.2, with P; = P and Q4 = Q“. In the second case system
(4) 1s not compatible and the assessment (P, () is not coherent.
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