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FOURIER-MUKAI TRANSFORMS OF LINE BUNDLES ON
DERIVED EQUIVALENT ABELIAN VARIETIES

MARTIN G. GULBRANDSEN

We study the Fourier-Mukai functor D(Y )→ D(X) induced by the
universal family on a fine moduli space Y for simple semihomogeneous
vector bundles on an abelian variety X . The main result is that the Fourier-
Mukai transform of a very negative line bundle on Y is ample if and only
if the bundles parametrized by Y are nef.

1. Introduction

In connection with their work on Generic Vanishing and related topics [10],
Pareschi and Popa raise the following question: Let Y be a fine moduli space of
stable sheaves on a smooth projective variety X , and fix a universal family E on
X×Y . Let L be an ample line bundle on Y , let d = dimY and put

Gn = Rd p1∗
(

p∗2(L
−n)⊗E

)
(1.1)

where pi denote the projections from X ×Y . Under suitable hypotheses (for
instance as in Example 2.4), the sheaf Gn is locally free for n sufficiently large;
it is the Fourier-Mukai transform of L −n with kernel E . What can be said about
these bundles? In particular, are they stable, and are they ample?

In this text we work out the following special case:
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Theorem 1.1. Let X be an abelian variety and Y a fine moduli space of simple
semihomogeneous bundles on X. Fix an ample line bundle L on Y and define
Gn by (1.1). Then, for sufficiently large n, the following holds:

1. Gn is a simple semihomogeneous bundle. In particular it is stable.

2. Gn is ample if and only if the bundles E |X×{y} parametrized by Y are nef.

The definition of semihomogeneous bundles is recalled in Section 2. Our
viewpoint is that their moduli spaces are of the simplest possible form: In the
mostly expository sections 3 and 4 we recall results of Mukai and Orlov showing
that any moduli space Y of semihomogeneous bundles on X is again an abelian
variety of the same dimension as X , and the Fourier-Mukai functor associated to
a universal family is an equivalence D(X) ∼= D(Y ) of derived categories. Con-
versely, any Fourier-Mukai equivalence between abelian varieties, with locally
free kernel, is of this form: The Fourier-Mukai kernel gives Y the structure of a
moduli space for semihomogeneous vector bundles on X .

Any line bundle is semihomogeneous, and the prototype for a moduli space
of semihomogeneous sheaves is the dual abelian variety Y = X̂ , equipped with
the normalized Poincaré bundle P . In this case, the above theorem is well
known; in fact the bundle Gn is stable and ample already for n = 1. This can
be deduced from a result of Mukai [5], saying that the pullback of G1 under the
canonical isogeny

φL : X̂ → X , ξ 7→ T ∗
ξ
(L )⊗L ∨

(viewing X as the dual of X̂), is just

H0(X̂ ,L )⊗k L ,

i.e. a direct sum of a suitable number of copies of L itself.
One motivation for studying bundles of the form Gn is the rôle they play in

Hacon’s and Pareschi-Popa’s approach to Generic Vanishing: Returning to the
general case, with Y an arbitrary moduli space of sheaves on a smooth projective
variety X , we say that a sheaf F on X satisfies Generic Vanishing with respect
to the universal family E if, for each i, the closed set{

y ∈ Y H i(X ,F ⊗Ey) 6= 0
}

has codimension at least i. A criterion of Pareschi and Popa, generalizing work
of Hacon, says that the bundle Gn can be used to detect Generic Vanishing.
Namely, F satisfies Generic Vanishing if and only if

H i(X ,F ⊗Gn) = 0
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for all i > 0. Here, it is enough to test with a bundle Gn associated to a fixed
ample line bundle L and a fixed, but large, integer n. This criterion, together
with Mukai’s description of Gn in the case of an abelian variety and its dual,
has been used by Hacon [1] and Pareschi-Popa [10] to generalize the Green-
Lazarsfeld Generic Vanishing theorem. The upshot is that a good understanding
of the bundles Gn, and in particular their positivity properties, is required to
make the Generic Vanishing criterion effective.

The first part of the theorem (with weaker hypotheses) is obtained as Corol-
lary 4.2, as an immediate consequence of the results of Mukai and Orlov. The-
orem 7.2 is a more precise version of the second part: We prove that the bundle
Gn always satisfies an index theorem, and its index can be computed. By de-
manding its index to be zero, we arrive at the criterion for ampleness, stated as
Corollary 7.3.

This project was initiated during the summer school Pragmatic 2007 in Cata-
nia, Italy. I am most grateful to Mihnea Popa and Giuseppe Pareschi, not only
for their lectures, but also for putting an immense effort into helping each par-
ticipant identify and develop concrete and accessible problems.

2. Terminology

Throughout, let X denote an abelian variety of dimension g over an algebraically
closed field k of characteristic zero. We write X̂ for the dual abelian variety. The
normalized Poincaré line bundle on X× X̂ is denoted P .

For each point x∈ X , we write Tx : X→ X for translation by x. A line bundle
is homogeneous if it is invariant under all translations. Via the Poincaré bundle,
points in X̂ correspond to homogeneous line bundles on X and vice versa. We
denote points in X̂ by Greek letters ξ ,ζ , . . . , and we use the same symbols for
the corresponding homogeneous line bundles on X .

If L is an arbitrary line bundle on X , we write K(L )⊆ X for the subgroup
of points x ∈ X satisfying T ∗x (L )∼= L .

We use the words vector bundle and line bundle as synonyms for locally free
sheaf and invertible sheaf. By stability, we mean Gieseker-stability with respect
to any fixed polarization, the choice of which will not matter to us.

Definition 2.1 (Mukai [4, 6]). A coherent sheaf E on X is semihomogeneous if
the locus

Γ(E ) = {(x,ξ ) ∈ X× X̂ T ∗x (E )∼= E ⊗ξ}

has dimension g.

If E locally free, then it is semihomogeneous if and only if the following
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condition holds: For each x ∈ X , there is a ξ ∈ X̂ , such that

T ∗x (E )∼= E ⊗ξ .

The equivalence with the definition given above follows from noting that the
kernel of the first projection p1 : Γ(E )→ X is finite: In fact, its kernel is con-
tained in the group of r-torsion points X̂r, where r is the rank of E .

Next we set up notation for the Fourier-Mukai transform. We write D(X)
for the bounded derived category of a variety X , equipped with the autofunctors
C 7→ C [i] that shift a complex C the specified number i steps to the left. We
view a sheaf as a complex concentrated in degree zero; thus D(X) contains the
category of coherent sheaves. Let X and Y be two varieties (both will be abelian
varieties in our context), and let

X
p1←− X×Y

p2−→ Y

denote the projections. To any coherent sheaf E (or, more generally, any boun-
ded complex) on the product X×Y , we associate a pair of functors between the
derived categories of X and Y :

Definition 2.2. The Fourier-Mukai functors with kernel E are the two functors

ΦE : D(X)→ D(Y ), ΦE (−) = Rp2∗(p∗1(−)
L
⊗E )

ΨE : D(Y )→ D(X), ΨE (−) = Rp1∗(p∗2(−)
L
⊗E ).

We write Φi
E (−) and Ψi

E (−) for the i’th cohomology sheaf of ΦE (−) and
ΨE (−).

Definition 2.3. Given a triple (X ,Y,E ) as above and a coherent sheaf F on X ,
we say that

1. F satisfies the index theorem (IT) with respect to E if there exists an
integer i0 such that

H i(X ,F ⊗ E |X×{y}) = 0 for all i 6= i0 and all y ∈ Y .

2. F satisfies the weak index theorem (WIT) with respect to E if there exists
an integer i0 such that

Φ
i
E (F ) = 0 for all i 6= i0.
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Similarly, the vanishing of H i(Y,(−)⊗ E |{x}×Y ) and Ψi
E (−) defines the

properties IT and WIT for sheaves on X .
Suppose that the kernel E of the Fourier-Mukai functor is a Y -flat coherent

sheaf. Then the base change theorem in cohomology shows that IT implies WIT.
The integer i0 in the definition will be referred to as the E -index of F , denoted
iE (F ).

Example 2.4. Let X and Y be projective varieties, and let E be a vector bundle
on X×Y . Assume that Y has a dualizing sheaf ωY . If L is an ample line bundle
on Y and n is sufficiently large, then L −n satisfies IT with respect to E , and its
E -index is d = dimY . This follows from Serre’s theorems: We have

H i(Y,L −n⊗ E |{x}×Y )∼= Hd−i(Y,L n⊗ E |∨{x}×Y ⊗ωY )
∨

and the latter vanishes for n sufficiently large if i 6= d. The bound on n can be
made independent of x, by using that the vanishing of the cohomology vector
spaces above is an open condition on x ∈ X .

Definition 2.5. Let F be a coherent sheaf on X satisfying WIT with respect
to E , and let i0 denote its E -index. The Fourier-Mukai transform of F with
respect to E is the coherent sheaf Φ

i0
E (F ).

When we do not specify the kernel explicitly, we will mean the Fourier-
Mukai functor with respect to the Poincaré line bundle on X × X̂ . Thus, in this
case, we will write Φ and Ψ with no subscript, and, if F satisfies WIT, its index
(i.e. its P-index) is denoted i(F ). In this case we also use the notation

F̂ = Φ
i(F )(F )

for the Fourier-Mukai transform.

3. Moduli spaces of semihomogeneous bundles

Let M be the (quasi-projective) moduli space of stable vector bundles on X . The
following results are due to Mukai [4]:

1. Every semihomogeneous bundle is semistable, and every simple semiho-
mogeneous bundle is stable, with respect to any polarization.

2. For every simple (in particular, every stable) vector bundle E on X , we
have

dimk Ext1X(E ,E )≥ g

with equality if and only if E is semihomogeneous.
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By (1), simple semihomogeneous bundles are parametrized by a certain locus
in M. Since the tangent space to any bundle E ∈M is canonically isomorphic
to Ext1X(E ,E ), point (2) gives a geometric characterization of this locus, as the
points in M with tangent space of minimal dimension g. For these results we
refer to the very readable original paper of Mukai. Here we essentially only
make a remark:

Proposition 3.1. Let E be a stable bundle, and let Y ⊆ M be the connected
component containing E . Then the following are equivalent.

1. E is semihomogeneous

2. The tangent space to Y at E has dimension g.

3. Y is an abelian variety isogeneous to X.

Proof. The equivalence of (1) and (2) is Mukai’s theorem. Furthermore, it is
obvious that (3) implies (2). We next show that (1) implies (3).

Let Q be the determinant of E . We can form a commutative diagram

X̂
τ

- Y

X̂
δ?rX̂

-

where the twisting map τ sends a homogeneous line bundle ξ ∈ X̂ to E ⊗ξ and
the determinant map δ sends a sheaf F ∈ Y to the homogeneous line bundle
det(F )⊗Q−1. The composition is multiplication by r, since det(E ⊗ ξ ) ∼=
Q⊗ξ r.

Since the composed map rX̂ is finite, so is τ , and hence its image is g-
dimensional. The bundles parametrized by the image of τ are clearly semiho-
mogeneous, hence, using the equivalence (1)⇐⇒ (2), we conclude that Y is
nonsingular and g-dimensional at all points of τ(X̂). Since Y is connected this
implies that τ(X̂) = Y , and so Y is a nonsingular g-dimensional variety.

Now let Y (Q)⊂Y be the subscheme δ−1(0), i.e. the locus in Y parametriz-
ing bundles with fixed determinant Q. Then there is a Cartesian diagram

X̂×Y (Q) - Y

X̂
? rX̂ - X̂

δ?

where the left map is projection onto the first factor and the top map sends a
pair (ξ ,F ) to the tensor product F ⊗ξ . In particular, the determinant map δ is
locally trivial in the étale topology. Since Y is nonsingular, this implies that δ is
étale. A variety admitting an étale map to an abelian variety is itself an abelian
variety [7, Section 18], so we are done.
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4. Derived equivalent abelian varieties as moduli spaces

Let X and Y be abelian varieties, and suppose there exists a derived equivalence

D(X) ∼→ D(Y ).

By results of Orlov [9], any such equivalence is a Fourier-Mukai transform ΦE ,
with kernel a sheaf E (i.e. a complex concentrated in one degree, although not
necessarily degree zero) on the product X ×Y . Moreover, this sheaf is semiho-
mogeneous. The semihomogeneity is perhaps only almost explicit in Orlov’s
work — so here is a short account:

Associated to E , Orlov constructs an isomorphism

f : X× X̂ ∼→ Y × Ŷ ,

which on points is given by

f (x,ξ ) = (y,ζ )
m

T ∗(x,y)(E )∼= E ⊗ (p∗1(ξ
−1)⊗ p∗2(ζ )).

This says that a quadruple (x,ξ ,y,ζ ) belongs to the graph of f if and only if
(x,y,ξ−1,ζ ) belongs to Γ(E ), with notation as in Section 2. Since the graph of
f is 2g-dimensional, so is Γ(E ), which shows that E is semihomogeneous.

For simplicity, we will assume that E is also locally free.

Proposition 4.1. Let X and Y be abelian varieties and E a vector bundle on
their product X×Y . Then the following are equivalent.

1. The Fourier-Mukai transform ΦE : D(X) → D(Y ) with kernel E is an
equivalence.

2. The variety Y , equipped with the family E , is a fine moduli space of simple
semihomogeneous vector bundles on X.

Proof. By a criterion of Bondal and Orlov [2, Corollary 7.5], the functor ΦE is
fully faithful if and only if

Hom(Ey,Ey) = k for all y (4.1)

Exti(Ey,Ey′) = 0 for all i and y 6= y′, (4.2)

where Ey = E |X×{y}. We also need the fact that, by the triviality of the canon-
ical bundles on X and Y , the functor ΦE is fully faithful if and only if it is an
equivalence [2, Corollary 7.8].
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First assume that Y , equipped with E , is a moduli space of simple semiho-
mogeneous vector bundles on X . Then (4.1) is satisfied since the fibres Ey are
simple, and (4.2) follows from Mukai’s work on homogeneous and semihomo-
geneous vector bundles — see Lemma 4.8 in Orlov’s paper [9]. So ΦE is fully
faithful and hence an equivalence.

Conversely, assume ΦE is an equivalence. Since (4.1) is satisfied, the fibres
Ey are simple, and they are semihomogeneous since E is a semihomogeneous
bundle on X ×Y . Since E is locally free, it is flat over Y , and so induces a
morphism

f : Y →M

to the moduli space M of stable sheaves on X . By Proposition 3.1, this map f
hits a component M′ of M which is an abelian g-dimensional variety. Since (4.2)
is satisfied for i = 0, all distinct fibres Ey and Ey′ are non isomorphic, which says
that f has degree 1. Thus f is an isomorphism, being a degree 1 map between
abelian varieties of the same dimension.

Corollary 4.2. Let Y be a fine moduli space for simple semihomogeneous vector
bundles on X, with a fixed universal family E . Let L be a line bundle on Y
satisfying IT with respect to E . Then the Fourier-Mukai transform G of L with
respect to E is a simple semihomogeneous vector bundle on X. In particular it
is stable.

Proof. By the proposition, the functor ΦE is an equivalence of categories, which
implies that ΨE is an equivalence also [2, Remark 7.7]. Thus

ExtiY (L ,L )∼= ExtiX(G ,G )

for all i. In particular, for i = 0 we get that G is simple, and for i = 1 we get
dimExt1X(G ,G ) = g, which implies G is semihomogeneous, by Proposition 3.1.
Finally, we apply Mukai’s result, quoted in the previous section, to conclude
that G is stable.

The first part of Theorem 1.1 follows, since the very negative line bundle
L −n considered there satisfies IT, by Example 2.4.

5. Index theorems

Recall that a line bundle on an abelian variety is degenerate if its Euler charac-
teristic is zero; otherwise it is nondegenerate. By Mumford’s vanishing theorem
[7, Section 16], every nondegenerate line bundle L satisfies IT (with respect to
the Poincaré bundle). In this section we show that degenerate line bundles sat-
isfy WIT. This is probably well known, but I do not know of a suitable reference.



FOURIER-MUKAI TRANSFORMS OF LINE BUNDLES 131

The starting point is the following construction by Kempf [8]: Let L be a
degenerate line bundle on X . Let Y ⊆ X be the identity component of K(L ),
with reduced structure, and let

π : X → X/Y

be the quotient. Then there exist a nondegenerate line bundle M on X/Y and a
homogeneous line bundle ξ ∈ X̂ such that

L ∼= π
∗(M )⊗ξ . (5.1)

Proposition 5.1. Let L be a degenerate line bundle, and write L = π∗(M )⊗ξ

with M nondegenerate, as above. Then L satisfies WIT with index

i(L ) = dimK(L )+ i(M )

and its Fourier-Mukai transform is

L̂ ∼= T ∗
ξ
(π̂∗(M̂ )).

Remark 5.2. Note that, since π̂ is an embedding, the expression π̂∗(M̂ ) above
simply means M̂ considered as a torsion sheaf on X̂ .

Proof. For any homogeneous line bundle ξ , there is a natural isomorphism [5]

Φ((−)⊗ξ )∼= T ∗
ξ
(Φ(−)).

Furthermore, for an arbitrary homomorphism φ : X → Z of abelian varieties,
there is an isomorphism [11, Section 11.3]

Φ◦Lφ
∗[d]∼= Rφ̂∗ ◦Φ

where d = dimX−dimZ. Note that Φ on the left hand side is the Fourier-Mukai
functor with kernel the Poincaré bundle on X× X̂ , whereas the same symbol on
the right hand side is the Fourier-Mukai functor with kernel the Poincaré bundle
on Z× Ẑ.

Since π is flat and π̂ finite, we have Lπ∗ = π∗ and Rπ̂∗ = π̂∗. Thus we get,
for every integer i,

Φ
i(π∗(M )⊗ξ )∼= T ∗

ξ
(Φi(π∗(M )))

∼= T ∗
ξ
(π̂∗(Φi−d(M ))),

where d = dimY , which is also the dimension of K(L ). Since M is nondegen-
erate, it satisfies IT with some index i(M ). The claim follows.
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Corollary 5.3. Every line bundle L satisfies WIT. The index of a line bundle
satisfies

1. i(L ∨) = g+dimK(L )− i(L ),

2. i(L ⊗ξ ) = i(L ) for all ξ ∈ X̂ ,

3. i(L n) = i(L ) for all n > 0.

Proof. When L is nondegenerate, these are standard facts. Otherwise, write L
as π∗(M )⊗ ξ as before, and apply the nondegenerate case to M . The claims
then follow from the formula for i(L ) in the proposition, since dimK(L ) is
invariant under dualizing, twisting with homogeneous line bundles and positive
tensor powers.

As a further application of Proposition 5.1, we give a characterization of nef
line bundles on abelian varieties.

Corollary 5.4. The following are equivalent conditions on a line bundle L .

1. L is nef

2. i(L ) = dimK(L )

3. There exist an abelian subvariety Y ⊆ X and an ample line bundle M on
X/Y such that

L ∼= π
∗(M )⊗ξ

where π : X → X/Y is the quotient and ξ ∈ X̂ is a homogeneous line
bundle.

Remark 5.5. In particular, on a simple abelian variety, a nef line bundle is either
ample or algebraically equivalent to OX .

Proof. By the results of Kempf, we may write an arbitrary line bundle L as
in (3), with Y the identity component of K(L ) and M nondegenerate, but not
necessarily ample. Let (3’) be the condition that M is ample, for this particular
choice of Y . Clearly (3’) implies (3), and (3) implies (1).

Condition (1) implies (3’): If π∗(M )⊗ ξ is nef, then also π∗(M ) is nef.
But then M was nef to begin with [3, Example 1.4.4]. Since M is also nonde-
generate, it is ample [3, Corollary 1.5.18].

Conditions (2) and (3’) are equivalent: By Proposition 5.1, condition (2)
holds if and only if M has index zero. But a nondegenerate line bundle has
index zero if and only if it is ample.
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6. Semihomogeneous vector bundles

Let E be a simple semihomogeneous vector bundle on X . Recall the following:

1. There are an isogeny f : Y → X and a line bundle L on Y such that
f ∗(E )∼= L ⊕r.

2. There are an isogeny f : Y → X and a line bundle L on Y such that
E ∼= f∗(L ).

In fact, among simple vector bundles, the semihomogeneous ones are charac-
terized by either of these two properties [4]. In this section we will use these
facts to reduce many questions about E to the corresponding questions about its
determinant line bundle Q.

The notion of degeneracy can be extended plainly from line bundles to sim-
ple semihomogeneous vector bundles:

Definition 6.1. A simple semihomogeneous vector bundle E is degenerate if its
Euler characteristic χ(E ) is zero. Otherwise it is nondegenerate.

Proposition 6.2. Let E be a simple semihomogeneous vector bundle on X, with
determinant line bundle Q.

1. E is nondegenerate if and only if Q is nondegenerate.

2. E is ample if and only if Q is ample.

3. E is nef if and only if Q is nef.

Proof. Part (1) follows from Mukai’s formula [4]

χ(E ) = χ(Q)/rg−1

for the Euler characteristic, where r is the rank of E .
To prove (2) and (3), choose an isogeny f : Y → X such that f ∗(E )∼= L ⊕r

for a line bundle L on Y . Then f ∗(Q)∼= L r. Since f is a finite map, a vector
bundle on X is ample (nef) if and only if its pullback to Y is. Thus we have

E ample (nef) ⇐⇒ L ⊕r ample (nef)

Q ample (nef) ⇐⇒ L r ample (nef)

and the two statements on the right are both equivalent to the ampleness (nef-
ness) of L .

Proposition 6.3. Let E be a simple semihomogeneous vector bundle. Then E
satisfies WIT, and its index equals the index of its determinant line bundle. If E
is nondegenerate, then it satisfies IT.
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Proof. Let
f : Y → X

be an isogeny such that f∗(L )∼= E for some line bundle L on Y . Being a line
bundle, L satisfies WIT by Corollary 5.3. Furthermore we have [5, Section 3]

Φ
i( f∗(L ))∼= f̂

∗
(Φi(L )),

which implies that E satisfies WIT, and its index equals the index of L .
Next we show that the index of L equals the index of the determinant Q of

E . Firstly, we have [4, Lemma 6.21]

f ∗(Q)∼L d (algebraic equivalence) (6.1)

where d is the degree of f . By Corollary 5.3, it follows that L and f ∗(Q) have
the same index. Moreover [5, Section 3], there are isomorphisms

Φ
i( f ∗(Q))∼= f̂∗(Φi(Q))

for all i, so f ∗(Q) has the same index as Q. This proves the first part.
Since the dual map f̂ is again an isogeny, we have that every ζ ∈ Ŷ is a

pullback f ∗(ξ ) of some element ξ ∈ X̂ . By the projection formula,

H i(Y,L ⊗ζ )∼= H i(X , f∗(L ⊗ζ ))∼= H i(X ,E ⊗ξ ).

Thus L satisfies IT if and only if E does. But, if E is nondegenerate, then so is
Q by Proposition 6.2, and then (6.1) shows that

dg
χ(L ) = χ(L d) = dχ(Q) 6= 0,

so L is nondegenerate also. Thus L satisfies IT. By what we just said, this
proves that E satisfies IT.

7. Fourier-Mukai transforms of negative line bundles

Lemma 7.1. Let Y be a fine moduli space of simple semihomogeneous vector
bundles on X, and let E be a fixed universal family on X×Y .

1. There exists an isogeny f : X̂ → Y , that sends an element ξ ∈ X̂ to the
bundle E |X×{0}⊗ξ .

2. For every i, the sheaf Ri p2∗(E ) is zero if and only if Φi(E |X×{0}) is zero.
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Proof. The bundle
P⊗ p∗1(E |X×{0})

on X × X̂ , considered as a family over X̂ of simple semihomogeneous bundles,
induces a map f : X̂ → Y . This is the map required in the first part.

Moreover, by the universal property of Poincaré bundle, there exists a line
bundle L on X̂ such that

(1X × f )∗(E )∼= p∗2(L )⊗P⊗ p∗1(E |X×{0}).

Hence, using flat base change for higher push forward and the projection for-
mula, we get

f ∗(Ri p2∗(E ))∼= Ri p2∗((1X × f )∗(E ))
∼= Ri p2∗(p∗2(L )⊗P⊗ p∗1(E |X×{0}))
∼= L ⊗Ri p2∗(p∗1(E |X×{0})⊗P)

= L ⊗Φ
i(E |X×{0}).

The second part of the lemma follows.

Theorem 7.2. Let Y be a fine moduli space of simple semihomogeneous vector
bundles on X, and let E be a fixed universal family on X ×Y . Also let L be an
ample line bundle on Y . There exists an integer n0 such that for all n≥ n0,

1. the line bundle L −n satisfies the index theorem with respect to E , and its
index is g;

2. the Fourier-Mukai transform Gn = Ψ
g
E (L −n) with respect to E is nonde-

generate and its index is

i(Gn) = i(Q)−dimK(Q)

where Q is the determinant line bundle of any of the bundles E |X×{y}
parametrized by Y .

Proof. The first part was established in Example 2.4. For the second part, we
make use of the Fourier-Mukai equivalence induced by E . As L −n has index
g, we have

ΨE (L −n)[g]∼= Gn (7.1)

(where, as usual, the bundle on the right hand side is considered as a complex
concentrated in degree zero). Furthermore, by Proposition 6.3, the semihomo-
geneous vector bundle E |∨X×{0} satisfies WIT with index equal to the index of
Q∨, which is

i0 = g+dimK(Q)− i(Q)
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by Corollary 5.3. Now apply Lemma 7.1 to E ∨ to conclude that Φi
E ∨(OX) =

Ri p2∗(E ∨) vanishes for all i except i0. In other words,

ΦE ∨(OX)∼= F [−i0] (7.2)

for some coherent sheaf F . Since ΦE ∨(−) and ΨE (−)[g] are quasi-inverse
functors [2, Proposition 5.9], the isomorphisms (7.1) and (7.2) give

H p(X ,Gn)∼= Extp
X(OX ,Gn)

∼= HomD(X)(OX ,Gn[p])
∼= HomD(Y )(ΦE ∨(OX),L −n[p])
∼= HomD(Y )(F [−i0],L −n[p])
∼= Extp+i0

Y (F ,L −n)
∼= Hg−p−i0(Y,F ⊗L n)∨,

using Serre duality in the last step. If n is sufficiently large, the cohomology
group in the last line vanishes if and only if p differs from

g− i0 = i(Q)−dimK(Q).

Thus we have proved that H p(X ,Gn) is nonzero if and only if p has this value.
On the one hand, this shows that if Gn satisfies IT, then this p is its index.
On the other hand, it also shows that Gn is nondegenerate, so it satisfies IT by
Proposition 6.3, and we are done.

The second part of Theorem 1.1 follows:

Corollary 7.3. The vector bundle Gn is ample for n sufficiently large if and
only if the bundles E |X×{y} parametrized by Y are nef (equivalently, have nef
determinant).

Proof. A line bundle is ample if and only if its is nondegenerate and has in-
dex 0. The same holds for any simple semihomogeneous vector bundle, since
both conditions “ample” and “nondegenerate of index 0” can be tested on the
determinant line bundle, by Proposition 6.2 and Proposition 6.3. Hence, by the
theorem, the simple semihomogeneous vector bundle Gn is ample if and only
if i(Q) = dimK(Q), where Q is the determinant of E |X×{y}. By Corollary
5.4 this is equivalent to Q being nef, which again is equivalent to nefness of
E |X×{y}, by Proposition 6.2.
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