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MAXIMUM NUMBER OF GENERATORS OF AN IDEAL OF
POINTS ON AN IRREDUCIBLE SURFACE OF LOW DEGREE

ELENA GUARDO - ORNELLA PARISI

Let X be a finite set of distinct points lying on an irreducible surface
with Hilbert Function H (X, i). In this paper we will prove that the maximum
number of generators, in each degree, of the ideal defining X is obtained by
the second difference of the Hilbert Function.

Introduction.

Let Y be a finite set of distinct points in the projective space P2, k algebri-
cally closed field, with Hilbert Function H (Y, i) and let I be the defining ideal
of Y. ‘

In [3] Dubreil’s Theorem says that the number v(7) of generators of 7 is

bounded by: B B
v(l) =a(l) +1

where a(T) is the smallest degree of a generator of 1.
The next step was done in [2] ang in [8] (Theorem 1.2); if @&; is the number
of generators of degree i of the ideal 7, then

min{—A3H(Y,1),0) <@ < —AH(Y, ).

Let V be a non degenerate arithmetically Cohen-Macaulay projective vari-
ety in P” and let  be the defining ideal of V. In [12], Valla finds upper bounds for
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the Betti numbers of 7 when: i) V ranges over the class of arithmetically Cohen-
Macaulay non degenerate projective varieties of a given codimension and degree
and when: ii) V ranges over the class of arithmetically Cohen-Macaulay non de-
generate projective varieties of a given codimension, degree and initial degree.
In particular, when r = 3 and V is a set X of points in P> one obtains bounds de-
pending on the number of points and on the degree of the first surface containing
X.

In [4] and [1] it is proved that among all homogeneous ideals with a given
Hilbert Function the lex-segment ideal has the maximum Betti numbers. Hence,
one can compute the maximum number of generators of an ideal with a giver
Hilbert Function (see, for instance, [11]). Using these results, one can obtain
bounds for the number of graded generators of the defining ideal I of X in terms
of the Hilbert Function and we can note that the maximum number of generators
is obtained when the minimal surface containing X is reducible.

One of the main questions on this line is to find bounds for the Betti numbers
of a set of points in Uniform Position in P3. A beginning step of this direction
is to obtain bounds for a set X lying on an irreducible surface of degree s. Here
we treat the cases s = 2, 3, 4 and we improve the bounds found in [4].

For s = 2, denoting ¥ the irreducible quadric containing X, in [9] it is
proved that AH (X, i) is not increasing for n > b, where b > 2 is the least
degree of a surface containing X but not X; so the behaviour of the Hilbert
Function of a set of points in P on an irreducible quadric is analogous to the
behaviour of the Hilbert Function of a set of points in P2, The same thing
happens for the maximum number of generators of the ideal defining a set of
points lying on an irreducible quadric. Particularly, if X lies on an irreducible

quadric, we prove that
o < —A’H(X,i)

where «; is the number of generators of degree i of the ideal defining X and i
runs all over the indices in which the number of generators is not determined by
the Hilbert Function.

For s = 3, if ¥ is the irreducible cubic surface containing X, we obtain

o < {max(—AzH(X, b+1), —A*HX,b+1) i=b+1
T -A%H XD i>b+1,

where b is the least degree of a surface passing through X but not through X.
Similar results are obtained for points on an irreducible surface of degree
4; particularly, in these two cases we improve some result given in [10].
The paper consists of five sections; in the first, the binomial expansion of
natural numbers, some related functions and the theory of lex—segment ideal are
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introduced; moreover, the definition of graded Betti numbers is given to use the

results of [4] and [11].
Section 2, 3, 4 treat, respectively, sets of points on an irreducible surface of

degree 2, 3, 4.

In the last section we give some applications of our results.

We would like to thank Algebraic Geometry group of the University of
Catania, particularly Prof. Alfio Ragusa for helping us in this work.

1. Preliminaries and notation.

Let X be a finite set of distinct points in PP}, k algebrically closed field of
characteristic zero. Let R = k[Xy, ..., X,+1] and let 7 (X) be the homogeneous
ideal of R that defines the variety X.

Definition 1.1. Forevery homogeneous ideal I of R, the Hilbert Function of the
standard graded Algebra A = R/I = @A, is the numerical function defined
by:

Ha (1) = dimg (A,).

Particularly, we denote by H (X, i) the Hilbert Function of X, that is: |

H(X,i) = Hgy1(x)(i) = dim[R/I(X)]; .

We will use the following terminology:
AH(X,i)=H(X,i)—H(X,i—1)
AH(X,i)=A"TTH(X,i)— A/7'H(X,i — 1) forallieNand j > 1.

Let

(1) 0> ®&R(—j)¥ — -+ - BR(—))¥ —
— ®R(—j)¥ - R —-> R/I - 0

be a minimal graded free resolution of R/I.

If V is a variety, we say that V is arithmetically Cohen-Macaulay (ACM
for short), if its homogeneous coordinate ring R/I (V) is Cohen-Macaulay.

If W is a k-vector space and uy, us, ..., u, are elements of W we will
indicate with £ (u1, us, ..., u,) the subspace of W generated by these elements.

Some known result

Now we collect some known result about the maximum Betti numbers of homo-
geneous ideals and ideals defining a variety of points in P*> with a given Hilbert
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Function, these maximum numbers are given in Theorem 1.9 and Remark 1.12

respectively.
If m, k are non negative integers we will use the notation: ( o) = 1 for any

m>0and (7)=0ifm < k.

Lemma 1.2. Let m, i be positive integers. Then m can be uniquely written as

m=("")+ (" D)t (")
L, i —1 J

wherehz(i) >m@i—1)>--->m(j)>j>1.
Proof. See[11] Lemma 4.1. J

Definition 1.3. The umque expression m = (" (')) ("’(' D)-f— +( G )) where
m@)>m@—1)>--->m(j)>j=>1is called the binomial expanszon ofm

in base i and it is denoted by m;.

Definition 1.4. Let m, i be positive integers and let m; = (m,-(i)) + (m,(l_—ll)) +
Cee (”‘51)) Then we define:

+_ (m@)+1 m(i—1)+1) (m(j)+1)
(m,)—(l.+1>+( ; + 4+ iv1 )

We have (m;)T > m, in fact:

d 1
=2 (") =

t:j

-2 [+ ()]

| :21:<m(t))+m2m.
—\r+1

Definition 1.5. In R = k[X,, ..., X,+1], we say that

ay v a3 Gnt1 by b, by
XXy X Slex X' Xy XM

in the lexicographic ordering if either a; < b; or there exists an index i such
that a; = by, ... yai-1 = b;_1and g; < b;.
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Definition 1.6. Let 7; C R be the set of monomials of degree d, a subset M
of Ty is called a lexicographic segment (for short lex—segment), if there exist
‘t,h€Tysuchthatte M iff t; <t < 1,.

Definition 1.7. J is called a lexicographic segment ideal (for short lex—segment
ideal) if one can pick a set of generators such that the generators of minimum
degree dp form a lexicographic segment beginning with X D¢ ‘li""le, ... and
the generators of J in degree d > dj form a lexicographic segment starting with
the largest monomial of degree d not divisible by a generator of lower degree.

Definition 1.8. The rank of the i —th module in the resolution (1) is called the i —
th Betti number of I and is denoted by ¢;(R/I); the graded Betti number of I,
gij(R/I),is defined to be the rank of the degree j graded R—module @R (— j)%i

for each i, j. Notice

g:(R/1) =Y qi;(R/I).
J

Theorem 1.9. Let J C R be a lex—segment ideal with a given Hilbert Function
H andlet I C R be any other homogeneous ideal with Hig;jy = Hig/ry = H.

Then
qij(R/J) = qij (R/I) Vi, J.

Proof. See [4] Theorem 6. O

Theorem 1.10. Let H be a Hilbert Function and J C R the unique lex—segment
ideal such that Hgjy = H; then

q1;(R/J) = (H(j — 1);-0)f = H()).

Proof. See [11] Proposition 6.7. 0

From [5] we know that monomial ideals in R = k[X 1, ..., X,] can be lifted
to ideals of distinct points in P* with the same Betti numbers, then we obtain the

following result:
Theorem 1.11. Let X be a set of distinct points in P* with Hilbert Function
H(X,i)and J C R be the lex—segment ideal such that H(ﬁ/J)(i) =AH(X,i),

then .
qij(R/1(X)) < qi;(R/JT) Vi, j.



142 ELENA GUARDO - ORNELLA PARISI

Proof. Let (1) be the minimal graded free resolution of A = R /I1(X), we can
suppose that X1 be a regular element in A and we can consider the ring

R
(I(X), Xp41)/(Xn41)

We put I = (X)), Xn+1)/(Xn41), it is easy to see that a minimal graded
free resolution of R// in R is

A/(Xpt1) = R/U(X), Xns1) =

0— @R(—j)" — ... > @R(—j)™ — OR(—j)" — R — R/T — 0,
SO H("ﬁ/j)(i) =AH(X,1i).
Using the Theorem 1.9, we get
g;;(R/J) = qi;;(R/T) . Vi, ],
but o
q:ij(R/1(X)) = q;;(R/I),
this gives the conclusion. Ll

Remark 1.12. When n = 3 we know that /(X) has a minimal graded free
resolution: ’

0 — ®R(—i)" - OR(—i)# - R(—)¥ - I(X) > 0

where «;, 8; and y; are the graded Betti numbers and it is easy to prove that they
are linked with the relation

(2) —a; + B — v = A*H(X, i);

particularly:
o; = dimg ([1(X)];/Ri[1(X)]iy) =

= dimy [ (X)]; — dimg R{[1(X)];-1.
By the Theorem 1.11 we have:
1 < (AH(X,i))T —AH(X,i+1) VieN.
We note that —A?H (X, i + 1) < (AH(X, i);)t — AH(X, i + 1), in fact:
—ANH(X,i+1) = -AHX,i+ 1)+ AH(X, i) <
<-AHX,i+ 1)+ (AH(X,i))T.
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In the following we denote I = I (X).

An algebraic result
Afterwards we will use the following:

Lemma 1.13. Let § = 0, S € R = k[Xy,..., Xp41], be the equation of a
hypersurface ¥ C P" of degree s and Ly, Ly two linear forms that define the
hyperplanes 1y, my in P*, such that:

mNmy=r
rz %,

then (Lq, Ly, S)is a regular sequence.

Proof. Obviously L; is regular in R and L, in R/(L); the ideal (L1, L,) is
prime, so S is regular in R/(Ly, L,) iff S ¢ (Ly, L,) and it is true because
rCm,mybutr ¢ X. O

2. Points on an irreducible quadric.

Let X be a set of distinct points in P> on an irreducible quadric surface ¥
defined by Q = 0, from [9] Theorem 2.2, we have

2i+1 0<i<b-1
AH(X,i)={s b<i<n
0 i>n+1

suchthat 2b > sp > sp41 > ... > 5, > 1,b > 2.

We have

(1 i=0
2 1<i<b-1
sp—2b+1 1=

AHX,i)=1{" ,
S; — Si—1 b+1<i<n
—Sp i=n+1
[ 0 i>n+2
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(1 i=0

0 i=1

-1 i=2

0 3<i<b-1
sp—2b—1 i=b '
Sp+1 — 38p + 4b i=b+1

A*H(X,i) =
Sp42 — 3Spr1+ 5, —2b+1 i =b+2

Si — 38i—1 + 3512 — 5i_3 b+3<i<n

—38p + 380—1 — Sn—2 i=n+1

385, — Sp—1 i=n+2

—8n i=n+3

[ 0 i >n+4.
Let «; be the minimal number of generators of degree i of the ideal I, then:

Oy = 1
ap = 2b + 1 — 5, (by the hypothesis on sp, it is ap > 1),
o, =0 i#£2,i<bori>n+2,

Ap+1 = max(0, —spy1 + 35, — 4b).
In the case b = 2 by abuse of notation we will denote again o = 1 and by «
we mean the dimension of the k-vector space I, minus one.

Furthermore it is easy to compute that

r<l+3) i=01
3

(i + 12 2<i<b-1

H(X,i)= b2+zsj b<i<n
j=b

n
B+ s izn
L j=b

Theorem 2.1. Let X be a finite set of distinct points on an irreducible quadric
Y. Let now h be an integer such thatb +1 < h < n + 1. With the above

notations and s,+1 = 0, then

Oy S Sp1 — Sy = —-AzH(X, h)
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Proof. Forallb—1<i<h
: i+3 . i+3 , o
dlml,':( 3 )—H(X,I)Z( 3 )—b —;SJ‘.

and
o; = dim I,' — dim R1I,'._1.

We wish to find a lower bound for dim Ry I;_,. For this aim, let 71, 7, be
two planes defined by two linear forms L and L, such that -; N X = @ for
i =1, 2 and the line 7r; N7 is not contained in X, so Q, Ly, L, form a regular

sequence in k[ X, ..., X4].
Let A; C I; be the k—vector space generated by the forms of I; that do not
belong to R;—, Q and let B; C A; be the greatest subspace that does not contain

forms that are divisible by L1, then it is easy to check that

3) dimA,-:(i-§3)—b2—2sj—(i_;l):

j=b
i
. 2
=({+1)-=) 5
j=b

and
dim B;, =dim A; —dim A;_; i >b.

Moreover, setting W C  R;I,_; the vector space generated by R;,_, O,
LlAh—l and Lth_l, we have:

| 1\ ,
(4) dmW = 3 +dim Ay +dim B,_; =

h+1
_ < ;f +dim Ap_y + dim A_; — dim A_, =

h+1 h—1 h—-2
_—_< ; >+2h2—2b2——22sj—(h—1)2+b2+2sj:
Jj=b b

j:
h—1
212 L 1,2 I
+2h* = = s —su —hP+2h—1=
j=b
h—1

+h+2h—1=0* = s5; —spo1.
j=b
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Infact, let F € A,_{, G€ By_1, A € Ry, be such that in k[ X1, ..., X4]
(5) AQ+ LF+L,G=0.

In k[Xy, ..., X41/(Q, L), it results L,G = 0.
Since Q, Ly, L, are a regular sequence in k[X1, ..., X4], then G = 0 in
k[X1,...,X41/(Q, Ly); it means that in k[ X1, ..., X4]

G=HQ+ KL, for some H and XK.

Since X is contained in the surfaces defined by the forms G and Q it follows
that K vanishes in all points of X, then K € I,_5 and G € (L1I,_2 & Ry,_30),
which implies G = 0 because G € B,_;. So (5) becomes:

AQ+ L F =0,

since Q does not divide F, then A = 0 and F = 0. This proves (4).

Now let P; and P4 be the points in which ¥ intersects the line 7y N y; for
the generic choice of this line and for the irreducibility of X, we can suppose that
there exists a form H € Aj,_; such that Py and P4 do not lie on the surface W
defined by H. Let us choose L3 and L4 two linear forms defining, respectively,

two planes m3, 4 such that

{ P; ems
Py ¢ s
We are now going to prove that L3 H, L4H and the elements of W are

linearly independent; in fact, let A € Ry_», F € Ap—1, G € By_1, a,b € k be
such thatin k[ X, ..., X4]:

P3¢ w4

and {
Py emy.

(6) AQ+ LiF+LyG+alLsH +bL4H = 0.
Let us compute (6) in P3; we have
bL4(P3)H (P3) = 0;

but L4(P3) # 0, H(P3) # 0, thus b = 0. Similarly, computing (6) in P we
have a = 0. So (6) becomes

AQ+L i F+L,G=0

thatis (5);then A =0, F =0,G = 0.
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Hence
ap <dimIl, —dimW -2 =

h+3 h+1
("*') b — }_’:s, (+)-—h2—2h+1+b2+

h—1

+ZSJ' +8po1 =2 =
Jj=b

=h+1)?—sp—h*=2h—1+5_ =
=h*+2h+1—sp —h* —2h — 1 + 55 =
= Sh—1 — Sh,

that is the conclusion. OJ

. Example 2.2. These bounds are sharp; in fact, by [6] Proposition 2.3 and [7]
Remark 2.12 we have that for any set X of points on an irreducible quadric, ACM
as subscheme of the quadric, is o; = —A?H(X,i)ifi =b+1,...,n

3. Points on an irreducible cubic surface.

Let X be asetof p(_)ints in P2 on an irreducible surface ¥ of degree 3, from
[10] Theorem 2.1, we have

(7) o0<is<2
3i 3<i<b-1
AH(X,i) = ,
' S; b<i<n
0 i>n+1
where
sp <3b—-1,
sp+1>8p11>8p12>... 25, >1and b > 3.
Hence
(1 +1 i=0,1,2
3 3<i<b-1
sy —3b+3 i=b
AHX, ) ="
S; — i1 b+1<i<n
—Sn i=n+1
[ 0 i>n+2
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Sp — 3b
Sp+1 — 3Sb 4+ 6b —3
Sp+2 — 3Sp+1 + 35, — 36+ 3

§; —38i—1 + 35120 — 5i_3

AH(X,i) = |

—3Sn + 3Sn._1 — Sy—2
35n — Sp—1

—S,

L 0

Let o; be the minimal number of generators of degree i of the ideal /, then:

a3 = 1 and we will call S the form defining X,

ap = 3b—s;, (ap > 1 by the hypothesis on s5) and we will call these forms

F19-"’F(Xb$
o; =0 i#3,i<bori>n+2,
apy1 = max(0, —spi1 + 35, — 60 + 3).

ELENA GUARDO - ORNELLA PARISI

i =0
i=1,2
i=3
4<i<b-1
i=b
i=b+1
i=b+2
b+3<i<n
i=n+1
i=n+2
i=n+3

I >n+4.

If b = 3 we will use the same notation as the previous section.

Furthermore it is easy to compute

((“L?’) i=01,2
3
3i% + 3i .
——+1 3<i<b-—1
H(X, i) = 3p2 ~3p "
—2—~+1+Zsj b<iz<n
j=b
3b% — 3b

Theorem 3.1. Let X be a finite set of distinct points on an irreducible cubic

surface X.
With the previous notations, we have:

k—_2_+1+j>;;Sj I >n.

Wpp1 < max(—AZH(X, b+ 1), —A*H(X, b + 1)).
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Proof. We have:
dim/lpy ) =dimRpp1 — HX, b+ 1) =

b+4 3b% — 3b
= — 5 — 1 =5 — sp41

T\ 3 2
and

Up+1 = dim Ib+1 — dim Rllb.
We note that
max(—A2H(X,b+1), —A*H(X, b+ 1)) = ~A*H(X, b + 1)
iff
Sp = 3b — 1,

| so we can distinguish two cases: i) sp < 3b — 1,1ii) 5, = 3b — 1.
If s, < 3b — 1, then

op =3b—5p, >3b—-3b+1

and we can consider two forms Fy, F, of degree b which define, respectively,

two surfaces ¢, and ;.
We work as in Theorem 2.1. Let r be a line in P? such that:

rﬂE:{Pl,Pz,P3}
(7) rﬂEﬂd)l_—_Q)
rﬂEﬂCDz:{Pz}

and let Ly, Ly, L3 and L4 be linear forms defining, respectively, the planes 7,
72, 73 and 14 such that r; and 7 contain r but not the points of X and 73 and

74 such that

®) {P1€7T3 and {P1¢7T4

Py ¢ m3 Py ey,
hence Py ¢ m3 and P3 ¢ m4. Notice that S, Ly, L, form a regular sequence :
in k[X1,..., X4]. The elements given by the (b;”) generators of the vector

subspace R,_2 S of the forms of degree b+ 1 containing § and by the 2« forms
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of type L1F;, Lo F;, are linearly independent. In fact, let A € Rb_z,—f,f €
Z(F, ..., F,,) be such that:

9) AS + L{F+ L,F =0,

we have Lz__ﬁ: = 0in k[Xy, ..., X4l/(S, I:_l). Since S, L;, L, are a regular
sequence in k[X1, ..., X4], it follows that F = 0in k[Xy,..., X41/(S, Ly);
SO .

F=SH+ LK for some H and K.

Since X is contained in the surfaces defined by the forms F and S, it follows
that X must be contained in the surface defined by K L;. Since XNy = @, then
the form K vanishes in__X ; but degk = b — 1, thus X = 0. In fact, if K # 0

we get K € (§) and so F e (S) and this is false; thus F = 0 and (9) becomes
| AS+ LiF =0

then A = 0 and F = 0. This proves that the previous (b;rl) + 2w, elements of

R11I, are linearly independent.
We claim that if we add to these elements the forms L3 F1, L3 F, and L4 F1,

we still get independent elements; in fact, let A € Ry, F, Fe%(Fi, ..., Fy),
a, b, c €k be such that in k[ X, ..., X4]:

(10) AS + L,F + LoF + aL3F, + bL3F> + cL4F = 0.

Let us compute (10), respectively, in Py, P, P3; we have:

cL4(P)Fi(P1) =0
aLi(P)Fi1(P) =0
aL3(P3) F1(P3) + bL3(P3) F2(P3) + cL4(P3) F1(P3) =0

and, by (7) and (8),c =0,a=0and b = 0.
Hence (10) becomes

AS + L\F + LoF =0,

thenA=0,F=0and F = 0.
Therefore
) b+1
dim R I > 3 +2ap+3 =

b+1
=( -3’— >+6b—25b+3
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and, consequently,

b+ 4 3b% —3b b+1
Olb+1_<_( ;L >_"“T"‘““1"‘sb_sb+l_( ;- )—6b+2Sb—3=

32 4+9b+6 . 3b2—13b
= +2 + +1:——-—2—————4+sb——sb+1-—6b=

=6b+3—3+5p —Sp+1 —6b =
= 38p — Sb+1

that concludes the first case.
If s, = 3b — 1 then o, = 1 and, since S is irreducible, B,+; = 0; so, by

(2),
apy1 = —A*H(X, b+ 1)

(obviously yp+1 = 0). O

Corollary 3.2. Let X be a finite set of distinct points on an irreducible cubic

 surface X.
With the previous notations, if sp < 3b — 1 then

Sp+1 = Sp.

Proof. Under these hypotheses
max(—AZH(X, b+ 1), —A*HX, b+ 1)) = =A’H(X,b + 1)
so, by the previous Theorem, |
0 < apt1 < =Sp41 + Sp. U

This Corollary improves the result given in [10] Theorem 2.1.

Theorem 3.3. Let X be a finite set of distinct points on an irreducible cubic
surface X.. Let now h be an integer such thatb +1 < h < n + 1. With the

above notations and s,41 = 0, then

[ max(=A2H(X,b+ 1), —A*H(X,b+1)) h=b+1
ap =<
—A’H(X, h) h>b+1.
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Proof. For h = b + 1 see Theorem 3.1, so we assume & > b + 1. Let Hj,
H> € (In—1 — Ry—4S) be two forms defining surfaces ¥, and W,.
We can choose a line r in P? such that:
rNny ={P~P, P, P}

rnXNy; =49

rOnXNY, ={P};
let us introduce the linear forms L;, Ly, L3 and L4 as before. Notice that

§, Ly, L, form a regular sequence in k[ X1, ..., X4].
Forall b —1 <i < h, we have

dim I, = (’ :3> —H(X,i) =

i+3\  3b*—3b d
= LN y
(3 ) 2 ;S’

Now we proceed as in the quadric case. Let A; C I; be the k—vector space
generated by the forms of /; that do not belong to R;_3S and let B; C A; be the
greatest subspace that does not contain forms that are divisible by Ly, then it is

easy to check that
. i+3\ 30*-3b " i
dlmAi=< 3 )—-—~2——1—j5=bsj"(3):

3i% 4+ 3§ 3b —3b
= 5 +1- ZS/_

3i24+3i  3b2—-3p
T2 T2 _Zsj

and
dimB; =dim A; —dimA;_y =3i —s; i >Db.
Moreover, denoting W C R;I,_; the vector space generated by Rj_ 3S ,
L1Ap—1 and LyBy_1, we get as in the previous Theorem:

h
dim W :<3) +dimAy_; +dim B,_; =
h—1

h 3(h—1)2+9Hh—1) 3b2+3b |
_(3) —+ 5 — > jz___;sj Sp—1.
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Again we can add the forms L3 H;, L3 H,, L4 H; still obtaining independent

elements; so:
op <dim/l, —dimW —3 =

=Sh-1 — Sh . O

Example 3.4. We give now an example of a set of points in which these bounds
are sharp. In fact, let ¥ be an irreducible cubic surface and let » be a line
contained in X; let us consider 5 points in r and other 15 generic points in X,
we call X the set consisting of these points. Thus the Hilbert Function of X is

given by:

01 2 3 4 5 6 7 8
H 1 4 10 19 20 20 20 20 20
AH |13 6 9 1 0 0 0 0
A’H |12 3 '3 -8 -1 0 0 O
AH |11 1 0-11 7 1 0 0
A*H |1 0 0 -1 -11 18 -6 -1 0

Inthiscase b =n =4, a3 = 1, ag = 11 and as = 1 because the generators of
degree lesser than 5 must vanish in all points of r, hence s = —A?H (X, 5).

4. Points on an irreducible surface of degree 4.

. Let X be a set of points in P2 on an irreducible surface ¥ of degree 4, from
[10] Theorem 2.1, we have

4i—2 d4<i<b-—1
S; b<i<n

L 0 i>n—+1

AH(X,i) = 1

with
sy, < 4b — 3,
Spr1 < Sp + 2,

Sp42 < Sp+1 + 1,
Spy2 > Spa3 > ... >, > land b > 4.
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We have
(i + 1 0<i<3
4 4<i<b-1
AZH(X,i)=<Sb—4b+6 i=b .
S — Si_1 b+1<i<n
—S, i=n+1
0 i>n+2
(1 i=0
0 1<i<3
—1 i=4
0 S<i<b-1
sp—4b+2 . i=b
AYH (X i):‘sb+1—-3sb+8b——8 i=b+1
’ Sp2 — 3Sp41 + 35, —4b+6 i =b+2
Si — 381+ 350 — 53 b+3<i<n
=35, + 35,1 — Sph—2 i=n+1
35n — Sp—1 i=n+2
-5, i=n+3
L 0 i >n+4.

Let o; be the minimal number of generators of degree i of the ideal I, then:
o4 = 1 and we will call S the form defining X,
ap = 4b — 2 — 5, (¢ > 1 by the hypothesis on s5) and we will call these
forms Fi, ..., F,,
o =0fori #4,i <bori>n+2,
Op+1 = max(0, —sp41 + 35, — 856 + 8).
If b = 4 we will use the same notation as the previous section.
Furthermore it is easy to compute

%’:3) i=012
2i2+2 3<i<b-1

H(X,i) = | 2b2—4b+4+zsj b<i<n
j=b

n
20 —4b+4+) s ixn.
L j=b
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Casei =b+1

Theorem 4.1. Let X be a finite set of distinct points on an irreducible surface

3 of degree 4.
With the previous notations we have:

appr < max(—AZH(X,b+1), —A*H(X,b+1)).

Proof. We have:

dim Iy = dim Ry — HX,b+1)=

b+4
=( : )—2b2+4b—4——sb——sb+1

and
Opyr1 = dim [b+1 — dim Rilp.

We note that

max(—A2H(X, b+ 1), —A*H(X,b+ 1)) = —A’H(X,b + 1)
iff
sp <4b —4
so we can distinguish two cases: i) s, < 4b — 4, ii) 5 = 4b — 3.
If s, < 4b — 4, then
op =4b—2 —s5p, >4b—2 —4b+4 =2,

so we can consider two forms Fi, F, which define, respectively, two surfaces &

and &, of degree b.
One can easily check that, if § is irreducible, there exists a line r in P3 such

that:

rNY ={P;, P, P3, P4}
rny ﬂ<b1 = @
rnXxNd, ={P, P}
Py = Py.

(11)
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Let Ly, Ly, L3 and L4 be linear forms defining, respectively, the planes 7y,
72, 73 and 74 such that 7y and 7, contain r but not the points of X and 73 and

74 such that

(12) { P em; and [ P ¢ my

P, ¢ 13 P, € my,

so that P3, P4 ¢ 73 and P3, Py ¢ ms. Again one shows that (13’) + 2a, elements

given by the (g) generators of the vector subspace R,_3S of the forms of degree
b + 1 containing S and by the 2w, forms of type L1 F;, L, F;, are linearly inde-

pendent.

Now we can add to them the four forms L3 Fy, Ls Fy, L4Fy and L4 F; still
getting independent elements; in fact, let A € Ry_3, F, F € ZL(Fy, ..., Fy,),
a,b,c,d ek be such that in k[X1, ..., X4]:

(13) AS + Llf-l- Lz?-f— aLiFi +bLysFy +cL4Fy +dL4sF), = 0.

Let us compute (13), respectively, in P;, P;; we get

cL4(P)Fi(P) =0

al3(P)Fi(P) =0
so, by (11) and (12), ¢ = 0 and @ = 0; computing (13) in P; and P4 we obtain
the following system:

(14) {bL3(P3)F2(P3) + dL4(P3)Fa(P3) =0

bL3(Py)Fr(Ps) +dL4a(Py)Fr(Py) =0,
since F,(P3) # 0 and F>(P;) # 0, then (14) becomes:

{bL3(P3) +dL4s(P3) =0
bL3(Ps) +dL4(Py) =0,

since L3 N L4 and r are skew, then (14) has only the solution ¥ = 0, d = 0.
Hence (13) becomes .
AS+ LF + LyF =0,

soagainA::O,f:Oand?:O. '
Therefore

b b
dimR; I, > (3> + 20 + 4 = (3) + 8b — 25y
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and

b+ 4 b
Olb+1§< ;— )-—2b2+4b—4—sb—sb+1—(3)—-8b+28b= ‘

=202 +4b+242—2b% —4b — 445, — sp41 =
= S8p — Sp+1

that concludes the first case.
If s, = 4b — 3 then «p = 1 and, being § irreducible, By+1 = 0; so, by (2),

i1 = —A*HX,b+1)

(obviously yp+1 = 0). O

Corollary 4.2. Let X be a finite set of distinct points on an irreducible surface

% of degree 4.
With the previous notations, if s, < 4b — 3 then

Sp+1 < Sp.

Proof. Under these hypotheses

max(—=AZH(X, b+ 1), —A*H(X, b+ 1)) = —A’H(X,b+ 1)
so0, by the previous Theorem,

0 < apy1 < —Sps1 + Sp. L]

Casei =b+2

Theorem 4.3. Let X be a finite set of distinct points on an irreducible surface
2 of degree 4. ‘

With the previous notations it follows:
—A*H(X,b+2) ifsps1=55+2

Upt2 =
—A’H(X,b+2) otherwise.
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Proof. We know that:
dim Ipyp = dim Rpyo—H(X,b+2) =

b+5
=< ;_ >""2b2+4b—4—5b"sb+l_sb+2

and
Upyo = dim Ib+2 — dim R11b+1.
If sp+1 < 55 + 1 we can have two cases: either s, < 4b — 3 then ap > 2,
or s, = 4b — 3 and 5541 < s, + 1 thus in this case @, = 1 but ap+1 > L
s0, in both cases, we can find two surfaces W, and V¥, defined by H; and H, in
(Ip+1 — Rp—3S) and a line r satisfying the conditions:

rN X ={Py, Py, P3, P4}

rﬂEﬂ\l’lzﬂ

(15)
rﬂzﬂ\pz‘—‘{Pl,Pz}
P £ Py,

Let Ly, Ly, L3, L4 be the linear forms as in the previous case; if ¢ = dim I,
let # = {G,, ..., G,} be a basis of I, we can suppose that G; € R_3S for
i=1,....(;)and G; = LiF,_p fori = () +1,..., () + .

As in the previous case we can choose independent elements in Ipy in
the following way. Pick (bg”l) generators of R,_,S, elements: of type LG;

with | > (g) (i.e. G; € & and S does not divide G;; they are in number of
dim Iy — (g)), and elements of type L,G; withi > (3) +ay (they are in number
of dim Ib+l - (13)) — ozb).

So we find

b+1 .
N =( —;— > +dim Ip41 — dim R,_3§ + dim Ipp) —dim Rp_3S — ap =

3

surfaces in R; I, that are linearly independent.
As in the previous case, we can add the four forms L3 H;, L4 Hj, L3yH, and

L4H,; so

b+1
=< * )+12b+2—sb—2sb+1

b+5
(Xb+2§< ;— )—2b2+4b—4——sb——sb+1—sb+2—N—4:

=Sb+1 — Sp+2
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this concludes the proof if 5541 < s + 1.
If sp+1 = sp + 2, for the Corollary 4.2, s, = 4b — 3 then o, = 1 and

apq1 = 0.
Since X is irreducible and of degree 4, then Bp42 = 0 and y,4, = 0; thus

opyr = —AH(X,b+2). O

Corollary 4.4. Let X be a finite set of distinct points on an irreducible surface

Y of degree 4.
With the previous notations, if sp+1 < $p + 1, then

Sh+2 = Sp+1-

Proof. Applying the previous Theorem with sp41 < s + 1
0 < apt2 < Shy1 — Sp42 - O

Remark 4.5. Corollary 4.2 and Corollary 4.4 improve the results given in [10]
for the Hilbert Function of a set of points lying on an irreducible surface.

The general case

Theorem 4.6. Let X be a finite set of distinct points on an irreducible surface
3 of degree 4. Let now h be an integer such that b +3 < h <n + 1. With the

previous notations and s,+1 = 0, then

ap < -—AZH(X, h) = Sp_1 — Sh.

Proof. We know

h+3
dimlh=< ;— )—H(X,h)Z
h+3 ) i
=( 3 )—.-Zb +4b—4—> ;.
j=b

Let Hy, H, € (I—1 — Rp—4S) be two forms defining surfaces ¥; and W,
such that:

rNY = (P, Py, P3, Py)
rnnNy; =49

rOnZ NV, ={P, P}
Py # Py,

(16)
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let us introduce the linear forms Lq, L, L3 and L4 as before.

Let Ay C I be the k—vector space generated by the forms of I, that do not
belong to Ry_4S and let B, C A be the greatest subspace that does not contain
forms that are divisible by L, then it is easy to check that

h+3 h -1
dimAh:( ;r )—2b2+4b-4-—2sj—(h3 >=
j=b

h
=2n% — 207 +4b—2- ) s
j=b

and
dim B, =dim A, —dim Ap_, =

=4h — 2 — sp.
Moreover, if W C Ry I;_; is the vector space generated by R,_4S, L1A,—; and
L, By 1, again we obtain:

h—1
dim W :< 3 ) +d1m Ah_] +d1m Bh—l e

3
Adding, like before cases, the forms L3 H,, LyH,, L4H; and L4H,, we obtain:

=< )+2h2—6—2b2+4b—§fs,-—sh_l.
-~

ahfdimlh——dimW—4=sh_1—sh. O

Example 4.7. We construct a set of points for which these bounds are sharp;
let 2 be an irreducible surface of degree 4 containing a line r. Let us consider
6 points in r and other 29 generic points in X, we call X the set consisting of
these points. Thus the Hilbert Function of X is given by:

01 2 3 4 5 6 7 8 9
H 1 4 10 20 34 35 35 35 35 35
AH |13 6 1014 1 0 0 0 O
A*H |12 3 4 4 -13 -1 0 0 0
A*H |11 1 1 0 -1712 1 0 0
A*H |10 0 0 -1 -17 29 -11 -1 0

Inthiscase b =n =5,04 = 1,5 = 17 and ag = 1 because the generators of
degree lesser than 6 must vanish in all points of r, hence ag = ~A?H (X, 6).
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5. Applications.

Remark 5.1. Let b +1 < h < n + 1, all bounds founded for «; are valid
just asking that there exists a form F in I,_; defining a surface with no common
components with a surface T of smaller degree containing X.

Example 5.2. Let Q the form defining . The hypothesis that there exists a
surface in I of degree h — 1 such that Q and F have no common components
is necessary. Let us consider 10 points in generic position on a plane 7 and 3
generic points outside r; let X be the set of these 13 points, then the Hilbert
Function of X is given by:

012 3 4 5 6 7
H |14 91313 13 13 13
AH |13 5 4 0 0 0 0
A2H|12 2 -1 -4 0 0 0
AH|1 10 -3 -3 4 0 0
A‘H|10-1 3 0 7 -4 0

Hence o = 1, a3 = 3, a4 > 3 and ag = B4, but B4 is equal to the number
of syzyges of degree 3 for a set consisting of 3 generic points in P3, so a4 = 5,

while, by Theorem 2.1, a4 < 4.
This happens because the quadric passing through these 13 points splits in
7 and in the plane defined by the 3 points outside 7 and all cubic surfaces passing

through X contain 7.
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