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- UNIQUENESS OF SOLUTIONS OF THE CAUCHY
PROBLEMS FOR FIRST ORDER PARTIAL
DIFFERENTIAL-FUNCTIONAL EQUATIONS

DANUTA JARUSZEWSKA-WALCZAK

Consider the Cauchy problem

(a) {szi(x;y)=fi(xvy’z(x,}’)yz('),DyZi(x,y))y l:1a9m
Z(x,y) = alx, y) for (x, y) € Q

where @ = (o, ..., an) is given function defined on the initial set 2y C
R 2060 = @Gz 9), 2() = @10), ..., zm () and
Dyzi(x,y) = (Dy,zi(x,y), ..., Dy,zi(x,y), i =1,...,m. '

We formulate a criterion of uniqueness of solutions of (a) using the com-
parison function of the Kamke type. This will be a generalization of classi-
cal results concerning first order equations with partial derivatives. We prove
that the uniqueness criteria of Perron and Kamke type for differential-function
problems are equivalent if given functions are continuous. ' '

1. Introduction.

Consider the Cauchy problem

D Dyzi(x,y) = fi(x,y,z2(x,¥),2(:), Dyzi(x,y), i=1,....,m
z(x,y) =a(x,y) for (x,y)e ‘
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where o = (ay, ..., o) is given function defined on the initial set Q;,
2, y) = (1%, ¥), sz (X, ¥)) 5 2C) = (21(), ooy zZm ()
and
Dyzi(x,y) = (Dyzi(x,¥), ..., Dy,zi(x, ), i=1,...,m.

We formulate a criterion of uniqueness of solutions of (1) using the com-
parison function of the Kamke type.

Equations with partial derivatives of the first order have the following prop-
erties: the problem of existence of their solutions is equivalent with the problem
of solving of certain system of ordinary differential equations. The investigations
of properties of partial differential equations is connected with investigations of
ordinary differential equations and inequalities. Such problem as: estimations of
solutions of partial equations, estimations of domain of solutions, criterions of
stability, conditions for uniqueness, estimation of the difference between solu-
tion and approximate solution are classical examples ([1], [2],[4],[8]).

Consider the initial-value problem

(2)

{ Dyz(x,y) = F(x,y,2(x,y), Dyz(x, y)), (x,y) € H
Z(xp,y) =w(y) for yel

where

H={xy :xelxox0+a), y=01..., ),
i =30 < b — Mi(x —x0), i = 1,...,n}

a,bi >O7bi zaMi’i: 1,---,71,10'—‘{(X,y)GHIxsz}.
Assume that F : H x R x R*” — R and that for some function o the

following inequality

3) 1F(.y,p.q) = F,y, 5. DI <o (x — %0, Ip = ) + Y Milgi — Gl

i=1

is true on H x R If o is a Perron type comparison function then there exists
at most one solution of the problem (2) which is continuous, possesses first order
partial derivatives in H and total derivative in 3 H N ((xg, xo + a) x R*). If &
is Kamke’s type comparison function and (3) is fulfilled in (H \ Ij) x R x R”
then Cauchy problem (2) admits at most one solution in the class of functions
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satisfying the above conditions and possessing a continuous partial derivative

with respect to x in [y (see [8], Chapter VII).
In this paper we extend the above theorems on the case first order partlal

differential-functional problems. This will be a generalization of the results pub-
lished in [3], [5], [9], [11] (see also ([10]) as well as of classical results concern-
ing first order equations with partial derivatives. We prove that the uniqueness
criteria of Perron and Kamke type for d1fferent1al functional problems are equiv-
alent if given functions are continuous.

2. Uniqueness of solution of the Cauchy problem.

‘Suppose that f = (f1,..., fmw): HXR" x C(HyU H,R™) x R* — R™
and o = (ay, ..., o) : Hy — R™ where H is the Haar pyramld definedinn. 1
and H; is an 1n1t1al set

Hy= {03 i x el =il i =yl by, i =1,..,n),

79 > 0.
We consider the Cauchy problem

D,zi(x,y) = ﬁ (x, y,2(x, ¥),2(), Dyzi(x,¥)), (x,y)€H,
(4) | i=1,.
zi(x,y) =aij(x,y) for (x,y)eHy i=1,...,m
where z() = (z21(:), ..., Zm(*)).
The uniqueness of solutions of the Cauchy problem with f = (f1, ..., f»)

independent on the functional argument was considered in many papers. In [1],
[4],[8] we can find theorems on the uniqueness with linear and with nonlinear

comparison functions.

Applications of the theory of differential and differential-functional in-
equalities to question like: estimate of the solution of (4), estimate of the differ-
ence between two solutions, uniqueness criteria of Perron type were considered
in [3], [5], [10], [11].

Let us denote

Hy={(¢.neH UH:§ <x}, xelxp,xo+a),
Ss={y:(o+t,y)eH}, 1el0,a)

and Iy is defined in 1. We assume that the Cauchy problem (4) is of Volterra type,

i.e.

5) { f&y, pou(),q) = fx,y,p,v(),q) ifu,veC(HyUH,R")
u(g’n) = v(é’ 77) for (S) n)EHx
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Let |lw|] = max |w; | for w = (Wi,...,wWy) € R" and |z|l, =

sup {l|z(&, Ml : &, 77) 6 H } for z € C(Hy U H, R™).
A function z : Hy U H — R™ will be called the function of class Dy in

HyU H if .
(i) z is continuous on Hy U H and possesses the total differential on § =
dH N ((xo0, xo +a) x R");
(ii) z has first derivatives with regard to (x, y) on H and the derivative D,z is
continuous on /.

Assumption Hy. Suppose that . :
1) the function f : H x R™ x C(Ho UHR") xR* - R™ satlsﬁes the

‘Volterra condition (5);

2) o : (0,a) x Ry x Ry — Ry, the functlon op(t,w) = o(t,w, w) is
continuous on (0, a) x R, and oy(z, 0) = 0 for ¢ € (0, a);

3) foreach y € (0, a) the function w(t) =0, r € (0, y) is the unique solution
of the problem

W' (2) = 0 (1, w(t)) fort & (O, ) and lim w(e) _tgr&—fﬁ = 0;

4) the estimation

©) I y (. q) — £, . BrvC. DI <

<o(x =0 lp = pll, lu—vll) + ZMquk — gl
4 k=1

holds for (x,y) e H\ Iy, u, v EC(HO UH,R"), p, peR"”, q,geR".

If (,) C Rand w : (o, B) = R then DTw(t)(D_w(z)) is the right-
hand upper (the left-hand lower) Dini’s derivative of w at the point ¢ € (7, B).
In the proof of uniqueness theorem we shall use the following lemma.

Lemma 1. Suppose that

i) op € C((O a) x Ry, R,) and oy satzsﬁes the condition 3) of Assumption
Hy;
ii) o€ C([0,a),R,), @ is nondecreasmg and (0) = 0, DT¢(0) =0;
i) I, = {t € (0,a) : o) > O, there exists ¢ > 0 such that for each
TE(t—e¢,t) p(r) '<.(p(t)} and for t € I, we have D_¢(t) < o (t, ¢(¢)).

Under these assumptions ¢(t) = 0 for t € [0, a).
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The proof of this lemma is similar to the proof of the third comparison
theorem in [8].
Now we prove

Theorem 1. IfAssumption H, is satisfied then the solution of class Dy on HyUH
of the problem (4) is unique.

Proof. Let u, v be solutions of class Do on HyU H of (4), u = (uy, ..., Up),
v = (V1,...,0y,). Denote r(x,y) = (ri(x,y),...,rm(x,y)) = ulx,y) —
U(X,}’), (x7y)EH’

05 (1) = max ri(o +1, ), t€l0,a), i =1,....m,
Y€

%) (p<f>(z)=max{gog>(r):re[o, t]}, rel0,a), i=1,....m,

p(t) = max p® (), 1€[0,a).

Using Lemma 1 we prove that ¢(t) = 0 for ¢ € [0, a). It follows from (7) that
¢ € C([0,a),R,) and that ¢(0) = 0. There exists {, 1 < { < m such that
9(0) = ¢ (0). Then D*¢(0) < D™ (0) and D+p®(0) < Dt (0). We
prove that D+g0(()i )(O) = 0. It follows from (7) that cpéi)(O) = 0. Let {t;} be a
sequence suchthat0 < 1, <a,k=1,2,...,

@
I3 R
lim # =0 and lim o () _ D*{(0) .

k—+o00 k—+o00 Iy
Let {y®} be a sequence such that y¥ € 5, , k = 1,2, ...,

08 (1) = Jui (oo + 1, y®) = vi(xo + 16, YOI, k=1,2,...

]

and

lim y® =y ely.
k—>+00

Then we have

o () 1

= — ui (xo + e, y¥) — vi(xo + t, Y| =
I Ik

= | Dxu; (xi, y®) — Dyvi (i, y®)|
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where xp € (xp,xp + #%). Since Dyu; and D,v; are continuous on J, and

lim x; = xq it follows that
k— 00

D¥ ¢ (0) = | Dyu; (x0, y0) — Dyvi(x0, yo)| =
= Ifl (xov.)’b, a(x()fyO)a u(-), Dyai (X(), yO)) -
~ fi(x0, Yo, @(x0, y0), v(-), Dyct; (x0, y0))| =

Then we have DT« (0) = 0. |

Supp'ose that £* € (0, a), ¢(t*) > 0 and there exists ¢ > 0 such that for each
T € (1™ —¢,t*) we have (1) < @(2*). We prove that D_g(t*) < o (t*, p(t*)).
There exist iy, 1 < iy < m such that (t*) = ¢ (+*). Then

D_¢(t*) < D_p@ (")
and . | 5
e (1) < p(1) < p(t*) = @ F*) for Te(t* —e, t*).

It follows from the above estimation and from (7) that cp(iO) (t*) = U0 (1*).

Denote x* = = xg + t* and let us take y* € S+ such that (p ’°) (*) = |ri, (x*, ).
Let (x*, y*) € IntH. Then D r,o(x y*) =0 and

go(i°) (t* + h) — (p(io) (t*) -
A =

D_p(t*) < D_e™ (t*) = llilm(%nf

(o) /% (o) /% :
. M t + h - t ;
< l}zm(l)nf (pO ( 2 900 ( ) — D_»(p(()lo)(t*) < !Dxrio (x*, y*)l <

< f (T G, ¥, u(), Dy (3%, y)) —
- ﬁo(X*’ y*, .U(x*’ y*)9 v('); Dyvio(X*a y*))‘ =<
<o (x = xo, [rG*, YO = vllee) + D My | Dy iy (x*, y*)| =
k=1
= o (t*, o(t*), i = v]lx+) = op(t*, p(£%)) .

Let (x*, y*) € 0 H\ Hy. Then there ex1stsasequence {ki, ... kn}, ki e{l,...,n}
fori =1, , 1 such that

yk=y,§°) bk,+Mkj(x*—x0) for j=1,...,s,
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Yk, =y150)+bk,- — My (x* —x9) for j=s+1,...,p

and -
vE =] < by = MyG* —x) for j=p+l.n,

where s > 1 or p —s > 1 and k; # k; for j # i. For simplicity suppose that
ki = Ir»i=1.
Let gaé"’) (t*) = r;,(x*, ¥*). Then we have
Dyriy(x*,y*) <0 for j=1,...,s,
Dyjrlo(x*’y*)z()for jis+1""’p

and :
Dy riy(x*,y")=0 for j=p+1,...,n
Denote -
m(t) = (xo+1, 9" = by + Mit, ..., y® — b, + M1,
ys+1 + bs1 — Ms+1t’ ceey )’1(;0)‘: — Mpt, }’;4-1’ ces V)

and 7(¢t) = ri,(m(z)) for ¢ €[0, t*]. :

We have 7 € C([0, *], R), F(1) < ¢ (z) for T € [0, t*] and 7(*) = ¢ (r%).

Thus v o .

FO) =70 _ 9" (@) =9 ()
T —t* h T —t*

for T €[0, t*] and |
D_F(t*) = D_g§” (") = D_¢" (1*) = D_p(1).

Since

D_7(t) = Dyriy(m(@)) + ZM Dylrlo(m(t)) - Z M;D,,ri,(m (1))

J=s+1

it follows that

D_F(t*) = Dyriy(x™, y*)+ZMD r,o(x Y ¥y —- Z MDer,O(x ¥y <
j-—-l o j=s+1

< o (x* — xo, 1M, YOI, e = vllee) + ZM,- | Dy, riy (3%, y*>l |
j=1

F MDY M Dy Y=ot~ x0, 0", o pl
Jj=1 Jj=s+1
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Thus D_@(¢*) < oo(t*, (t*)). - :
- Inasimilar way we obtain the above differential inequality in the case when
qoém) (t*) = —ri,(x*, ¥*). From Lemma 1 it follows that ¢(z) = 0 for ¢ € [0, &)

and Theorem 1 is proved. U

We have not assumed the continuity of f on H x R™ x C(HyU H, R™) x
R” in uniqueness Theorem 1. Suppose that f is continuous. We prove that the
Kamke’s type uniqueness theorem for (4) is equivalent to Perron’s type in this

case.

Assumptions H,. Suppose that
1) 0 €eC([0,a) xRy xRy, R,), & is non-decreasing with respect to the last

argument and & (¢, 0,0) = 0 for r € [0, a);
2) the function w(t) = 0 for ¢ € [0, a) is the unique solution of the problem

(8) w'(t) = o @, w), w()), t€(0,a), w0) =0.

A function z : HyU H — R™ will be ca_lled. the function of class D if z
is continuous on Hy U H and possesses the total differential on S and has first

derivatives with regard to (x, y) in Int H. ,
We start with the following theorem of Perron’s type.

Theorem 2. (see [3]). Suppose that
D) f i HxR" x C(HyU H,R™") x R" — R™, f satisfies the Volterra
condition (5). |
ii) The function o satisfies Assumption H, and the estimation

(9) “f(x,y,p,u(),q)—f(X,y,ﬁ,v(),q_)H ..<_

<&@ —x0,lp = Bll, lu = vllx) + ) Milge — Gl
v k=1 '

holds on H x R™ x C(Hy U H, R™) x R".

Under these assumptions the solution z of class D on HyUH of the problem
(4) is unique.

It is easy to see that the Perron’s type comparison function satisfies the
condition 3) of Assumption H;. Suppose that f satisfies the inequality (6) and
o fulfils the condition 2) and 3) of Assumption H;.

We prove that for continuous function f there exists a function & such that the

estimation (9) holds and o satisfies Assumption H,.
The following theorem is generalization of the results due to Olech [6] for

ordinary differential equations.
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Theorem 3. If assumption H, is satisfied, the function f is continuous on H x
R™ x C(Hyp U H,R™) x R" and the function o is non-decreasing with respect
to last argument then there exists the functzon o such that the assumption ii) of
Theorem 2 is satisfied.

Proof. Wedeﬁneforte[(),a),s,-r e]R+,77'=(nl,...,nn)eR’;,(xo—l-t, y) €
H o

h(t,y,s,r, 77)=SUP{IIf(x0+t,y,p,u('),q)_f(x()'i‘t,”y,ﬁ,»v('),é)”:
lp =Dl =s, =0t <7, lgi =Gl <mi, i =1,...,n}

and - _ v
&(t,s,r)y=sup{h(t,y,s,1,6):y€S8}

where 6 = (0,...,0) e R". :
Then ¢ € C([0, a) x Ry x Ry, R,), 6(2,0,0) = 0 for ¢ € [0, a) o is non-
decreasing with respect to the last argument and

If(x, y, P,u() )~ FG, 3, B, v, DI <6 (x = 50, p = Bl Ilu—vllx)+

+ZMquk——qkl on HxR’"xC(HOUH IR"‘)XR"
k=1

We prove that the function @ = 0 is the unique solution of (8).',We have

G(t,s,r) < sup sup {o'(t, 1P = Pl 4 — Vllsgss) :
Y€ .

lp — 131I =5, U = vlste} =0, 5,7).

If ¢ is a solution of (8) then go’(t) = o(t, o), p) < o(t, @), p()),
r€(0,a).

Since ¢(0) = 0 and Dt ¢(0) = 0 it follows that ¢ satisfies all the assumptlons
of the third comparison theorem in [8] and thus (p(t) = O0for:r e [O a). This
completes the proof of Theorem 3. O s
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