SYSTEMS OF INTEGRABLE DERIVATIONS

VITTORIA BONANZINGA

Let A be a commutative k-algebra, with k a subring of A. We give the definition of n-dimensional differentiation of A over k which formally extends the known one of unidimensional differentiation and we study the group of all n-dimensional differentiations of A over k.

In the second part of the work we give some theorems of strong integrability for systems of derivations in terms of n-dimensional differentiation.

Introduction.

Let A be a commutative k-algebra and let $Der_k(A)$ be the module of the k-derivations of A in itself.

If D is a derivation of A over k and char(k) = 0, it is known that D is always strongly integrable over k, i.e. there exists an iterative unidimensional differentiation of A over k which lifts D ([4]).

If char(k) = p > 0 and A is a separable field over k, $D^p = 0$ is a necessary and sufficient condition for the strong integrability ([4]), while if A is a ring separable over k, conditions for the integrability of D such that $D^p = 0$ are given in [1].

Now, considered a system of derivations $\underline{D} = \{D_1, \ldots, D_n\}$ in the sense of [7], [1], non necessary independent, we say that \underline{D} is integrable (strongly

Entrato in Redazione il 21 aprile 1994.

Work carried out with the funds of M.P.I. 60%, while Professor H. Matsumura had a contract in the University of Messina.

integrable) if there exists a n-dimensional (iterative) differentiation of A over k which lifts \underline{D} .

If char(k) = 0, every commutative system of derivations is strongly integrable, while if char(k) = p > 0, systems of strongly integrable derivations are considered in [7].

In this work we study the lifting problem for a system of derivations to a differentiation of dimension n, where n is the number of independent derivations of the system of derivations.

Precisely in n. 1 we define a n-dimensional differentiation and we study its main properties. After having defined a system of integrable and strongly integrable derivations we study the group $HS_k^n(A)$ of the n-dimensional differentiations of A over k.

In n. 2 we show that by the existence of a n-dimensional differentiation in the ring we can deduce theoretic properties of the ring (existence of an A-sequence formed by n elements, analytic independence of the same n elements, etc.).

We obtain theorems of structure for I-adically complete rings, I ideal of the ring, module the strong integrability of a system of independent derivations of the ring expressed by the existence of a differentiation of dimension n.

The author wishes to express her sincere thanks to Professor Matsumura, for his support to the present research and for his helpful advises.

1.- In this work, all rings are assumed to be commutative, noetherian, with a unit element.

Definition 1. Let k be a ring and A be a k-algebra. A n-dimensional differentiation \underline{D} (an infinite n-higher derivation in A) of A is a set of linear maps $\{D_{\alpha}: A \to A; \ \alpha \in \mathbb{N}^n\}$ such that $D_0 = \mathrm{id}_A$ and

(1)
$$D_{\gamma}(a \cdot b) = \sum_{\alpha+\beta=\gamma} D_{\alpha}(a) \cdot D_{\beta}(b)$$

for $a, b \in A$ and $\alpha, \beta, \gamma \in N^n$.

Such a definition is a formal extension of the definition of 1-dimensional differentiation \underline{D} of A (in the sense of Hasse-Schmidt). The set of n-dimensional differentiations of A is denoted by $HS^n(A)$.

As for the 1-dimensional differentiations we can associate to a n-dimensional differentiation, a ring homomorphism E from A into $A[[X_1, X_2, \ldots, X_n]]$ such that $E(a) \equiv a \mod (X_1, X_2, \ldots, X_n)$ and precisely

$$E(a) = \sum_{\alpha} D_{\alpha}(a) X^{\alpha}$$

with $\alpha \equiv (\alpha_1, \alpha_2, \dots, \alpha_n) \in \mathbb{N}^n$, $X^{\alpha} = X_1^{\alpha_1} X_2^{\alpha_2} \dots X_n^{\alpha_n}$.

Then E is a ring homomorphism of A into $A[[X_1, X_2, ..., X_n]]$, and conversely any such homomorphism E comes from a n-dimensional differentiation of A. Sometimes we identify E with \underline{D} .

Let k be a ring and A be a k-algebra. Given a k-algebra homomorphism:

$$\Phi_1: A \to A[X_1, \dots, X_n]/(X_1, \dots, X_n)^2$$

such that

(2)
$$\Phi_1(a) \equiv a \mod (X_1, \dots, X_n)$$

we can associate n derivations of $A: D_1, \ldots, D_n$ and condition (2) can be expressed in this way:

$$\Phi_1(a) = a + D_1(a)X_1 + \ldots + D_n(a)X_n$$
.

Definition 2. Let k a subring of A. A n-dimensional differentiation \underline{D} of A is called a n-dimensional differentiation (or n-differentiation) of A over k if $D_{\alpha}(a) = 0$ for all $\alpha \neq 0$ and for all $\alpha \in k$.

The set of such *n*-differentiations is denote by $HS_k^n(A)$.

Notation. If $\gamma = (\gamma_1, \dots, \gamma_n)$ and $\alpha = (\alpha_1, \dots, \alpha_n)$ then the symbol $\begin{pmatrix} \gamma \\ \alpha \end{pmatrix}$ denotes the product of the binomial coefficients: $\begin{pmatrix} \gamma \\ \alpha \end{pmatrix} = \begin{pmatrix} \gamma_1 \\ \alpha_1 \end{pmatrix} \dots \begin{pmatrix} \gamma_n \\ \alpha_n \end{pmatrix}$.

Definition 3. A n-differentiation \underline{D} is said to be iterative if:

$$D_{\alpha} \circ D_{\beta} = \begin{pmatrix} \alpha + \beta \\ \alpha \end{pmatrix} D_{\alpha+\beta} \quad \text{for all } \alpha, \beta \in N^n.$$

Remark 1. We note that, in characteristic 0, for any commutative set of n derivations D_1, \ldots, D_n , if we put $D_{(h_1, \ldots, h_n)} = \frac{1}{h_1! \ldots h_n!} D_1^{h_1} \ldots D_n^{h_n}$, we get a n-dimensional differentiation and we have $D_{\alpha} \circ D_{\beta} = \begin{pmatrix} \alpha + \beta \\ \alpha \end{pmatrix} D_{\alpha+\beta}$. (In substance, the Definition 3 is a generalization of that one given in [4]).

Definition 3'. We say that a n-differentiation \underline{D} is iterative if the following diagram:

$$A \xrightarrow{E_X} A[[X]]$$

$$\downarrow_{E_{X+Y}} \downarrow_{i} \qquad \downarrow_{E_Y}$$

$$A[[X+Y]] \xrightarrow{i} A[[X,Y]]$$

is commutative, where $X = (X_1, X_2, ..., X_n)$, $Y = (Y_1, Y_2, ..., Y_n)$, i is the inclusion map and $E_Y(X) = X$.

Definitions 3 and 3' are equivalent because the usual check in the classic case holds this case too; more generally, the equivalence follows by the relation

$$(X+Y)^{\alpha} = \sum_{\alpha} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} X^{\beta} Y^{\alpha-\beta},$$

even if X, Y, α , β are n-tuples.

Definition 4. Given n independent derivations $D_1, \ldots, D_n \in \text{Der}(A)$ we say that they form a n-integrable set if there exists a ring homomorphism $E: A \to A[[X_1, X_2, \ldots, X_n]]$ such that

$$E(a) = a + D_1(a)X_1 + \ldots + D_n(a)X_n + \ldots$$

Such an homomorphism E is called n-dimensional integral of D_1, \ldots, D_n .

Definition 5. Given n independent derivations $D_1, \ldots, D_n \in Der(A)$ we say that they form a n-integrable set over k if there exists a differentiation $\underline{D} = \{D_\alpha : A \to A; \alpha \in \mathbb{N}^n\} \in HS_k^n(A)$ with $D_{(0,\ldots,1,\ldots 0)} = D_i$.

Definition 6. We say that differentiations $\underline{D} = \{D_{\alpha} : A \to A; \alpha \in \mathbb{N}^n\}$ and $\underline{D'} = \{D'_{\beta} : A \to A; \beta \in \mathbb{N}^n\}$ commute if D_{α} and D'_{β} commute for every pair (α, β) .

Proposition 1. Let k be a ring. If A is a smooth k-algebra then every set of n independent derivations of A can be lifted to a n-differentiation.

Proof. If D_1, \ldots, D_n is a set of independent derivations of A over k there exists a k-algebra homomorphism:

$$\Phi_1: A \to A[X]/(X)^2$$

(where $X = (X_1, X_2, ..., X_n)$), such that $\Phi_1(a) \equiv a \mod (X)$.

Since A is a smooth k-algebra, we have the following commutative diagram:

For the formal smoothness there exists $\Phi_2: A \to A[X]/(X)^3$ and so, for $\Phi_n: A \to A[X]/(X)^{n+1}$ such that $\Phi_{n-1}(a) \equiv \Phi_n(a) \mod (X)^n$; for all n.

Since $A[[X]] = \lim_{\longleftarrow} A[X]/(X)^n$, Φ_1 can be lifted to a k-algebra homomorphism $E: A \to A[[X]]$ such that

$$E(a) = a + \sum_{i=1}^{n} D_i(a) X_i + \ldots = \sum_{\alpha} D_{\alpha}(a) X^{\alpha},$$

and so the proof is complete. \Box

Remark 2. In characteristic 0, every set commutative of n derivations D_1 , D_2, \ldots, D_n is n-integrable and its integral is:

$$E(a) = \sum_{\alpha} \frac{1}{\alpha_1! \dots \alpha_n!} D_1^{\alpha_1} \dots D_n^{\alpha_n}(a) X_1^{\alpha_1} X_2^{\alpha_2} \dots X_n^{\alpha_n},$$

with $\alpha \equiv (\alpha_1, \dots, \alpha_n) \in \mathbb{N}^n$, by Remark 1.

Remark 3. If $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n$, then $|\alpha|$ stands for $\alpha_1 + \ldots + \alpha_n$.

Let $E: A \to A[[X_1, ..., X_n]]$ be a k-algebra morphism so defined:

$$E(a) = \sum_{\alpha} D_{\alpha}(a) X^{\alpha},$$

with $D_0 = \mathrm{id}_A$, then $D_\alpha : A \to A$ is a k-derivations $\forall \alpha \in \mathbb{N}^n$ with $|\alpha| = 1$.

Remark 4. If $\underline{D} = \{D_{\alpha} : A \to A; \alpha \in \mathbb{N}^n\}$ is a differentiation and $E : A \to A[[X_1, \dots, X_n]] = A[X]$ is the corresponding ring homomorphism $(E(a) = \sum_{\alpha} D_{\alpha}(a)X^{\alpha})$ then E can be extended to a map $A[[X]] \to A[[X]]$, by:

(3)
$$E\left(\sum_{\alpha} a_{\alpha} X^{\alpha}\right) = \sum_{\alpha} E(a_{\alpha}) X^{\alpha}.$$

It is easy to see that this is an endomorphism of the ring A[[X]].

Any element ξ of $A[[X]] = A[[X_1, ..., X_n]]$ can be written

$$\xi = \xi_r + \xi_{r+1} + \dots,$$

where ξ_i is a homogeneous polynomial of degree i in X_1, \ldots, X_n with coefficients in A. If $\xi_r \neq 0$ then ξ_r is called the *initial form* and is denoted by $\text{In}(\xi)$. Its degree r is called the *initial degree* and is denoted by $v(\xi) \in N$.

Then, for $\xi \in A[[X]]$ we have

or equivalently

$$(5) v(E(\xi) - \xi) > v(\xi).$$

Formula (4) shows that $E(\xi) \neq 0$ if $\xi \neq 0$, i.e. that E is injective. We claim that E is also surjective (hence an automorphism of A[[X]]). To prove this, take $\eta = \eta_0 + \eta_1 + \ldots \in A[[X]]$, and construct $\xi = \xi_0 + \xi_1 + \xi_2 + \ldots$ (where ξ_i is a form of degree i) such that $E(\xi) = \eta$ inductively by

$$\xi_0 = \eta_0$$

$$\xi_i$$
 = the homogeneous part of degree i of $\eta - \sum_{j=0}^{i-1} E(\xi_j)$.

Then
$$v\left(\eta - \sum_{j=0}^{i} E(\xi_j)\right) > i$$
, and so $E\left(\sum_{j=0}^{\infty} \xi_i\right) = \eta$.

The set G of all such automorphisms of A[[X]] is characterised by formula (4). Therefore it is easy to see that

1)
$$E, E' \in G \Rightarrow E \cdot E' \in G$$

$$2) E \in G \Rightarrow E^{-1} \in G.$$

Therefore G is a subgroup of Aut (A[[X]]). Explicitly, if $E(a) = \sum_{\alpha} D_{\alpha}(a) X^{\alpha}$, $E'(a) = \sum_{\beta} D'_{\beta}(a) X^{\beta}$, $(EE')(a) = \sum_{\gamma} D''_{\gamma}(a) X^{\gamma}$, then

$$(EE')(a) = E(E'(a)) = \sum_{\beta} X^{\beta} E(D'_{\beta}(a)) = \sum_{\alpha,\beta} X^{\alpha+\beta} (D_{\alpha}(D'_{\beta}(a)))$$

hence

$$D_{\gamma}'' = \sum_{\alpha + \beta = \gamma} D_{\alpha} D_{\beta}' = \sum_{\alpha \le \gamma} D_{\alpha} D_{\gamma - \alpha}'$$

(where if $\alpha, \beta \in \mathbb{N}^n$, $\alpha = (\alpha_1, \dots, \alpha_n)$, $\beta = (\beta_1, \dots, \beta_n)$, then we write $\alpha \leq \beta$ if $\alpha_i \leq \beta_i \ \forall i$, and $\alpha < \beta$ if $\alpha \leq \beta$ and $\alpha \neq \beta$).

Let us write D_i for $D_{(0,\dots,1,\dots,0)}$. Then we have $D_i'' = D_i + D_i'$.

The explicit form of E^{-1} can be obtained as follows. Set $E^{-1} = E^*$, $E^*(a) = \sum_{\alpha} D_{\alpha}^*(a) X^{\alpha}$ $(a \in A)$. Then D_{α}^* 's are obtained by solving the equations

$$\sum_{\alpha < \gamma} D_{\alpha} D_{\gamma - \alpha}^* = 0 \quad (\gamma \neq 0).$$

Hence inductively

$$D_0^* = \text{id}, \quad D_{\gamma}^* = -\sum_{0 < \alpha < \gamma} D_{\alpha} D_{\gamma - \alpha}^*.$$

For instance

$$D_i^* = -D_i$$
 $(i = 1, 2, ..., n),$

$$D_{(2,0,\dots,0)}^* = -D_{(2,0,\dots,0)} - D_1 D_1^* = D_1^2 - D_{(2,0,\dots,0)},$$

$$D_{(1,1,0,\ldots,0)}^* = -D_1 D_2^* - D_2^* D_1 - D_{(1,1,0,\ldots,0)} = D_1 D_2 + D_2 D_1 - D_{(1,1,0,\ldots,0)}.$$

Definition 7. Let $\underline{D} = \{D_{\alpha} : A \to A; \alpha \in \mathbb{N}^n\}$ and $\underline{D}' = \{D'_{\alpha} : A \to A; \alpha \in \mathbb{N}^n\}$ be n-dimensional differentiations. If E and E' are their corresponding homomorphisms, we define $\underline{D} \cdot \underline{D}'$ as the n-dimensional differentiations corresponding to $E \circ E'$. As a consequence of Remark 4, we have: $(D \circ D')_{\gamma} = \sum_{0 < \alpha \leq \gamma} D_{\alpha} D'_{\gamma - \alpha}$.

Moreover, the set of all n-dimensional differentiations is a group.

Example. Let $A = k[T_1, ..., T_r] = k[\underline{T}]$ and let $\Psi_1(\underline{X}), \Psi_2(\underline{X}), ..., \Psi_r(\underline{X}) \in A[[X]] = A[[X_1, ..., X_n]]$ be such that $\Psi_i(0) = T_i$, $(1 \le i \le r)$. Then there exists one and only one homomorphism of k-algebras $E : A \to A[[X]]$ such that:

$$E(T_i) = \Psi_i = T_i + \sum_{j=1}^n f_{ij} X_j + \sum_{j,k=1}^n f_{ijk} X_j X_k + \dots$$

This is the *n*-dimensional differentiation which lifts $D_1, D_2, \ldots, D_n \in Der_k(A)$, where $D_j = \sum_{i=1}^r f_{ij} \frac{\partial}{\partial T_i}$.

This differentiation is not iterative because it doesn't check the diagram of Definition 3'.

2.- We extend, some results relative to unidimensional differentiations and contained in [7] to the n-dimensional differentiations.

From now on, if $E(a) = \sum_{\alpha} D_{\alpha}(a) X^{\alpha}$ is a *n*-dimensional differentiation, we always denote $D_{(0,\dots,1,\dots0)}$ by D_i .

Proposition 2. Let A be a commutative ring and $E: A \to A[[X_1, ..., X_n]]$ a n-dimensional differentiation. Put $A_0 = \{a \in A \mid E(a) = a\}$. Let $x \in A$ such that

$$E(x) = x + \sum_{i=1}^{n} a_i X_i$$

with some a_i invertible and $\bigcap_{n=1}^{\infty} x^n A = (0)$.

Then, if $z \in A$ and $xz \in A_0$, we have z = 0. Consequently x is not a zero-divisor of A and $A_0 \cap xA = (0)$.

Proof.

$$xz = E(xz) = E(x)E(z) = \left(x + \sum_{i=1}^{n} a_i X_i\right) \left(z + \sum_{i=1}^{n} D_i(z) X_i + \ldots\right) =$$

$$= xz + \sum_{i=1}^{n} X_i(a_iz + xD_i(z)) + \sum_{i=1}^{n} X_i^2 \left(a_iD_i(z) + xD_{(0,\dots,2,\dots,0)} \right) + \dots$$

Therefore, we have:

$$a_i z + x D_i(z) = 0,$$

 $a_i D_i(z) + x D_{(0,...,2,...0)}(z) = 0,$
......
 $a_i D_{(0,...,n,...0)}(z) + x D_{(0,...,n+1,...0)}(z) = 0$

and so on. It follows that, if a_i is invertible, $z \in x^n A$ for all n > 0. Therefore z = 0. \square

Proposition 3. Let A be a noetherian ring and let $x_1, x_2, ..., x_r$ be elements of the Jacobson radical Rad(A) of A. We put $I = Ax_1 + ... + Ax_r$. Suppose either:

(α) A contains Q, and there exist r derivations $D^{(1)}, \ldots, D^{(r)} \in Der(A)$ such that $det(D^{(i)}(x_j)) \in U(A) = \{units \ of \ A\}$ and $[D^{(i)}, D^{(j)}] = 0$; or

(β) there exists a r-dimensional differentiation $E: A \to A[[Y_1, \ldots, Y_r]]$ such that

$$E(x_j) = x_j + \sum_{i=1}^r D^{(i)}(x_j)Y_i$$

 $j=1,\ldots,r$, and $\det(D^{(i)}(x_j))\in U(A)$. Put $F=\{a\in A\mid D^{(1)}a=\ldots=D^{(r)}a=0\}$ in case α , and $F=\{a\in A\mid E(a)=a\}$ in case β . Then F is a subring of A and $F\cap I=(0)$.

Proof. In case α , replacing $D^{(i)}$ by suitable linear combinations we may assume that $D^{(i)}(x_i) = \delta_{ij}$. Then the iterative differentiation:

$$E(a) = \sum_{\alpha} \frac{1}{\alpha_1! \dots \alpha_r!} D^{(1)^{\alpha_1}} D^{(2)^{\alpha_2}} \dots D^{(r)^{\alpha_r}}(a) Y_1^{\alpha_1} Y_2^{\alpha_2} \dots Y_r^{\alpha_r}$$

satisfies condition (β) . Since the condition (α) implies (β) , it suffices to prove the proposition by hypothesis (β) . We proceed by induction on r. When r=1 the assertion is true by [7] Theorem 2.

We consider the differentiation E^* constructed by $D^{(2)}, \ldots, D^{(r)}$. Since $D^{(2)}(x_1) = \ldots = D^{(r)}(x_1) = 0, \overline{D}^{(2)}, \ldots, \overline{D}^{(r)}$ are derivations of the quotient. Thus E^* passes to the quotient $\operatorname{mod} x_1 A$. $E^*(x_1) = x_1 \in x_1 A$ and we have

$$\overline{E}^*(x_j) = x_j + \overline{D}^{(2)}x_jY_2 + \ldots + \overline{D}^{(r)}x_jY_r.$$

Now let $y \in F \cap I$, $y \in F$. It results then $\overline{E}^*(\overline{y}) = \overline{y}$ and $\overline{y} \in (\overline{x}_2, \dots, \overline{x}_r)$. Therefore $\overline{y} = 0$ by the induction hypothesis. Thus $y = x_1 z$ with some $z \in A$. Since

$$E(x_1) = x_1 + D^{(1)}(x_1)Y_1 + \ldots + D^{(r)}(x_1)Y_r$$

and since $x_1 \in \text{Rad}(A)$, we can apply Proposition 2 to conclude z = 0, y = 0.

Proposition 4. Let A be a noetherian ring, let $x_1, x_2, ..., x_n \in \text{Rad}(A)$ and let $E: A \to A[[X_1, ..., X_n]]$ be a n-dimensional differentiation such that $\det(D_i(x_j)) \in U(A)$, where D_i i = 1, ..., n are the derivations associated to E. Then $(x_1, x_2, ..., x_n)$ is a regular sequence.

Proof. Replacing D_i with $\sum c_{ij}D_j$, where c_{ij} are elements of the inverse matrix of $(D_i(x_j))$, we may assume that $D_j(x_j) = \delta_{ij}$. In particular we have $D_1(x_1) = 1$, $D_2(x_1) = \ldots = D_n(x_1) = 0$. We consider the homomorphism $E: A \to A[[X_1, \ldots, X_n]]$ such that

$$E(x_j) = x_j + \sum_{i=1}^n D_i(x_j) X_i;$$

it results $E(x_1) = x_1 + X_1$, then by Proposition 2, x_1 is regular. In the ring $A/(x_1)$ we can consider the derivations of the quotient $\overline{D}_2, \ldots, \overline{D}_n$ and the differentiation

$$\overline{E}(\overline{x}_j) = \overline{x}_j + \overline{D}_2 \overline{x}_j X_2 + \ldots + \overline{D}_n \overline{x}_j X_n.$$

Since $\overline{D}_2\overline{x}_2 = 1$, by the same reasoning, we can find that \overline{x}_2 is regular in $A/(x_1)$ and $\overline{D}_3\overline{x}_2 = \ldots = \overline{D}_n\overline{x}_2 = 0$. Proceeding by induction, we deduce that $\forall i, x_i$ is regular in $A/(x_1, \ldots, x_{i-1})$, i.e. (x_1, \ldots, x_n) is an A-regular sequence.

Proposition 5. Given n 1-dimensional differentiations

$$E_i: A \to A[[X_i]], \quad i = 1, \ldots, n,$$

there exists a n-dimensional differentiation

$$E: A \to A[[X_1, \dots, X_n]]$$

such that the following diagram

(where π_i is the projection of $A[[X_1, \ldots, X_n]]$ into the residue class ring

$$A[[X_1,\ldots,X_n]]/(X_1,\ldots,\widehat{X}_1,\ldots,X_n)\cong A[[X_i]])$$

is commutative for all i, i = 1, ..., n.

Moreover, if the homomorphisms E_i are iterative and commute then E is iterative too.

Proof. Using the n unidimensional differentiations E_i defined by $E_i(a) = \sum_{n=0}^{\infty} X_i^n D_n(a)$, we set $E(a) = \sum_{\alpha} D_{\alpha}(a) X^{\alpha}$, $\alpha = (\alpha_1, \ldots, \alpha_n)$, where $D_{\alpha} = D_{\alpha_1}^{(1)} \circ D_{\alpha_2}^{(2)} \circ \ldots \circ D_{\alpha_n}^{(n)}$. Obviously, $E \equiv E_i \mod (X_1, \ldots, \widehat{X}_i, \ldots, X_n)$. Let us prove that E is an n-dimensional differentiation. The only non trivial fact is the equality E(ab) = E(a)E(b). Let us use induction on n. For n = 1, there is nothing to prove; so, let us suppose the equality true for n - 1. This means that $E^*(a) = \sum_{\alpha_2} D_{\alpha_2}^{(2)} \ldots D_{\alpha_n}^{(n)}(a) X^{(\alpha_2, \ldots, \alpha_n)}$ satisfies $E^*(ab) = E^*(a)E^*(b)$.

But, put $X_i^{\alpha_i} = X^{\alpha_i}$,

$$E(a) = \sum_{\alpha_1} D'_{\alpha_1} \left(\sum_{(\alpha_2, \dots, \alpha_n)} D^{(2)}_{\alpha_2} \dots D^{(n)}_{\alpha_n}(a) X^{\alpha_2} \dots X^{\alpha_n} \right) X^{\alpha_1} =$$

$$= \sum_{\alpha_1} D'_{\alpha_1} (E^*(a)) X^{\alpha_1}$$

so that

$$\begin{split} E(ab) &= \sum_{\alpha_1} D'_{\alpha_1} \left(E^*(ab) \right) X_1^{\alpha} = \sum_{\alpha_1} D'_{\alpha_1} \left(E^*(a) E^*(b) \right) X_1^{\alpha} = \\ &= \sum_{\alpha_1} \sum_{\gamma_1 + \delta_1 = \alpha_1} D'_{\gamma_1} (E^*(a)) D'_{\delta_1} (E^*(b)) X^{\alpha_1} \\ E(a) E(b) &= \sum_{\gamma_1} D'_{\gamma_1} E^*(a) X^{\gamma_1} \sum_{\delta_1} D'_{\delta_1} E^*(b) X^{\delta_1} = \\ &= \sum_{\alpha_1} \sum_{\gamma_1 + \delta_1 = \alpha_1} D'_{\gamma_1} (E^*(a)) D'_{\delta_1} (E^*(b)) X^{\alpha_1}. \end{split}$$

If the homomorphisms E_i are iterative and commute then the differentiation constructed above is iterative too. In fact:

$$D_{\alpha} \circ D_{\beta}(a) = D_{\alpha}(D_{\beta}(a)) = D_{\alpha}(D_{\beta_{1}}^{(1)}D_{\beta_{2}}^{(2)}\dots D_{\beta_{n}}^{(n)}(a)) =$$

$$= D_{\alpha_{1}}^{(1)}D_{\alpha_{2}}^{(2)}\dots D_{\alpha_{n}}^{(n)}(D_{\beta_{1}}^{(1)}D_{\beta_{2}}^{(2)}\dots D_{\beta_{n}}^{(n)}(a)) =$$

$$= D_{\alpha_{1}}^{(1)} \circ D_{\beta_{1}}^{(1)} \circ \dots \circ D_{\alpha_{n}}^{(n)} \circ D_{\beta_{n}}^{(n)}(a) =$$

$$= \frac{(\alpha_{1} + \beta_{1})!}{\alpha_{1}!\beta_{1}!}\dots \frac{(\alpha_{n} + \beta_{n})!}{\alpha_{n}!\beta_{n}!}D_{(\alpha_{1} + \beta_{1})}^{(1)}\dots D_{(\alpha_{n} + \beta_{n})}^{(n)}(a).$$

$$D_{\alpha+\beta}(a) = D_{(\alpha_1+\beta_1,\ldots,\alpha_n+\beta_n)}(a) = D_{(\alpha_1+\beta_1)}^{(1)} D_{(\alpha_2+\beta_2)}^{(2)} \ldots D_{(\alpha_n+\beta_n)}^{(n)}(a) . \quad \Box$$

Remark 5. We can reformulate Lipman's theorem using differentiations instead of derivations.

Let (A, m) be a noetherian local ring containing the rational number field Q and let $x_1, \ldots, x_r \in m$, $I = (x_1, \ldots, x_r)$. Suppose that

- (1) A is I-adically complete,
- (2) there exists a r-dimensional differentiation

$$E: A \to A[[Y_1, ..., Y_r]] = A[[Y]],$$

associated to a commutative set of independent derivations, such that

$$E(x_j) = x_j + \sum_{i=1}^r D_i(x_j)Y_i$$

and $\det(D_i(x_j)) \notin m$.

Then $A_0 = \{a \in A \mid E(a) = a\}$ is a subring of A such that $A = A_0[[x_1, \ldots, x_r]]$, with x_1, \ldots, x_r analytically independent over A_0 .

Since we are in characteristic 0, every commutative set of r derivations D_1, \ldots, D_r , associated to a r-dimensional E, is r-integrable and its integral is

$$E(a) = \sum_{\alpha} \frac{1}{\alpha_1! \dots \alpha_r!} D_1^{\alpha_1} D_2^{\alpha_2} \dots D_r^{\alpha_r}(a) Y_1^{\alpha_1} Y_2^{\alpha_2} \dots Y_r^{\alpha_r}.$$

Proposition 6. Let K be a separable extension field of a field k of characteristic p > 0. Let $D_1, \ldots, D_n \in \operatorname{Der}_k(K)$ and $x_1, \ldots, x_n \in K$ such that $\det(D_i(x_j)) \neq 0$.

Then there exists an iterative n-dimensional $E: K \to K[[X_1, ..., X_n]]$ associated to the system of derivations $\{D_1, D_2, ... D_n\} \Leftrightarrow$

$$\begin{bmatrix} D_i, D_j \end{bmatrix} \in \sum_{\alpha=1}^n KD_{\alpha}, \qquad D_i^p \in \sum_{\alpha=1}^n KD_{\alpha}$$

$$1 \le i, j \le n \qquad 1 \le i \le n.$$

Proof. It follows by Theorem 1 of [1] and by Proposition 4. \Box

Definition 8. Let S be a ring of characteristic p and S^p denote the subring $\{x^p \mid x \in S\}$. Let S' be a subring of S. A subset Γ of S is said to be p-independent over S', if the monomials $b_1^{e_1} \dots b_n^{e_n}$, where b_1, \dots, b_n are distinct elements of Γ and $0 \le e_i \le p-1$, are linearly independent over $S^p[S']$. Γ is called a p-basis of S over S' if it is p-independent over S' and $S^p[S', \Gamma] = S$.

Let B be a subring of A. We denote the differential module of A over B by $\Omega_B(A)$ and the canonical B-derivation by $d:A\to\Omega_B(A)$. For the definition and elementary properties we refer to [5], par. 25. It is not difficult to verify that if Γ is a p-basis of A over B then $\Omega_B(A)$ is a free A-module with $\{dy, y \in \Gamma\}$ as a basis. Not every rings have a p-basis and there are sets p-independent which cannot be extended to a p-basis.

Theorem 1. Let (A, m) be a local ring containing a field k of characteristic $A \mid D_i(a) = 0, i = 1, ..., n$. Suppose that

- 1) there exist $x_1, \ldots, x_n \in A/\det(D_i(x_i)) \notin m$,
- 2) $\Omega_k(A_0)$ is a free A_0 -module and A_0 is finite over $k[A_0^p]$,

3) there exists a p-basis
$$B_0$$
 of A_0 over k containing x_1^p, \ldots, x_n^p .
4)
$$\begin{bmatrix} D_i, D_j \end{bmatrix} \in \sum_{\alpha=1}^n AD_{\alpha}, \qquad D_i^p \in \sum_{\alpha=1}^n AD_{\alpha} \\ 1 \leq i, j \leq n \qquad 1 \leq i \leq n.$$

Then the system of derivations $\{D_1, D_2, \dots D_n\}$ can be prolonged to an iterative n-dimensional differentiation.

Proof. Let (c_{ij}) be the inverse matrix of $(D_i x_j)$ and put $\partial_i = \sum_i c_{ij} D_j$.

Then
$$\partial_i x_j = \delta_{ij}$$
, and $\sum_{i=1}^n AD_i = \sum_{i=1}^n A\partial_i$, $[\partial_i, \partial_j] \in \sum A\partial_i$, $\partial_i^p \in \sum A\partial_j$

(this last follows from the Hochschild formula $(aD)^p = a^p D^p + (aD)^{p-1}(a)D$, [5], p. 197). But if $[\partial_i, \partial_j] = \sum b_{ijk} \partial_k$ then $b_{ijk} = [\partial_i, \partial_j] x_k = 0$ for all k, there-

fore $[\partial_i, \partial_j] = 0$. Similarly $\partial_i^p = 0$.

By Theorem 1 of [2], x_1, x_2, \ldots, x_n is a p-basis of A over A_0 . Thus x_1, x_2, \ldots x_n are p-independent over A_0 .

Moreover, with the same process that is found in theorem 7 of [4], for the separability of A over k, we can obtain that $x_i^p \notin A_0^p k$, and x_i^p can belong to a p-basis B_0 of A_0 over k.

Let
$$B_0^* = B_0 \setminus \{x_1^p, \dots, x_n^p\}.$$

Put
$$B = B_0^* \cup \{x_1, x_2, \dots x_n\}.$$

It results $A = A_0[x_1, x_2, \dots x_n]$ (since $x_1, x_2 \dots x_n$ is a p-basis of A over A_0). Set $y_i = x_i^p$, $1 \le i \le n$, we have

$$A = A_0[X_1, \ldots, X_n]/(X_1^p - y_1, \ldots, X_n^p - y_n).$$

Set
$$I = (X_1^p - y_1, \dots, X_n^p - y_n)$$
 and $(\underline{X}) = (X_1, X_2, \dots, X_n)$.
Since

$$\Omega_k(A_0[\underline{X}]) \cong (\Omega_k(A_0) \otimes_{A_0} A_0[\underline{X}]) \oplus A_0[\underline{X}] dX_1 \oplus \ldots \oplus A_0[\underline{X}] dX_n,$$

 $\Omega_k(A_0)$ is a free module with basis dB_0 and the following sequence

$$I/I^2 \to \Omega_k(A_0[\underline{X}]) \otimes A \to \Omega_k(A) \to 0,$$

is exact, we have

$$\Omega_k(A) \cong (\Omega_k(A_0) \otimes_{A_0} A)/(Ady_1 \oplus Ady_2 \oplus \ldots \oplus Ady_n) \oplus Adx_1 \oplus \ldots \oplus Adx_n,$$

i.e. $\Omega_k(A)$ is free with differential basis $B = B_0^* \cup \{x_1, x_2, \dots, x_n\}$, i.e. B is a p-basis of A over k.

Since A is separable over k, $A \otimes_k k^{p^{-1}}$ is reduced and we can settle on the grounds of the theorem of [8].

The homomorphism $E: A \rightarrow A[[X_1, X_2, ..., X_n]]$ defined by $E(x_j) = x_j + \sum_{i=1}^n D_i(x_j)X_i$, $1 \le j \le n$ is the iterative differentiation sought.

The following results concern the case of a set of derivations $\mathcal{D} = \{D_1, D_2, \dots, D_n\}$ which aren't necessarily independent.

In such ambit we have the following result:

Corollary 1. ([8] Corollary 3.2). Let A be a k-algebra such that the ring $A \otimes_k k^{p^{-1}}$ is reduced and let Γ be a p-basis of A over k. For any set of k-derivations $d_1, \ldots, d_m : A \to A$ there exists a m-dimensional differentiation $\underline{D} : A \to A[[X_1, \ldots, X_m]]$

$$\underline{D}(a) = \sum_{\alpha} D_{\alpha}(a) X^{\alpha}$$

with $\alpha \equiv (\alpha_1, \alpha_2, \dots, \alpha_m) \in N^m$, $X^{\alpha} = X_1^{\alpha_1} X_2^{\alpha_2} \dots X_m^{\alpha_m}$, such that $D_0 = \mathrm{id}_A$ and $D_{(0,\dots,0,1,0,\dots,0)} = d_i$, $i = 1,\dots,m$, with 1 on the i-th position.

Remark 5. We notice that the d_1, \ldots, d_m of Corollary 1 are ordinary derivations and they can be dependent or independent. If A is a field K, k doesn't necessarily coincides with the subfield of the constants K_0 . In general $k \subseteq K_0$. The hypothesis K has a p-basis (also infinite over k) is too strong. In fact we can deduce that K has a finite p-basis over K_0 . (Theorem 7 [4]).

If d_1, \ldots, d_m are dependent derivations of which are independent s < m, by renaming and reordering we can suppose that the first s derivations are independent. If $\Gamma = \{x_1, \ldots, x_s\}$ is a p-basis of K over K_0 , we can define $d_i(x_j) = \delta_{ij} 1 \le i, j \le s$. If d_1, \ldots, d_m are not linearly independent we can't suppose that $d_i(x_j) = \delta_{ij} 1 \le i, j \le m$.

We reformulate Proposition 6 and Theorem 1 in the case of a set of derivations not necessarily independent.

Theorem 2. Let K be a separable extension field of a field k of characteristic p > 0. Let $\mathcal{D} = \{D_1, D_2, \dots D_n\}$ be a set of derivations of K over k such that $D_1, D_2 \dots D_r$ with r < n are independent. Let $x_1, x_2, \dots x_r \in K$ such that

$$\det(D_i(x_j)) \neq 0, \quad 1 \leq i, j \leq r.$$

We suppose that $[D_i, D_j] = 0$ and $D_i^p = 0$, $1 \le i, j \le r$, $1 \le i \le r$. Then we have the following facts:

- 1) $D_1, D_2, \dots D_r$ are strongly integrable.
- 2) We can find integrals of $E^{(1)}, \ldots, E^{(r)}$ of $D_1, D_2, \ldots D_r$ such that $E^{(i)}$ and $E^{(j)}$ commute, for any i, j.
- 3) There exist integrals of D_{r+1}, \ldots, D_n of the form $E_{\lambda_1}^{(1)} \circ \cdots \circ E_{\lambda_r}^{(r)}$ where $\lambda_1, \ldots, \lambda_r \in K$ and $E_{\lambda_i}^{(i)}$ is the homomorphism associated to the differentiation

$$\underline{D}_{\lambda_i} = \{1, \lambda_i D_j^{(1)}, \lambda_i^2 D_j^{(2)}, \dots, \lambda_i^n D_j^{(n)}, \dots\}, \quad 1 \leq i, j \leq r.$$

Proof. To integrate $\mathcal{D} = \{D_1, D_2, \dots D_n\}$ we find n ring homomorphisms $E^{(i)}, \dots, E^{(n)}$ that lift $D_1, D_2 \dots D_n$ respectively. We observe that $E^{(1)}, \dots, E^{(r)}$ don't have ties because $D_1, D_2, \dots D_r$ are independent. Given two differentiations $\underline{D}_i = \{1, D_{i_1}, D_{i_2}, \dots\}$ with $D_{i_1} = D_i$ and $\underline{D}_j = \{1, D_{j1}, D_{j2}, \dots\}$ with $D_{j1} = D_j$, we can define the product $\underline{D}_i \cdot \underline{D}_j$ by the automorphisms $E^{(i)}$ and $E^{(j)}$ associated to \underline{D}_i and \underline{D}_j respectively. The differentiation obtained

$$\underline{D}_i \cdot \underline{D}_j = \{1, D_{i_1} + D_{j_1}, \ldots\}$$

is an unidimensional differentiation that lifts the sum $D_{i_1} + D_{j_1}$.

If $\underline{D}_i = \{1, D_{i_1}, D_{i_2}, \ldots\}$ is an unidimensional differentiation of A and $\lambda_i \in A$ then the differentiation $\underline{D}_{i_{\lambda_i}} = \{1, \lambda_i D_{i_1}, \lambda_i^2 D_{i_2}, \ldots\}$ is a differentiation that lifts $\lambda_i D_{i_1}$. Then there exists an unidimensional differentiation that lifts $\lambda_1 D_1 + \lambda_2 D_2 + \ldots + \lambda_r D_r$, that one which we obtain putting in order $E_{\lambda_1}^{(1)}, \ldots, E_{\lambda_r}^{(r)}$ and thus there exist integrals of D_{r+1}, \ldots, D_n of the form $E_{\lambda_1}^{(1)} \circ \cdots \circ E_{\lambda_r}^{(r)}$.

Definition 9. We say that a set $\mathcal{D} = \{D_1, D_2, \dots D_n\}$ of derivations of a field K is integrable if there are s unidimensional differentiations $E^{(1)}, \dots, E^{(s)}$ that commute and integrate $D_1, D_2, \dots D_s$ if s < n are independent derivations and D_{s+1}, \dots, D_n have each one an integral unidimensional that we can obtain from $E^{(1)}, \dots, E^{(s)}$.

Theorem 3. Let (A, m) be a local ring containing a field k of characteristic p > 0. Let A be separable over k. Let D_1, \ldots, D_n be a set of derivations of A over k, such that D_1, \ldots, D_r with r < n are independent. Set $A_0 = \{a \in A \mid$ $D_i(a) = 0, i = 1, ..., n$ }. We suppose that

- 1) there exist $x_1, \ldots, x_r \in A/\det(D_i(x_i)) \notin m \ 1 \le i, j \le r$,
- 2) $\Omega_k(A_0)$ is a free A_0 -module and A_0 is finite over $k[A_0^p]$,
- 3) there exists a p-basis B_0 of A_0 over k containing x_1^p, \ldots, x_n^p ,

 4) $[D_i, D_j] = 0$ $D_i^p = 0$ $1 \le i, j \le r$ $1 \le i \le r$.
- Then
- 1) There exists an iterative r-dimensional integral $E^{(r)}$ for $D_1, D_2, \ldots D_r$.
- 2) For any D_{r+1}, \ldots, D_n there exists an iterative unidimensional integral of the form $E_{\lambda_1}^{(1)} \circ \cdots \circ E_{\lambda_r}^{(r)}$ where $E^{(i)} \ 1 \le i \le r$ is obtained by $\underline{E}^{(r)}$ putting $X_1 = \ldots = \widehat{X}_i = \ldots = X_r = 0.$

Proof. Let $\underline{E}^{(r)}$ be the integral relative to $D_1, D_2, \ldots D_r$ (see Theorem 2). Let $\underline{E}^{(1)}, \ldots \underline{E}^{(r)}$ be unidimensional integrals obtained by $\underline{E}^{(r)}$ putting $X_1 = \ldots =$ $\widehat{X}_i = \ldots = X_r = 0.$

 $E^{(1)}$ integrates $D_1, \ldots, E^{(r)}$ integrates D_r .

Let D_i , $r+1 \le i \le n$ $D_i = \lambda_1 D_1 + \lambda_2 D_2 + \ldots + \lambda_r D_r$. We consider $E_{\lambda_1}^{(1)}, \ldots, E_{\lambda_r}^{(r)}$, it is clear that we can get $E_{\lambda_1}^{(1)} \circ \cdots \circ E_{\lambda_r}^{(r)}$ integral of D_i , $r+1 \le i \le n$.

It is allowed to give the following:

Definition 10. Let $\mathcal{D} = \{D_1, D_2, \dots D_n\}$ a set of derivations of a ring A with s < n independent derivations. To integrate $\mathcal D$ means to give an integral $\underline E$ of dimension r for the independent derivations and n-r integrals of dimension 1that we can always construct by E.

REFERENCES

- [1] V. Bonanzinga, Integrable derivations in rings of characteristic p > 0, Atti Acc. Peloritana dei Pericolanti, 70 (1992), pp. 101 - 116.
- M. Crupi, Subring of constants of a ring of characteristic p > 0, Le Matematiche, [2] 48 (1993), pp. 203 - 212.
- J. Lipman, Free derivation modules on algebraic varieties, Amer. J. Math., 87 (1965), pp. 874 - 898.

- [4] H. Matsumura, Integrable derivations, Nagoya Math. J., 87 (1982), pp. 227 245.
- [5] H. Matsumura, Commutative ring theory, Cambridge University Press, 1986.
- [6] H. Matsumura, *Criteri Jacobiani*, Quaderni dei Gruppi di Ricerca Matem. del C.N.R., Istit. Matem. del Politecnico di Torino, 1975.
- [7] H. Matsumura G. Restuccia, *Integrable derivations II*, Acc. Peloritana dei Pericolanti, 70 (1992), pp. 153 172.
- [8] A. Tyc, On F-integrable actions of the restricted Lie algebras of a formal group F in characteristic p > 0, Nagoya Math. J., 115 (1989), pp. 125 137.
- [9] A. Tyc, Invariants of linearly reductive formal group actions, J. Algebra, 101 (1986), pp. 166 187.

Dipartimento di Matematica, Università di Messina, Contrada Papardo, Salita Sperone 31, 98166 Sant'Agata (Me), (ITALIA)