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ON A CLASS OF ULTRAPARABOLIC OPERATORS
OF KOLMOGOROY - FOKKER - PLANCK TYPE

'SERGIO POLIDORO

We consider the class of the ultraparabolic differential operators of the
following type

' Po ' N
Lu=Y_ aj(x,)0gqu+ I bijxidyu— du,
i,j=1 ' i, j=1 _

where B = (b,-, j> is a constant matrix and 0 < pg < N. We give a definition

of Holder continuity related to suitable groups of translations and dilations.
Then, assuming such a regularity on the coefficients a; ;(x, ), we construct
the fundamental solution I of L by the Levi’s parametrix method. Moreover
we prove an accurate local estimate of I" and an invariant Harnack inequality
for non-negative solutions of the divergence form equation

Lu = div (A(x, )Du) + < x, BDu > —d,u.

1. Introduction and méin results.

We consider in RV*! the second order differential operator
P

| . . | |
(1.1) Lu= ) a;j@)du+ <x, BDu > —du,
i,j=1 '
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where 1 < po < N,z = (x,0) e R"1 D = (8,,,....,8y)and < -, + >
denote, respectively, the gradient and the inner productin RV . In(1.1) B = (b;, i)
is an N x N matrix with constant real entries, Ag(z) = (a,-,j(z))l. i=1...p0 isa
symmetric matrix, which is positive definite in R?° for any z € R¥*!, We shall
make further hypotheses on matrices Ag and B after having introduced suitable

notation (Definitions 1.1 e 1.2).
Equations like (1.1) arise in the stochastic theory of diffusion processes. For

example

n n
2
(1.2) L=+ x0, — 8
Jj=1 J=1

is the prbiotype of the Kolmogorov operator which,"ﬁnder‘ suitable conditions,
describes the probability density of a physical system with 2z degree of freedom
(see [13], page 167). If we set N = 2n, (1.2) takes the form (1.1), with

N (0 1,
=t 2=(00).
Moreover, the equation L u = f, is a linearized prototype for the Fokker

- Planck equation which describes brownian motions of a particle in a fluid

(Chandrasekhar [2]).
We would like to remark that, although the operator (1.2) is strongly dege-

nerate, it is hypoelliptic. Indeed, letting X; = 9, , j = 1, ..., n, and
- Y =<x,BD > —9;,

the operator L can be written as |
N
_ 2
L=Y) X}+Y
j=1

and satisfies the well known Hormander’s condition: rank(.Z Xy, ... X,,, Y )) =
N + 1 at each point of R¥*! (see [5]). Here .£(X1, ..., X,, Y) denotes the Lie
algebra generated by X1, ..., X,,, Y.

When the coefficients g; ; of (1.1) are C* functions, then there exist py
smooth vector fields Y1, ..., ¥, such that L can be written as L = Zf’il sz +7,
and it belongs to the class introduced by Hérmander in [5] and later studied by
Rotschild - Stein in [12]. Although Hormander’s operators of “parabolic” type

zp: X? =9,
j=1
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have been widely studied in recent years (see [17] and the references therein),
only few significant results on the operators (1.1) have appeared in literature (see
Weber [18], II’in [6], Sonin [16], Genlev [4], Shatyro [14], [15]).

For A( a constant matrix it was shown in [8] that the operator (1.1) is
hypoelliptic if, and only if, for some basis of RY matrix B takes the form:

* Bl 0 0 ‘

X * Bz 0
(1.3) B = . . . . .

* % * ... B,

Each B; isa pj_; x p; block matrix of rank p;, j = 1,2, ..., r, with pg > p; >

>pr>landpo+p1+...+pr=N.In general blocks “x”’ are arbitrary.
If (and only if) these blocks are zero matrices, the operator L is invariant with
respect to a certain dilation group 4 = (D(A))j0, 1€

L (u (D(/\)z)) — A2Lu (D(V)2)

for any u € C{°(RN*1) and for any A > Oand z € RN +1_The dilation D(A)
belonging to % is defined as .

(1.4) D) = diag (AL, 231 ,..;,,\2*+11 A2
Po P Pr

where I, denotes the p; x p; identity matrix. .
In the sequel we shall call spatial homogeneous dimension of RN*1 wzth

respect to (D(V)), _, the positive integer
(1.5) Q=po+pi+. + 2r + Dpr.

We also note that det D(A) = A2+2 for every A > 0.
In [8] it is also shown that to any “model” operator L (i.e. with the matrix Ag .
constant) we can associate a particular “model” operator Lo which is invariant
with respect to some dilation groups, and such that the fundamental solution
I'o of Ly is equivalent to the fundamental solution I" of L, on the level set
{zeRN*1:T(2) > 1/r}. Lk |
Since the treatment of the dllatlon 1nvar1ant operators is 51mpler than the
general case, in this work we study the operators (1.1) under the following

Hypothesis H.1. B isan N x N constant matrix as in (1.3), where each block
matrix B; has rank p; and every “x” block is a zero matrix.
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From Hypothesis H.1 it follows that any operator (1.1), with A constant,

is invariant with respect to the same dilation group (D (})) 1>0-
A remarkable property of “model” operators is the invariance with respect
to left translations of the group (RN +1 o), whose composition is defined as

(1.6) x, 1o, 1)=&+ E()x, 1 +1), E({)=exp(—tBT).

It is easy to show that (RV*!, o) is a group with identity element (0, 0), and

(1.7) €D = (—E(-0E -1, V(1) e JRV,

Let ¢; : RY*! — RN*1 ¢, (z) = ¢ o z. Then, for every operator (1.1) with A,
constant, we have a

(1.8) | LeoL=Lot VieRVH,
~ Another interesting =observati6n, is that |
(1.9)  DA) (G oz) =(DME)o(DM)z2), D) (z7) =DMz,

which relates D() to the group (RV !, 0).
We would like to point out that both groups (D(A)); and (R¥*1, o) are
only defined in terms of matrix ‘B. In particular they do not depend on the point

z € R¥*! at which Ag(z) is computed. :
We next give the definition of norm and the definition of Holder continuity

associated with these groups. '

Definition 1.1. Let (g;);=1,..n be such that D(A) = diag(A%1, ..., A%, A?).
For every z = (x,t) e RN*!, we pur . .

. |
(1.10) Xl =D 15179, zlls = 16 + x5,
j=1

Itis easy to see that ||| p is a homogeneous function of degree 1 with respect
the dilation D(X): | ~

(1.11) | IDM)zllp =Allzllp VA >0.

Definition 1.2. Let o be a positive constant, o < 1. We say that a function f
is Holder continuous of exponent a with respect to the groups (RV*1, o) and
(D)) 2s0 Telated to L (in short: B-Holder continuous with exponent o) if there
exists a positive constant k such that,

(1.12) @)= fFOI <kt oz]§  Vz,¢eRVFL

B
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We next give further hypotheses on the operator L in (1.1):
Hypothesis H.2. There exists A > 0 such that

Po

o Po
%;gf < ,Z a;,j(2)&:&; < Akj;%.jz

=
for every (&, ...... , &py) € RP0 and for every 7 e RV*1,

Hypothesis H.3. There exist « €10, 1] and M > 0 such that
lai, j(z) — ai,j (0)] < M1 o z)|%, Vz,¢ eRV*!

and forany i, j =1, ...., po.

With a suitable adaptation of the Levi’s method of the parametrix, we shall
construct in Section 2 the fundamental solution of operators (1.1) verifying Hy-

potheses H.1-H.3.
We note that the parametrix method was used by M. Weber [18] and by I1’In

[6], assuming an “euclideous”-type regularity on the coefficients a; j» which is
not related to the group law of (R¥*!, o). As a consequence, additional regu-
larity hypotheses on a; ; were required, and the study was restricted to “Kol-
mogorov” type operators for which Lie algebra .2 (d,, ..., dy, , ¥) has degree
1. In 1967 Sonin [16] generalized the method to the class of the operators veri-
fying Hypotheses H.1 and H.2, again requiring an unnecessary regularity on the
coefficients of Ag. ‘ ‘

The parametrix method also provides an upper bound for the fundamental
solution I', which can considerably sharpened, as we shall see in Corollary 2.5.
This new estimate allows us to determine an accurate local estimate of I" (see
Section 4) and to state an invariant Harnack inequality for non-negative solu-
tions of L u = 0 (see Section 5).

The main results of this work are the following Theorems 1.1 - 1.3.

Theorem 1.1. (Existence of the fundamental solution). Let L be as in (1.1)
verifying Hypotheses H.1, H.2, H.3. Then there exists the fundamental solution

I"of L.

Theorem 1.2. (Local estimate of the fundamental solution). Let L be as in (1.1)
verifying Hypotheses H.1, H.2, H.3. Then, for every ¢ > 0 there exists K > 0
such that

(1.13) (1-6)2Z(z,8) =T(z,8) =(1+&)Z(z,¢)
forany z, L e RN such that Z(z,¢) > K.
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Here I'(z, ¢) denotes the fundamental solution of L and Z(z, {) denotes
' the parametrix, i.e. the fundamental solution with pole at ¢ of

Po
(1.14) Le= ) a;j(§)0ux+ <x, BD > —3,.

ij=1
We now introduce an additional condition.

Hypothesis H4. Foreveryi, j = 1, ...., pg there exist the derivatives 9;,a; ; (z)
and they are bounded and B—Hdlder continuous functions, with exponent «.

If Hypothesis H.4 holds, Theorems 1.1 and 1.2 can be extended to the di-
vergence form operator

(1.15) M = div (A(z)D) + < x, BD > —¥,,
wh.ere,A‘(z) =  AOO(Z_-? 8

The following Theorem states an invariant Harnack inequality for non-
negative solutions of Mu = 0, where M is the divergence form operator (1.15).
We first need to introduce some notation. For every.-p > 0 we put:

Hy = {(x, ) eR¥*' 1 —p? <1 < 0; |D(p)x| < 1}

(1.16)  Hy ={x,0)eRY" 11 =—p% |D(p)x| < 1}
Hy(z0) =200 H,,  Hj(20) =200 H.

Here and in the following we use the same notation for D(A) in R¥*1 and for
its restriction to RY . Next Theorem extends Theorem 5.1’ in [8] to the variable
a;, j coefficients. - '

Theorem 1.3. (Invariant Harnack inequality). Let M be an operator (1.15) ver-
ifying Hypotheses H.1-H.4, and let Q be an open subset of R¥T1. Then there
exist three constants ¢, rg > 0 and 0 € )0, 1, only depending on the constants
in Hypotheses H.1-H.4, such that

(1.17) sup  u(z) < cu(zp)

z€H_ (20)

for every non-negative solution u of Mu = 0 in 2, for every zo € Q such that
H,(z9) C 2 and for every r € 10, rol.
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We note that the proof of Theorem 1.1 yields an accurate upper bound for
the fundamental solution T" of L in terms of a “model” operator L*. If I'*
denotes the fundamental solution of L™, then

(1.18) IF'(z;¢) < TH(z; 0)

forevery z = (x,£),¢ = (§,7) e Rl suchthat 0 <t — 1 < T, forsome

positive constant ¢t dependingon T .
By a suitable adaptation of a technique introduced by Aronson and Serrin

in [1], Theorems 1.2 and 1.3 can be used for determining a lower bound analo-
gous to (1.18) for divergence form operators (1.15). It is possible to construct a
“model” operator L~ such that the corresponding fundamental solution I'~

tisfies
(1.19) ' (z;8)c” =T (z;¢)

forevery z = (x,1), ¢ = (§,7) e R¥ ' suchthat 0 < ¢t —t < T, for
some positive constant ¢~ depending on T (see [10], Teorema 4). This result
will appear in a forthcoming paper [11]. '

We close this section by noting that Theorems 1.1, 1.2 and 1.3 are not
sensitive to “small” perturbations of matrix Ag. On the other hand a C* (or an
analytic) perturbation of matrix B can destroy the regularity of L. For instance,

(1.20) Lo = 0] +x10x, + X205, — &
is hypoelliptic, whereas the “perturbated” operator
(1.21) L =9} +x18, + (x2 _ tx1)dy, — 8,
is not hypoelliptic, since
rank (g(xl, X10x, + X20x, — 8,)) = 4,

and
rank (& (x1, X190y, + (X2 — 1x1)8y, — 3,)) =3,

(see [S], page 149; see also [8], Appendix).

Acknowledgment. The results of this paper, together with the lower bound
(1.19), are part of Tesi di Dottorato di Ricerca of the author [9] and were an-

nounced in [10].
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2. The parametrix method.

In this Section we shall apply the Levi’s parametrix method to operators
(1.1), verifying Hypotheses H.1-H.3, by making a systematic use of the defini-
tion of B-Holder continuity given in Definition 1.2.

We start with a simple result. -,

Proposition 2.1. A function f is locally B-Holder continuous if, and only if, it
is locally Hélder continuous. ’

Proof. Let f € C(2) be a locallly Holder continuous function, with exponent
a € ]0, 1[. We need to show that, for every x € , there exist ¢ € ]0, 1] and
M > 0 such that

[ —f@I _
ey T

for any ¢ € RY such that |||l < ¢. We note that, from the definition (1.6) of
E (1) there exists ¢y > 0 such that

2.1

IE(T) — Il <colz]  VTel[-1,1].
Thén, the Holder continuity of f on the compact set B(z, €) gives
1fod) = F@I=1fE+E@x 1 +7) - fx,0)] <
< Mo[It" +1§ + (E@) = )x*] <
< Mo [IT|* + 211" + 2§ 1x]*|7|%] <
< M[IE1 +21*] <= M1

(2.2)

for every ¢ € R¥*! such that ¢l < e. The last inequality holds since
(2.3) E1* + 1zl < 1§15 + 1T < 1K

for every { = (&, ) such that |||l < 1. This proves (2.1). The proof of the
converse is similar, since

¢z < (N + Djiz]w

for every ¢ such that ||| < 1, where gy is as in Definition 11 ]

We next construct the fundamental solution of equation (1.1). For every
ze RVt let

Po
(2.4) Ly= ) a;j(@)dyx+ <x, BD > -3,
i,j=1
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and denote by Z;(z, ¢) the fundamental solution of L;. To simplify the notation,
when z = ¢, we shall write

(2.5) Z(2,¢) = Z¢(2,%).
According to Levi’s method, we seek the fundamental solution I" of L by using
the parametrix Z(z, {). We put

(2.6) Mz, §)=2(z8)+ J(z,¢)
and we require that I'(-; ¢) is a solution of the differential equation (1.1), for

Z2#¢
2.7) 0=LT(z,¢)=LZ(, &)+ LJ(z,0).

Suppose that the function J can be written as
t

(2.8) J(x,t: & 1) =/(/Z(x,t; y,s)cb(y,s;g,r)dy> ds
T RN .
for some unknown function ®.
Assuming that J(z; {) can be differentiated under the integral sign, we

obtain-
!

(2.9) LJ(z;¢) =/(/LZ(Z; Y, $)®(y, s; s’)dy) ds — ®(z;¢),
RN

T

then condition (2.7) can be written as
t

(2.10) ®(z;¢) = (L2)(z; §)+/ (/LZ(Z; Ys s)é(y,s;f)dy) ds.
RN

11

It then follows that the differeniial equation LI'(z;¢) = 0 is transformed into
the integral equation (2.10), where the unknown function is .
The function @ in (2.10) can be determined by means of the successwe

approximation method, which yields
2.11) D(z;¢) = Z(LZ)k(z; 0,
k=1

where
(LZ2)(z,¢) =(LZ)(z; ¢)

L)z 0) = / ( f LZ(z y, ) L2y, s: ;)dy) ds

T RN
We next analyse the convergence of the series (2.11).

(2.12)
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Proposition 2.2.- There exists ky € N such that, for every interval I of R :

i) (LZ); is a bounded function in S; = RN x I, for every k > ko,
1) the series

(2.13) D L2z )

k=kg

converges uniformly on S; = RN x I;
1ii) the function & defined in (2.11) satisfies the mtegral equation (2.10) for
every ¢ € RN*! and for every z # ¢. _

If we denote by Y the first order differential operator
(2.14) Y =<x,BD > -9, ,

the following fundamental result can be proved

Proposition 2.3. Let J(z; {) be the function defined in (2.8). Then, for i, j =
1, ..., po the functions oy, J, 83 s YJ existand continuous. Moreover for every

z, £ e RN such that 7 # 'q

t

LJ(z;C)=/(/LZ(z; y,S)CD(y,s;C)dy>ds—d>(z; ¢)

T RN

as stated in (2.9).

Results (1) and (ii) of Proposition 2.2 give a precise meaning to definition
(2.11) of ®(z; ¢) for every z, ¢ € R¥*!, z # ¢. Moreover Propositions 2.2 and
2.3 ensure that the function I" defined in (2.6) is a solution of LI'(z; ¢) = 0, for
every z, ¢ € RV*! such that z # ¢.

The proof of Proposition 2.3 requires the study of some singular integrals,
thus we postpone the proof to Section 3.

In order to prove Proposition 2.2, we first recall some results in [8].

For every pg x pp constant symmetric and positive defined matrix Ag let

us define the N x N matrix
_[Ay O
as(%0).
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Let B the matrix of L in (1.1) and put

t

C(t):/E(s)AET(s)ds, E(s) = exp(—sBT).
0

If L verify Hypothesis H.1, then

C) >0 foreveryt > 0

and the operator
(2.15) L =div(AD)+ <x,BD > —§,

is hypoelliptic. If D(A) is the dilation matrix defined in (1.4), then the fﬁndamen-
tal solution I' of the operator (2.15), with pole at (0, 0), is given by: I'(x, ) = 0
ifr <0, o

2.16) T(x,1) = ;C—_zgexp (—% <Cc'()D (%)x D (%) x >) ,

if # > 0, where cy = (47)~V/2 (det C(1))~!/? and Q is the homogeneous spa-
tial dimension of RV*! with respect to D (1) defined in (1.4). The fundamental
solution I'(-; ¢) of (2.15) with pole at ¢, can be obtained from I'" as

I'(z; ¢) =T(x, t;_S, )=I'(x—E(t—-1)¢,t~1).

Let A,, A(')F be two constant, symmetric positive defined py x po matrices, and
let

(A 0 e _ (47 O
2.17) A ._(0 o>’ A "(_o :

be the corresponding N x N matrices. Denote by I'™, I'" the fundamental
solutions of
L™ =div(A"D)+ < x, BD > -4,

2.18
(2.18) L* =div(A*D)+ < x, BD > -,

respectively. Then
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Lemma 2.1. If A; < AT, then there exists a constant ¢ > 0 such that

I (z;¢) <cTY(z;¢) Vz, e eRYT,
Proof. Let

-1/2

C™ = [ EGs)ATET(s)ds, cy = (@4n)™V?(detCc™)™ ",

(2.19)

~1/2

ct E(s)ATE"(s)ds, cf = (4m)™"/*(detC)

O O —

Then we have

' (z; g“‘) =cy(t — 1:)—% exp (—% < (C“)_ln, n >) ,
(2.20) {
Mz 0) =it — 1)~ exp (-Z < (€™ 'n >) :

where n = D (ﬁ) (x —E(t —1)§).Here z = (x,t) and ¢ = (£, T).

Hypothesis A; < Ag yields C~ < C*, then, for every n e RY,
1 =1 1 + -1
(2.21) exp | —7 < (C7) "mn>) <exp -7 < (CT) "non>].

The result follows from (2.20) and (2.21), with ¢ = c;/ Cx- J

Remark 2.1. The validity of (2.21) relies on the following result: if C; and C,

are symmetric and positive definite matrices, and C; < Cj, then C; I < C/ L

For sake of completeness, we give a short proof of this elementary proposition.
We first note that, for any symmetric matrix G,

C1 <C; = GCiG < GG,G.

Then, if we set G = C; '/, from C; < C, it follows I < C;'*C,c7Y2.
) . ~-1/2 —1/2y~1/2 1/2 o1 ~1/2
Choosing G = (C; /°C,C; '7)"", we have C,;/*C;'C,’* < I, and finally,

1
1/2

setting again G = C; /7, we get Cz_1 < Cl_l.

The following result is an immediate consequence of Lemma 2.1.
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Proposition 2.4. There exist two operators L™ and L™ as in(2.15) and two con-
stants ¢~, ¢t > 0 such that, if T~ and Tt are the correspondmg Jundamental

solutions, then

¢ T7(2¢8) 2 Z:(z;8) <c™TH(z¢) Ve, ¢, zeRVFL
Proof. It is sufficient to use Lemma 2.1 since, by Hypothesis H.1,
1 -
AlpoSA(Z)<A o YZERYT O

Corollary 2.1. There exists a constant ¢ > 0 such that, for every i, j =
1, ..., po, and for every z = (x,1), ¢ = (&£, 7) e RN+,

D(6-07F) @ - EC-0p|r @ o)

2.22) 0,2z 0)| < J?f:
and
(2.23) |65 5, Z(z: §)] <
. 2
(1 + {D ((t - f)‘f) (x—E@ - T)S)‘ >F+(z; £).

=
I—7

Proof Since the functlon Z, can be written as in (2. 16), with C(1) = C¢ (1) =
Jo E()AQ)ET (s)ds, we have

(2.24) C 0 Ze(z;8) =
e <1(¢), D ((f - T)—i) (x —E@t —1)§) > Z(7; 0),

where /;(¢) is the i-th row of the matrix C, L1). From Hypothesis H.1, the
coefficients of the matrix C, ! are bounded functions of ¢, then (2.24) yields

(2.22).
The bound (2.23) can be obtained in a similar manner, by differentiating

(2.24). O

Lemma 2.2. Let Ay, Ag be two constant matrices such that 0 < Ay < Af.
Then, for every polynomial p there exists a positive constant Cp such that, if we

setn=2D <Jt1——?> (x —E(t - r)é), we have

PP~ @ &) < ey TH( &) ¥z, ¢ e RV,
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Proof. From: (2.20) it follows

’ Mg ey 1 T e )
(2.25) e T (4 <€) =) nn>).

The Lemma follows by noting that the quadratic form in (2.25) is negative de-
fined, since from (2.19)
. )
c--ct =’/ E(s)[A™ - A+]ET(s)ds <0
4 .
and (see Remark 2.1)
(€)' =(c) <0, O

Corollary 2.2. Fixe > 0, put Xo = (A+¢)1,, and denote by T the Sfundamental

solution of the corresponding operator L. Then there exists a constant ¢ > 0
such that, for every i, j =1, ..., po, and for every z, ¢ e RN*!, we have

(2.26) ,]ax,.Z;(z;';)l < C__ T'I:(z; ¢)
and
(2.27) |7 52z )| < ;—_C—T—f(z; £).

Lemma 2.3. There exist an o oOperator L and a constant ¢ > 0 such that, if T is
the fundamental solution of L, then

~

(2.28) ILZ(z; 0] < ﬁ——;f‘(z &) Yz #4.

Proof. Since Z; is the fundamental solution of L., for every z # ¢ we have

bPo .

(2.29) LZ;z ) =) [aj@ —a ;)] 8%, Z: (2 0).

i,j=1 _
From Hypothesis H.3, for i, j =1, ..., py,
(2.30) |aij(z) — a; ; ()] < Mlg"l ozl =M@ —1)%(n, D%,

where n = D ( > (x —E@ —1)&). Then (2 28) follows from Corollary 2.1
and Lemma 2.2, O

Estimate (2.28) plays a crucial role in the proof of Proposition 2.2. We
next prove that Lemma 2.3 holds under Hypothesis H.4 for divergence form
operators.
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Lemma 2.3°. Let M be adivergence form operator (1.15), verifying Hypotheses
H.I-H.4. Then there exists an operator L such that, for every bounded interval
I C R, there exists a constant ¢; > O such that, if T is the fundamental solution

of L, then

~

C ~
(2.31) IMZ(z; )l < ————T(2;0).
(t—1) 72
Proof. If weput,forj=1,..,N
Po
(2.32) bR =) 0k (2),
i=1

then

DPo
233) MZ(z0) =) [a;() —a;(0]02, Z(:z:0) +

i,j=1

Po
+ Y b8y Z(z;¢) = LZ(z; )+ < b(2), DZ(z; ¢) > .
j=1

By Hypothesis H.3 the coefficients of L are B-Hélder continuous. Moreover, by
Hypothesis H.4, vector b(z) is bounded and B-Holder continuous, and its j-th
component is zero for j > pg. Using Lemma 2.3 and Corollary 2.1, we obtain
(2.31). O

Corollary 2.3. For every k € N we have

(2.34) (L2),(z: 0)] < %F(Z; ¢)  Vz, g eRVtL
-t 2

where
_ EkF(a/Z)k

(235) Cr = W

Here Tand T are the constant and the function of Lemma 2.3 and, only in (2.35),
I" denotes the Euler’s Gamma function.
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Proof. Let us proceed by induction. If k = 1, (2.34) is nothing but (2.28).
Suppose that (2.34) holds for k and compute

4

(2.36) I(LZ)kH(z; ;), = /(/LZ(z;y,s)(LZ)k(y,s; s“)dy> ds

T RN
(for induction hypothesis and (2.28))

: / ( —Csl)l-% - -2 (/ Ty 9FG,s C)dy> ds.
i | (S—T) : R¥

The reproduction property of the function r gives, for every s €], ¢,

(2.37) f Ty, 0Ty, s0dy =T o,
R¥ v ,
Using the basic properties of Euler’s Gamma function, we obtain directly

a(k+1)
1+===

t
c1 Ck -
3 rds =cr1(t — 1) ,
(t =912 (s - )I-%
T . . .

which proves (2.34) fork +1. O

Proof of Proposition 2.2. (i) follows from Corollary 2.3 and from the explicit
expression of I‘(z;_ y,s), for kg e N and kg > %
(ii) follows from (2.34), no_ting that the power series

o0

> Chtit!,

j=1

where ¢, is defined in (2.35), has radius of convergence equal to infinity.
(iii) using (2.34), (2.35) and (2.37), for every z % ¢ we obtain:

t

/(/(LZ)(z; ¥, 8)P(y, s; é’)dy> ds

T ]RN .

= Z/ (/(LZ)(Z; Y, SYLZ)(y, s; C)dy) ds
k=17 RN

=Y L2z ¢) = D(z;¢) — (LZ)(z: ).
k=1
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This proves (2.10). O

The following result is a straightfdrward consequence of Lemma 2.3

Corollary 2.4. Forevery bounded interval I C R there exists a constant ;1 >0
such that ' '

~

(238) vwzcnsZ;fgtgfwxd VI, 0 €S, AL

Corollary 2.5. For every bounded interval I C R there exists a constant c; > 0
such that '

(2.39) C(z¢) <cl(z¢)  Vi,le€S,z#L.

Proof. Substitute in (2.6) the bounds of Corollary 2.4 and of Proposition 2.4.
Then, for every z, ¢ € Sy,

(240) T'(z;¢) = Z(z; 4“)-*.—/ (/ Z(z; y,S)|<I>(y,s;§)l dy) ds <

TR
= s - -
<cI'(z; C)-&-/—————l—_—g(/-r‘(z; y,s)I‘(y,s;;)dy)ds_—_
(s —17) 77 \y :
T RN |
=CT(1+ (= )ikica) T(z; 0).

Since the intervél I is bounded, (2.40) yields the estimate (2.39). O

Propositions 2.2 and 2.3 show that I" is a solution of the equation LI' = 0in
RN*1\{¢},forany ¢ € RV*!.In order to show that I is the fundamental solution

of L, we only need to prove the following

Proposition 2.5. For every function f € C (IRN ) we have

t—=>T

]RN

2.41) fim [ TGrri 6,0 €)dE = £,

foreveryxeRN,teR.
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Proof. Recall that I" was defined as
Mz 8 =28+ 7z 0.

Since Zj; is the fundamental solution of L;, for every x e R¥,

(2.42) im [ Zio(x, 156, 7)f(E)dE = f(x).

t—>tt

RN
Moreover, since, from Hypothesis H.3, it follows
Iim [ 1Zy(z6,7) = Zy(@ €, 0)] df =
RV ’

= lim /IZw(O, 0;6,7—1)—Zy(0,0;&, 7 —1)| d§ =0,
w-—w’ . _
o | 4 |

and f is a bounded function, we can easily derive

043 lim [ [Zeo@é D - Zuo@ £ 0] F6) dE =0
RN

Finally; applying Corollary 2.4 and Proposition 2.4 to the definition of J in
(2.8), we get

t

IJ(z; O < Jﬁ(/ﬁ(z; y, )T (y, s; {)dy) ds
(s —7) 72 \J |
=d-1)iT (),
from which
(2.44) . tlim+/J(z; E,1)f()dE =0.
RN

The result (2.41) follows from (2.42), (2.43) and (2.44). U
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3. Singular integrals.

In this Section we shall give the proof of Proposition 2.3. To this purpose,
we first prove some results on the function ‘

3.1) J(z:0) = / Z(z; w)dw: ¢) dw.

RN x]r,¢]

Proposition 3.1. For every { € RVt fori = 1, ..., po, function J(z; {) has
continuous derivatives 9y, J (z; ¢) and '

6D wEO= [ GZ@wew ddw
. RN x]t,¢{ A

Remark 3.1. The integral (3.2) converges since, by Corollary 2.2 and Corollary
2.4 there exists a positive constant ¢ such that '

[ 1z wew; 0w <
RN x]z.¢[

s [ Fawfwioe-97 -7 aw=

RN x]r,¢]

=T'(z; C)/(t — ) (s = 1)TH 2 ds < oo,

Proof of Proposition 3.1. Let ¢ be a function of class C?(R), such that .
0 < ¢(t) < lforevery t > 0, p(t) = 1 forevery t < 5, and ¢(¢) = 0 for every
t > 1. For any fixed ¢ > 0, put .
)

(3.3) ne(z;w)y=1—-¢ (“D (%) (w—1 o z)
(3.4) wao= [ 2@wnwowode,

RN xJr,¢[

and
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We first show that for every z = (x, 1), ¢ = (¢, ) e R¥*t!, with t > 1, it holds

3.5) 0, J(z; ) = / 0 (Zn2) (23 ) D (w: £) duw.

RN x4
Note that, for every ¢ > 0, functions 7,, 0x e are bounded. From Proposition
2.4 and Lemma 2.3, it thus follows that there exists ce > 0 such that

(3.6) |3y, (Zne) (z; w)| < =—=T(z ).
On the other hand, if we set
3.7 B p) = {¢ eRY 1t o 2ly < ],

then (Zn,) (z; w) = 0 for every w € B (z, %), from which

T(z; W) def ~
(3.8) ox, (Zne) (z; w)| <c sup = Cp < OO
I X & ’ € weRN+1\B(Zv§) A — S &

Hence, from Corollary 2.4, the bound

~

sk =~
(3.9) o (Zne) @ )@ w3 )] = =g Fw; )

holds uniformly with respect to the 7 variable, where the constant ’l;] in Corollary
2.4 corresponds to the interval I =]z, ¢[. Since the function in (3.9) is absolutely
integrable, (3.5) follows by Lebesgue’s Theorem, for any fixed ¢ > 0.

Fix { = (§,7) e R and forany Tp, T} e Ryt < Ty < T, let
S; =RN x I = R¥ x1Tp, Ty[. We claim that

(3.10) Je(z; 0) — J(z;¢) VzeS;

and, forevery i =1, ..., po,

Z€Sy
(3.11) 00 Jo(z &) — / b Z(2; w) P (w; £) duw

=0 RN x]z,¢(
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es
(we denote by Z—*I the uniform convergence on S;). If (3.10) and (3.11) hold,

function J(-; {) has derivatives 95, J(-; {) on S;. Moreover these derivatives
are continuous functions and, for every ZES)

0 J(z;¢) = / 0% Z(z; w)P(w; &) dw.
R¥ x]t,¢]

The arbitrariness on the choice of I =]T,, Ty[, with t < T < T, yields the

results of Proposition 3.1.
We are thus left with the proof of (3.10) and (3.11).
To—f

Without loss of generality, we can suppose 0 < ¢ < gy, with gg = >
Then

G12) S50 —J(5e) = / Z(z; w) [ne(z; w) — 1] & (w; ¢) duw.

R¥ x1t,¢]
From the definition of the function 7., we have

ne(z;w) — 1] <1 YweRN,

(3.13)

ne(z;w) —1=0  VweRY\B(g,e¢),

and from Proposition 2.4, there exists a constant ¢ > 0 such that
Z(z; w) < FF(z; w).

Therefore from (3.13) and Corollary 2.4 it follows

(3.14) [Je(z;8) — J(z; )| < / ?Zzﬁ(z;w)(—s%dw

B(z,e)
s<t

Note that, since z€ S;, w e B(z,¢) and e < gy =,/ T";’, thens — v > 8(2), and

T'(w; ¢)

a—Q-2
(s—7)77 ~

080

(3.15)
Hence there exists a constant c¢g > 0, depending only on the set S;, such that

(3.16) 1Jo(z:8) = I (2 2)] < cs / 2 w) dw.

B(z,¢)

s<t
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Recall that T(z; w) = T(w~! o z; 0) and that
(3.17)  T'(D()z;0) = A~2T(z; 0); det (D(L)) = 1212,

Hence, by setting w’ = D (1) (w™! 0 z) in (3.16), we obtain

GI8) (5 0) = (5 0l < 6%cs / T(0; w) dw = ks
) “B(0,1)

s<0

from which (3.10) follows.

In order to prove (3.11) we again assume 0 < ¢ < gy = % From (3.5)
(3.19) e T2 §) — f b Z (23 w)D(w; £) dw =
R¥ x]r,¢[
- f 80 Z (2 w) [0 (25 ) — 1] ®(w; ¢) dw +
RN x]z,¢[
+ / Z(2; W)y, e (z; w)P(w; §)dw = I, (z;¢) + 11.(z; 8).
R¥ x]z.¢[

We next evaluate the quantities I, and I/,. Using (3.13), Corollary 2.2 and
Corollary 2.4 we get

_, Chki ~ . Tw;o)
620)  n@ols [ e i
B(z,e)

s<t

< ¢y / I;/(z,—w) dw
t—3S
B(z,&)
s<t

Last inequality follows from (3.15). Substituting again w’ = D (1) (w™! o 2)
we finally obtain

F(O; w)
—5

(3.21) 1Ie(z; £)| < ecf / dw = ekg.

B(0,1)
s<0
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)

To evaluate 71.(z; ¢), we note at first that

(3.22) ax,- ne(z; w) = '2:(0/ (”D (é) (w_l o Z)

Then, letting m = supg |¢'|,

m
3, e (z; W) < — YweRYH
(3.23) 87 | £
dne(z;w) =0  VYweRYT\ B(z, e).

By using (3.23) 11, can be treated as I, in the previous case. We have

| ok, ~ T'(w;
324) LGl < 22X / Bz w)— 28 gy <
F> (s — ‘L') -3
B(z,e),5s<t

/ T(z; w)dw = m cse / T'(0; w) dw = m kge.
B(z,g),s<t B(0,1),5s<0

Then (3.11) follows from combining (3.19), (3.21) and (3.24). O

/
mec
< S

£

Lemma 3.1. For every bounded interval I there exist three constants ¢ > 0,
v,y €10, 1[ such that

e = >}

(325) |0, 150) - (5 0)| < p— [T 60 +Tw, 0],

-7
forevery ¢t = (§,7) e RN™! foreveryt,t €l,t > 1 and for every x, x’ € RV,
Lemma 3.2. There exists a constant k > O such that

k o~
(326) (92, Zizw) = R, Zo(z; w)‘ < — ¢T3 Tz w)

for every z,w, ¢, ¢’ e RNt and for every i, j =1, ..., po.
The proof of these lemmas is postponed to the end of this Section.

Proposition 3.2. For every fixed { € RN*! and for every i, j = 1, ..., py the
derivatives 83'_ % J (- ¢) exist and are continuous functions. Moreover

t

(3.27) aj,xjf(z; §)=/(/8§,x12(z; y,S)<I>(y,s;£)dy) ds.
RN

T
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Remark 3.2. We cannot assert that the integrating function in (3.27) is ab-
solutely integrable on RY x ]z, #[. However we can consider the integral in (3.27)
as a “repeated integral”. Indeed, since the function ® is absolutely integrable, it
is sufficient to prove that, for every fixed fy € ]t, ¢[, the integral

p
(3.28) /(/a,i,ij(z; y,s)cb(y,s;;)dy) ds
RN

o

converges. For every fixed s € ]z, ¢[ and for every y’ ¢ RV,

(3.29) /ai,x,.Z(z; Y, )Py, 53 ¢)dy =
RN
=/3f,-,x,.Z(z; Y, 8) [@(, 55 8) — @Y, 550)] dy +
R '

+ O, s; C)/ 1Zy.5 = Z(y s)](Z y,s)dy +

FO0 50 [ 8, 2@ vis)dy =

=G4y )+ 1@ 8y )+ 1@ 8y, ).
We next give some estimates for the three addends above. Let y' = E(s — )x.
From Corollary 2.1 and Lemma 3.1
’ ’ C+ 1 2
(3.30) |I (z; 85y ,S)l < / P— [1 + ‘D ((t—s)i) (x —E(t——s)y), ]

RN

'Y - -
T (z; y, S)cziy—_;yl‘—fé TG, O)+TG,s0]d

If s € Jt, t[, the explicit expression of T allows one to derive the existence of
k = k(tp) > 0 such that

T(y. 55 0)
(s — )%

Moreover, using the identity (see [8], (2.20))

(3.31) <k V(y,s)eRVtl. s>y,

(3.32) D(WE@)D GJ) = E(\*) Vi>0,VieR,
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we can prove that there exists a constant M = M (T, T;) > 0 such that

(3.33) y=yh =y - E6s -0, <
< M@ —s)5 ’D ((: _ s)-%> (x — Et —s)y)lB .

Therefore, from (3.30), (3.31), (3.33) it follows that there exists a constant
¢’(tp) > 0 such that

(3.34) |I'(z; ¢ E(s — t)x, 8)| < _Cfto_)y,_/f:(z; yo5)dy = ¢’(f) .
(I*S)I—TRN (t—s)-7

Arguing as above, using Lemma 3.2 instead of Lemma 3.1, we can show that
there exists ¢”(#) > 0 such that

(3.35) |I"(z;¢; E(s — t)x,5)| < ——C(Ll)_g/ﬁ(z; y,8)dy = ~—it°1)_—
(t—s)l—2 (t—s)"2

To evaluate /™, note that, for every z € RN+ we have [ Z;(z;y,s)dy = 1.
RN
Then, forevery i, j = 1, ..., po,

(3.36) | 2; ., f Zi(z; y, )dy = 0.
RN

On the other hand, using the Lebesglie’s Theorem, for every s € ]z, t[ it holds

(3.37) Bfi,xj/Zz(Z; y,s)dy=/8§,ijz(z; y,s)dy.
RN RN :

Setting z = (E(t — s5)x, s5), we obtain /" = 0. This proves the existence of the
integral (3.27). .

Proof of Proposition 3.2. Arguing exéiCtly as in the proof of Proposition
3.1, it can be shown that

(3.38) @ = [ 8, @) @ wew o du,
R¥ x]7.¢(
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For every fixed { = (§, 1), forevery Ty, T; € R, with v < Ty < Ty, let
S; = R¥x1Ty, Ty[. If

zZ€S;
3.39) 8 ez ( / 8; . Z(z:y, )P, 55 0) dy) ds,
e=0
T RN

then Proposition 3.2 follows from (3.10) and (3.11).
To—f

Without loss of generality, we can suppose that 0 < ¢ < gy = 5=
From (3.38) we have

t

(3.40) 0, Sz 0) - / ( f 02, 2 y,s><b<y,s;;>dy) ds =

T RN
t

=/(/8§,x,. ((ne = 1) Z)(z; y, 5)P(y, s; C)dy) ds =
RN

T

!
= f (Z(z; &Y )+ Tz 5y s) + 17 (2 ¢ y’,s)) ds.
T

~

Functions /., I:” and 7;” are obtained as in (3.29) with Z replaced by (n, — 1) Z.
_In order to prove (3.39) it is sufficient to find bounds independent of ¢, for

I; and 1, as in (3.34) and(3.35). This requirement can be met by showing that

)

k(gn) ~
(3.41) % 01 = D Z1 (v, 15 3, 9)| < t(%”sr(x, £5,5),

forevery x,yeRY s e]r, t[, ¢ €]0, €ol. As mentioned above
Bune(zw)| < = VweRNH,
€
0x,Me(z; w) =0 Yw e B(z, ¢/2).

Moreover

1
-1
=|x—E(-— JE—s<gl2 = -< :
lw™ ozllp=Ix - Et —s)y| + s<e/ c S =

then
Vw,ze RV,

Ox, e (2; <
Beme(e; w)] < 57—
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Analogously

/

Yw, z e RV,
ir—g5) 0F

33,-,;;,. ne(z; w)' <

Using Corollary 2.1, the estimate (3.41) follows.

Since the integrating function on the right hand side of (3.40) is zero for
every (y,s) € R¥*! satisfying s > ¢ — &2, estimates analogous to (3.34) and
(3.35) guarantee that there exist two constants 8 € ]0, 1[ and c(gg) > O such
that ’

t

92 I ) - / ( / 2.2 y,s><b(y,s;;)dy) ds| <

T RN

t

< / /B,i,x, [(ne — 1) Z1 (z; y, $)®(y,5;{) dy| ds <

t—e? |IR¥
1
< c(&o)
- (t —s)i-#

t—g?

ds = c'(go)e?.

This proves (3.29) and thus, Proposition 3.2. O

Proposition 3.3. For every ¢ € RVt the derivative
YJ(z:8) =<x, BDJ(z; ) > =8,J(z; {)

exists and is a continuous function with respect to z. Moreover

(3.42)  YI@e) = / ( / YZ(z; y,s>d><y,s;c>dy) ds — &(z; 0).
RN

T

Proof. Here, for every ¢ > 0 we set
(3.43) rEo= [ z@wewpdw
RN x]r,t—¢[
Similarly to (3.10), it can be shown that, for z, ¢ e RV*!, 7 £ ¢,

(3.44) Je(z; §) — J(z; {).
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Let z = (x,t) e RV*1, § > 0 and define the path
(3.45) ¥ :1=6,8[> RV, y(s) = (x(s),1(5)) = (E(s)x, 1 +5).
From the definition of E(s), it follows

(3.46) y(0) = (x,1), ¥(s)=(—BTx(s),1).
Let { = (£,7) € RV*! be given, with > 7 and set & > O such that
¢ < g = 5. We next show that
(3.47) YJ:(z;¢) = f YZ(z; w)®(w; ¢) dw —
R¥ x]t,t—¢[
- / Z(zy,t —e)®(y, t —€;8)dy.
]RN

Consider the path y defined in (3.45) with § = =. We have
Je(y(0);§) = Je(y(0); §) _

(3.48) -
_ / , Z(V(G);w);Z(V(O); w)(b(w;g)der
RN x])t,t—g]
1
+ = / Z(y (o), w)d(w; {Hdw.

R¥ x]t—g,t+0 —¢[
Being Z(z; w) the fundamental solution of L,,, it follows from (3.46) that there
exists o* €] — |o|, |o|[ satisfying
Z(y(o),w) —Z(y(0);w) d

(3.49) —Z(y(0); W)is=o
o do

Po
=-YZy(c");w)= Y a;(w)d? , Z(y(o*); w).
i,j=1

Using the fact that a;,; are bounded functions and that t + o* > ¢ — £, Corol-
lary 2.1 gives that the function Zf‘}zl a;, (w)afhij(y(o**); w) is bounded on
RY¥ x]t, t — ¢[. The summability of ¢ yields

o Z(y (0); w) = Z(y (0); w)
Iim )
g —>

(o

(w; &) dw =

(3.50)
RY x]r,t—¢]
= — / YZ(z; w)d(w; ¢) dw,

R¥ x]t,t—¢[
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hence

(3.51) /Z(z; v, t —e)d(y,t —¢;¢)dy —

RN
1 t+o—¢
- f (/Z(y(v);y,5)<1>(y,s;§)dy> ds =
- RN

(setting r = £=L£¢)

1
:/(/[Z(z; y,t— 9)—Z(V(d);y,t—e+ra)]<b(y,t—8; §)dy>dr+
0

RN

1
+/(/Z(y(a);y,t—eJEra)[@(y,t—8; $)—
0

RN

~ @y, t —e+ro; )] dy) dr = (o) + 12(z; 0).

Since § = £, it follows that Z(z; y,t —&) — Z(y (0); y, t —& +ro’) is a bounded
function, while (y, r) — ®(y,t — ¢; ¢) is an absolutely integrable function on
R¥ %10, 1[. Hence, from (3.45) and the Lebesgue’s Theorem,

lim I7.(z; §) = 0.

(3.52)

Applying on 73’ the change of variable

1
n= D(\/e—f-(l _r)a> (E(o)x —E(e+ (1 —-r)o)y),

with an obvious meaning of the notations we obtain

1

72z, 0)| 5'5/ (/exp(< C'(Dn, n >)-

0 RY

Py, t—&8) =Sy, t —e+ro; )| dn) dr.
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Since & (y, t—¢, £)—D(y, t—e+ro, ¢) is a bounded function, from Lebesgue’s
Theorem it holds ‘

(3.53) < 11%?3;@; ¢) = 0.

Then, from (3.51), (3.52) and (3.53)’ it follows

t+o—¢

(3.54) lim ~ / ( f Z(y(©); 3, 5)D(, 5 c)dy) ds
t—e RN
= f Z(z; 9, t —e)D(y, 1 — &; ) dy.
RV ' ,

Hence (3.48), (3.50) and (3.54) yield (3.47).
Fix now ¢ = (£, 1) e RV, and, forevery Ty, T) € R, with 7 < Ty < T3,
put S; = RV x1Ty, T1[. Let us prove that

ZES] vt .
(3.55)  YJ.(z;0) 3 </YZ(z;y,S)¢(y,S;§)d)’)dS—CD(Z;Z).

e—0
T

Without loss of generality, we can assume 0 < ¢ < gy = -T"z;’ As above,

t

(3.56) | f(/YZ(z; y,S)Cb(y,s;C)dy) ds =

/(/azj(y 5)0; XZ(Z;y,S)d)(y,s;g)dy) ds.

i,j= 1 e
Using Hypothesw H.3. and L‘fcmma 3.1, we have that a; ; (y, s)®(y, s; {) is uni-
formly Holder continuous with respect to y. Following the lines of Proposition
3.2 (see (3.29)), we can show that there exist two constants c(gg) > 0 and
B €10, 1[ such that

t

(3.57) f (/thij(z; y,s)a,-,j(y,‘s)CD(y,s;{)dy) ds| <

-—g RN

c(&o)

ﬂ,
(t —s)=3
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forevery z €Sy, s €t — ¢, t[. Hence, from (3.56),

=€ ZES;
(3.58) . /(/YZ(z;y,s)¢>(y,s;C)dy) ds
e—0

T RN

T

/(/YZ(z; y,s)Cb(y,s;é‘)dy) ds.
]RN

Since ®(-; ¢) is a continuous an bounded function on S;, we obtain (see the
proof of Proposition 2.2)

Z€S
(3.59) [z@yi-a00.-s0d = 0@ o).
RY e—0
From (3.47), (3.58) and (3.59) relation (3.55) follows, and therefore, the proof
of Proposition 3.3. O

Proof of Proposition 2.3. 1t is a straightforward consequence of Proposition
3.1, Proposition 3.2 and Proposition 3.3. O

We next prove Lemma 3.1 and Lemma 3.2. -

Proof of Lemma 3.1.  We first consider operators of the type (1.1), not in diver-

gence form. _ o
We start by proving that there exists a constant £ > 0 such that, for every

i,j —- 1, vy PO

(3.60) [0, ZCr 1 w) =02, Z(, 15 w)

k N 1~
D @ = x| # T, 15 w)

= 3
(t—s)2 4=

for every w € RY¥*!, for every r,s € I, > s and for every x,x’ € RY,
satisfying |x — x|, < /I —s.Letv =x —x/, W(x) = ag,ij(x, t; w). Since
W e CH(RY), there exists r € ]0, 1[ such that

361 ¥, ZE,nw) -9 Z(, 1 w) =

=Wkx)-WEK') = %W(x + SV 5=r -
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From the explicit expression of W:
(362 W) =@~ o)+ < hiw),n >< Liw),n>]-
1
- eXp <_Z < Cu")ln, n >> ,
=D (-9 @—EC-s)y),

we can compute
- _Q_q_m 1 _
(3.63) O, Wx) =(t — )72 -3 pr(n) exp (——Z < Cwln, n >> ,

where pj, is a polynomial whose coefficients only depend on w and are uniformly
bounded in RN*!, Using (3.63), (3.61) and Lemma 2.2, there exists a function
I'’, namely the fundamental solution of some operator L' of type (1.1), and a
positive constant ¢ such that

v
D vhdy W +rv)| <
k=1 ’

(3.64) W) — W) =

N
v
< 2@ [V F(x—f—rvtw)

St hl(t_s)

From the assumption |x — x'|, < /7 — s it holds

then

3.65) W) -WE)| < Tx =X (x4 v, 15 w).

To complete the proof of (3. 60) it is sufficient th show that there exists a positive
constant c¢; such that

(3.66) (x4 rv,t; w) < ¢ ['(x, t; w),

for every z = (x,1), w = (y,s) € RV*!, with t > s, for any r € ]0, 1[ and
for every v € RY such that lvl gz = «/t —s. From the explicit expression of
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the functions I and T it follows that (3.66) will hold if, for any given constant
symmetric positive definite matrix C and for any given constant § > 0, there
exists a constant ¢; = ¢,(C, §) > 0 such that

(3.67) <Cnn>=(1+4+8) <Cm+n)n+n >+c,

for every n, n’ € R¥, |n'| < 1. The inequality (3.60) will then a consequence of

(3.66).
We thus need to show that there exist three constants k; > 0, y, ¥’ €]0, 1]

such that

(3.68) o ]LZ(x, t;w)—LZ(x',t; w)] <

= _(-[—_;%’x - x”g [F(x, tw) + F(x/, ' ‘LU)]

for every w e RV*1, for every x, x’ € RY and forevery t,s € 1,1t > s.
We first consider the case lx — x’] g S VE—s. Then

(3.69) LZ(x,t;w)—LZ(& t; w) =

Po ‘
= Z [a,-,j(x, 1) — a,-,j(x’, l‘)] a%;ij.(x,, tw) +

i j=1
Po ' ' '
+ .Zl [a0s(x.0) = i )] |32, 26, 15 w) = 82, 2, 65 w)].
L=

From (3.60) and Hypothesis H.3, for every B €]l — «, 1[, we obtain

Po : ‘ ,
3 [ais @ 1) = agj(w)] [aﬁ, LZ@nw) =02, Z(, 1 w)]
ij=1 o

<M@-9[1+[p (¢ -9 a-Ec-99]

<

(3.70)

, 1. 1=
X —X X — X
-k———‘ ‘3’3 I(x,t; w) <k | B (L 1) (x, 15 w),
(t —s)2 (t—s)3=5-%5 "

where n’ = x" — E(t — s)y. Now, (3.66) and Lemma 2.2 give

1T (x, 1; w) < 1T, 15 w).
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Then the last expression in (3.70) is bounded by

’x x,, gt Nyt
ko — [F(x, tyw)+T'(x', ¢ w)] .
(r — s)i_i"i

On the other hand, using once more Hypothesis H.3,
(3.71) |ai j(x, ) — a; ;&' )| < M|x = x|}
From Corollary 2.2,

Po
(3.72) 2 (a0 —a ;0] Z& 1 w)| <

i,j=1 _ |
x — b
<k I——ﬁr(x t,w) < ks l——————LF(x t;w)
(t—s) (t —s)! -5

for every B’ €10, af.

If we choose y = max {’5+g L ﬂ/} ¥’ = min {a g1 —ﬁ},then (3.70)
and (3.72) yield (3.68), when [x —X 'B < .\t-—s.

If instead |x — x’|, > /T — s, (3.68) is a direct consequence of Corollary
2.2. Substituting (3.68) in the deﬁnition of &, and applying Lemma 2.3, we
immediately obtain Lemma 3.1, for operators of type (1.1), not in divergence

form.
Now let M be an operator in divergence form (1.15). Proceeding as in the
proof of (3.60), it is easy to show that there exists a constant k£ > 0 such that, for

every j =1, ..., po

(3.73) 8, Z(x, 15 w) — 3, Z(x', 15 )| <k|—(—#r(x t;w)

for every w e RV*!, forevery ¢, s € I, ¢ > s and for every x, x’ € RV, such that
Ix —-X | g < +/t —s. From Hypothesis H.4, functions

pPo
bi(z) = Z Ox, ai,j(2),
i=1
are bounded and B-Hoélder continuous, thus from (3.73) and Corollary 2.2 there
exists a positive constant k; such that, for every j = 1, ..., po,
(3.74) |6 (%, )05, Z (x, 15 w) — by (', )8, Z(x', £; w) | <

|x —x’]l_a
<k

=< 1m[F(X,I; w) + (', 15 w)]
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forevery z = (x, 1), w = (y,5) e RV*!, with 1 > s_.Note that
Po

Po
MZ(@z9) =) [a@) —ai;©)] 8], 2z 6) + ) bj(@)35,2(z 0)

i,j=1 . S =1
=LZ(z; {)+ < b(2), DZ(z; ) >
and that b;(z) = O for j > po. Then from (3.68) and (3.74), Lemma 3.1 also
holds for operators in divergence form. O . ‘

Proof of Lemma 3.2. Recall the exp11c1t expression of 9; 5L (T w)

CN
(t — )%+, /det C, (1)

e @)+ < L@, n >< (&), n >] exP(—Z < Cg‘ln, n >) ,

(3.75) 07 . Ze (2 w) =

where ¢; ;(¢) is the element of C;l(l) at location i, j, [;(¢) is the { —th row of
c7'(Mandn=D ((z - r)—%) (x — E(t — T)). Since i
1 .
(3.76) C; = et = [ ET©AQ)EW) ds,
. 0 | |
from Hypothesis H.2 there exists a constant symmetric positive defined matrix

C*, satisfying C;' < (C’“)_1 for every ¢ € RV, Moreover, from Hypothesis
H.3, there exists a constant ¢ > 0 such that

CRE) N [otonil I [l B[RRIy oy 1”<c“ oy

[+

e
forevery ¢, ¢’ e R¥*!, Then
1 (1
exp (—Z < Cc_ln’ n >) —exp’(—zl< Ct—’ln’ n >)l <
1 1 1 +
52‘ <[cit -t n>lexp _Z<(C) n,n>) <

: 1 -
¢ IanCXP (‘Z <(c¥) . >).

Moreover from (3.76) and Hypothe31s H.3, the functions ¢i,j (&),

S S N+
[ (0), m are B-Holder continuous in R

Then (3.78) and (3.76) prove the Lemma. - [

(3.78)

’— 1

=¢|
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4. Local estimates.

In this Section we shall prove some local estimates for the fundamental
solution of the operator L as (1.1), as well as in (1.15), by using its expression
given in Section 2 in terms of the parametric Z(z, ¢).

Let Ag ,» Ay be two py x pg constant symmetric matrices, such that
(4.1) Mp, <Ay, AJ < ALy, 0< A} — Ay < pl,,.

As in Lemma 2.1, define the N x N matrices

-_(A; 0Y. +_ (A5 O
A“(o o)’ A‘“(o 0)

| Finally, put

o
(4.2) C = /E()( )ET(s)ds,
0

and denote by ¢~ and c* the minimum and the maximum eigenvalue of C,
respectively. The following lemma will be needed

Lemma 4.1. Let '~ and 't be the fundamental solutions of
L™ =div(A"D)+ <x, BD > —§,,

and
* = div (ATD)+ < x, BD > —3,,

respectively. Then, for every K > 0 there exists a constant cx > 0, depending
only on K, on matrix B and on the constants A, A, pin (4.1), such that

4.3) Iz ¢) <ex(t— 1) 9T (2, ¢)

for every z, { e RN satisfying ' (z,¢) > K, where

et \?
4.4) 6 = uA ( ) .
ACT
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Proof. Set
1 1

4.5) C~ =/E(s)A“ET(s)ds; ct =/E(S)A+ET(s)ds.
0 0

From (4.1)
4.6) AC<C™,Ct<AC: 0<Ct—C™ <uC.

Moreover, from

@n () =) =) et - een,
it follows
@® (@) =) =) e - e e = £

Hence, for every n € RY,

+
4.9) 0 << [(c—_)‘l -~ (c*)’"l] N, > < (Mc_)z nl? <
et \? -1 |
SMA(F) <(C ) n,n>.

Letting n = D <Jt_]:?> (x — E(t — 1;)%‘)’ C; — (47f)"N/2(detC+)_1/2 and

cy = (477)“N/2(detC’)_1/2, we have

1 _ _
(4.10) exp <_Z <[ = (c7) Nn >) <
s -1 ’ ch(t — 1)2/? 5_
sexp<4 <(C*) " mm >) (c;(t—r)Qﬂ) =
8 + J 8
= (e -0 % (M 0)" < (%NJ) t-1)%,

forevery z, ¢ e R¥*! such that T+ (z,¢) > K.
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Relation (4.3) is a direct consequence of (4.10) and of the explicit expres-
sion of I'"and I'*, after setting

(4.11) ck = () Mepk™. O

Proof of Theorem 1.2. We ﬁrstgconsider operators of the type (1.1), not in

divergence form.
Suppose zo = 0. Note that this is not a restrictive assumption, since the

estimate we shall prove only depends on the constants defined in Hypotheses
H.1-H.3. These Hypotheses are invariant with respect to the left translation of
the group (RY*1, o); this implies that the result holds for every zo € R¥*!.
Since zg = 0, we shall use the simpler notation Z(z) = Z(z, 0).
Let ¥ be a decreasing function of class C 1(R), such that ¥ () = 0 for
everyt > 1, ¥ (¢r) = 1 forevery t < 1/2. For any fixed p > 0 and for every
L j=1,.., Do, let

(412) v afj(z) = ai,j(O) -+ w‘ (HZ'OHB> [a,-,j(z) - ai,j(O)],
Po
(4.13) L? = Y af (2)8y+ < x, BD > —4,.
i,j=1

Function ¢ is bounded and belongs to C 1 thus Proposition 2.1 ensures that
functions af j are B-Holder continuous.The fundamental solution I'? of L? can
be determined using the function Z#(z, ¢) as parametrix, and then setting

O°(z;¢) = ) (L Z°)(z; 0.
k=1

For any fixed p > 0, which will be chosen in the sequel, we have

t

4.14) I'z) =2 +/ (/ Z°(z; y, )P (y, s) a’y) ds +

0 R~
+/ </[Z(z; v, 8) — Z°(z; y,s)]cp(y,s)dy) ds +
0 R
+/ </ZP(Z; y,S) [Cb(y,s) — cb/’(y,s)] dy) ds =
0 R?

=2+ 1)+ 11()+111).
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We next evaluate 1(z)/Z(z), 11(z)/Z(z) and I11(z)/Z(z) on the set
4.15) Ox = {zelRe."“rl L Z@2) > K}.

Let A be the constant of Hypothesis H.2; let ¢~ and ¢* be the minimum
and the maximum eigenvalue of the matrix C defined in (4.2). Put

_alc)?
(4.16) H= A3_Q(c:r—)5

and apply Lemma 4.1 to matrices
Ay = AJ(0), AL = A (O) + ulp,.
Forany z€ Of = ¢ : T"(¢) = K}, it holds

4.17) @) <ckt~$r(z) = Eco—gz-%zp(z).
[7]

Using the B-Holder continuity of the coefficients of Ay, we can choose p > 0,
only depending on the constants of Hypotheses H.1-H.3, so that

(4.18) AL (2) < Ao(0) + —’zfl,,0 <A VzeRVH.

From Proposition 2.4 and Lemma 2.3, using I'"" instead of F, we have that, for
every z € RVt

t

~

~ ck
4.19) [1(2)] < / BED I't(z)ds = cpta/21“+(z).
0

Hence (4.19) and (4.17) yield

(4.20) 1@ < -Cl—gféizp(z) Vze 0.
Moreover there exists 7 = ro(p) > 0 such tpat, for every r > ry,
(4.21) O} C B(0,p/2) = {zeRY* 1 |jz]lp < p/2},
and, from Proposition 2.4,

(4.22) 0, C O Vr > 0.
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Since Z(z) = Z”(z), from (4.20), (4.21), (4.22) it follows that, for every ¢ > 0
there exists a constant K = K (g, p) such that

(4.23) 11(2)] < fZ(z) VzeOg.

In order to evaluate I/ and I7 in' (4 14), we need to show that there exists a
positive constant ¢, such that

(4.24) 1) <c,, T1(z)| <c, VzeRN'L

Since L and L* verify Hypothesis H.2 (with the same constant A, independent
of p), from Proposition 2.4 there exists ¢ > 0 such that

(4.25) Z°(z;¢), Z(z; ) < T(z; 0).
Moreover

(4.26) Z(;0)=2Z(z;¢) Yz, e eRVL i g)s < p/2,

therefore
(4.27) 1Z(z; ) = Z°(z; )1 <€ sup T () =m, < oo
ichie=p/2
On the other hand Corollary 2.4 yields |
| k ~
D) < —5T(©),
1; 2
hence
t
(4.28) 111(z)| < mpZ/ r%-1</ T'(z;y,5) dy) dt = c,t*/?,
0 Rr

The first bound in (4.24) follows from (4.28), since from (4.21) and (4.22) we

have Ox C B(0, p/2).
The second bound of (4.24) can be obtained in a similar manner, by repla-
cing (4.27) with O

Lemma 4.2. There exists a positive constant b, such that

(4.29) (P = D,)(0)] < by.
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Proof. Inproving statements (i) and (ii) of Proposition 2.2, we showed that there
exists a positive integer ko such that (L Z);, (L?Z”), are bounded functions for

every k > kg, and the series

Y LD, D L2z Y)

k=ko+1 k=ko+1

converge uniformly for z, ¢ € §;.
To prove the lemma it is sufficient to show that there exist some positive

constants My, M, ..., My, such that
(4.30) WLZ=LPZ°W%(; 0| <M, Vk=1,.. k¥ ecRVL

Using Lemma 2.3, fork = 1, ..., ko

4.31) (LZ3), (P20 S 72T @) < &

for every z € R¥*! such that ||Jz|z > p /2, thus it is sufficient to prove (4.30)

for z € B(0, p/2).
We proceed by induction: if k£ = 1, relation (4.30) follows from noting that

(LZ)(z) = (L*Z*)(z), Yz € B(0, p/2).
Suppose now that (4.30) holds for k£ and evaluate

(LD)i41(2) = (LPZP)ps1(2) =

T

= / ( / LZ(z y,9) [(L2) — (LPZ7)] (y,s>dy) ds+

O Rn
' .

+/ (/[LZ—(LPZ”)] (z; 7, SILZP )i (y, 5) dy) ds =
0 R”
= Ji(§) + ~2(0).

From induction hypothesis and from Lemma 2.3 we have

t
~ 1 5
4.32) |Ji(»)] = CMk/——————_— /F+(Z; y,8)dy ) ds = ¢’ Myt%/?.
(t — S)l af2
0 R’

To evaluate J,, note that

LZ(z;y,5) = (L"Z")(z; y,5) Y(y,s5)€ B(0, p/2),
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and, from (4.31),
I((LPZP W% (y, )| <C Y (y,5) eRVTI\B(0, p/2).

Hence, from Lemma 2.3

t
(4.33) |2(2)] < 232}/ —1—1——— (/ Tz y, s)a'y) ds = c,1*/2,
gl—a/2
0 R
Then (4.30) holds for k& + 1, as a consequence of inequalities (4.32) and (4.33).
This completes the proof of Lemma, and then the proof of Theorem 1.2, for
operators of type (1.1). 0

In order to extend this result to operators M in divergence form (1.15), we
only need to observe thatif ¥ belongs to C2(R), then all corresponding operators
M? defined in terms of the functions ai’f ; in (4.12) verify Hypothesis H.4 for
some constant which may depend on p. On the other hand, since the selection of
p only depends on the constants of Hypotheses H.2 and H.3, and these ones can
be chosen for M* independently of p, Theorem 1.2 holds for operators (1.15).

Next result will be used in Section 5:

Proposition 4.1. There exist two positive constants c, K such that, for every
z, £ e RN satisfying T'(z, ¢) > Ky, and forany i = 1, ..., po,

ID(¢t =)V} (x —E(t — 0)§)|

I —7

(4.34) |o5T(z, )| < ¢ [ + 1] I'(z,¢).

Proof. Assume zo = 0 and, as in the proof of Theorem 1.2, choose p > 0 such
that (4.18) holds. For any ¢ € 10, 1[, let K = K (&) be a positive constant such
that (1.13) holds on the set Ox = {z e R¥*! : Z(z) > K} (see Theorem 1.2).
Then, fori =1, ..., po,

(4.35) 0,T(2) =0y, Z(2) +/ (/BxiZ"(z; y,s)CDp(y,‘s)dy) ds +

0 Rr
t

+f(/&jﬂz%ﬂ—ﬂ&mJﬂM%ﬂ@>¢+

0 R~
!

+/ (/afo"(z; ,8) [@(,5) — P°(y,5)] dy) ds =

0 R
=0y,Z(@2)+1'(2)+1I'(x) + I1I'(2).
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Note that there exists ¢ > 0, depending only on the constant A in Hypothesis
H.2, such that

1
(4.36) iax,.Z(z;o{s\/tc"__t’D (m) (x — E¢ - 0)§)

for every z, ¢ € R¥*!. From (4.36), and following the lines of the proof of
Theorem 1.2, it is possible to determine two positive constants c1, ¢z, depending
only on p, such that :

Z(z;¢)

II'@)| < 12T (2),
[1I'@)|; 11T ()] < 2t
Finally, from Lemma 2.2 and (4.17), the inequality

(4.37)

~ coC
(4.38) 1I'()] < c11?’T(z) < %zw
Q

holds for every z € Ok.
Using (4.35), (4.36), (4.37), (4.38) and Theorem 1.2,

2
439  |3,T()| < [f% D 2)x |+ < + —Kc—z-] Z(2) <
AL
c| ————" Z
_— ﬁ

for every z € Og. O

5. Harnack inequality.

In order to prove the Harnack inequality stated in Theorem 1.3, we need to
introduce some mean value formulas for solutions of Ly = 0, where L is an
operator in divergence form (1.15). Such mean value formulas can be obtained
from the Green’s identity, as for classical parabolic operators (see [8], Section
4).

For every zo € R¥*! and forany r > 0 let

(5.1 Q(20) = {zERN'H : T'(205 2) > %},

< A@@)D;T (205 2), DxI' (205 2) >
(205 2) '

Then the following mean value formula holds

(5.2) M(z0; 2) =
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Proposition 5.1. Let Q be an open subset of RVt and let u be a solution of
Lu = 0. Then, for every zp € 2 such that Q,(z0) C 2, we have

(5.3) | M(Zo)=rl / M (z0; z)u(z) dz.

Q, (ZO)

By means of the Hadamard’s descent method, relation (5.3) is a starting
point for the derivation of mean value formulas with more regular kernel (see
[8], Section 4 and [7]). The descent method relies on the following remark.

If u = u(x,t) is a solution of (1.15), then, for every m € N, the function

(5.4) u(y,x,t) =u(x, ), yeR™
1s a solution of

(5.5) Ii= (Ay + L)Zz = 0.

Operators I and L are of the same type, thus a mean value formula analogous
to (5.3) holds |

~ 1 ~ Y
(5.6) u(¥0,20) = — / M (yo0, z0; ¥, 2)U(y, z) dydz,
(a)r()’OyZO)
where
~ ~ 1

67 00w = {00 R Ry, 2005,2) > -},
(5.8) M(y0, 20} ¥, 2) = M (205 2) + I—yq——yli.

, 4(!() - t)2

Moreover, if u is a solution of Lu = O, we can apply the mean value formula
(5.6) on u as defined in (5.4)

1 ~
(5.9) wGe) = - / B (0, 20; v, 2)u(2) dydz,

(), (¥0,20)
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and since u only depends on z, we can integrate (5. 9) with respect to y. Letting,
foreverymeN, r > 0,

(5.10) I (20;2) = (47 (1 — 1)) 2 T (205 2),
(5.11) Q™ (z9) = {z eRY*: T (24 2) > %}
(5.12) Ny (201 2) = 215 = 1,/ log (rT (zg; 2)),

m N} (zo; Z)J

m(, . ) — are :
(5:13) M (205 2) = 0n" (201 2) [M o) + 2 4 — 12

where w,, denotes the measure of the unit ball in R, we have

Proposition 5.2. Ler Q be an open subset of RNT! and let u be a solution of
Lu = 0. Then, for any m € N, for every zo € Q2 such that ng) (z0) C , we

have
(5.14) u(zd)z% / M (z0; 2)u(z) dz.

Q™ (o)

Before proving Theorem 1.3, we would like to point out that Theorem 1.2
and Proposition 4.1 also hold relatively to the sets Q™ as defined in (5.11).

Proposition 5.3. For any m € N and for every ¢ > 0 there exist two positive
constants ¢, §, depending only on the quantities in Hypotheses H.1-H.4 and on

matrix B, such that

(5.15) (1 —&)Z(z052) < T(z0; z). <(1+ 8).2(20; 2),
(5.16) 185, T (205 2)] <
D((to — )™ (xo — E(tg — t)x
SC[, ((IO t) j% (tO t) )I +1] F(Z();Z),

orany i, j = 1,2, ..., po, for every zo € RNt and for every 7 € Q(m)(z()).
J B
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Proof.  Denote by T' and Z the fundamental solution and the parametric of
operator L in (5.5), respectively. From Theorem 1.2 there exists k > 0 such
that :

5.17)  (1-¢)Z(0,z0: 7, 2) &’f:(O 20;7,2) < (1+¢€)Z(0, 205 y, 2)

for every (v, z) € {weRmN+1, F(O 205 w) >k} = €21 (0, zo). Moreover

1
k

(5.18) Z(0,20;0,2) = (41 (00 — 1)) "% Z(20; 2),

and, if H(y; t) is the fundamental solu’tion, of the heat equation A, — 9, = 0,
(5.19) (0, 205 0, z) = H(0; to-—t)F(zo; 2) = (47 (to — 1) 2 T (205 2).

Putting § = ¢, then (5.10) and (5.11) yield Q(m) (z0) = Qa (0, zo) N R¥*! and
thus

(1- 8)’ZV(O,AZO;_0, 7) < F(O, z0; 0, z) < (14¢)Z(0, 20; 0, 2)

for every y € Q(’") (zO) Hence, by using (5. 17) and (5.18) the estimate (5.15)
follows.

In order to prove (5.16), we first observe that differentiation in (5.16) is
carried out with respect to the “adjoint” variables of I, whereas in Proposition
4.1 differentiation was done with respect to its “principal” variables.

- This problem can be overcomie by working with the adjoint operator L* of

L, defined as |
(5.20) -~ L*=div(A@@)D) -

Note that L* is a backward operator in the ¢ variable and that it satisfies Hypothe-
ses H.1-H.4. By means of an obvious adaptation of the parametrix method (see
Theorem 1.1), we are able to construct the fundamental solution I'* of L*. We
then proceed as in the classical parabolic case (see [3], Chap. I, Theorem 15).
Using the Green’s identity and the basic propertles of fundamental solutions we

can prove that
(5.21) I (z0; z) = T'(2; 20) Wz, z0eRVFL 7 £ 7.

We can now prove relation (5.16). Let

(5.22) | I*=(a,+1%).
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For every z € ng) (z0) we have (see Proposition 4.1)
(5.23) H*(0; 1 — 10) |0, T* (25 20) | = [0, T7(0, 23 0, 20) | <

< ['D((f Io) )((O,IX). t E( —1)(0, xO))l + IJ F(O, 2. 0, ZO) =
=10

ID((t —10)7V?)(x — E(t — 10)Xo) |

_—_cH*(O;t—to),: - = +1:' F*(z;Zo).

which, together with (5.21), prove the result. d

Fix m € N and, for every r > 0,z9 € R¥*!, denote by Q~(z;) and
QUM+ (z0) the level sets (5.11) corresponding to operators L~ and L* as defined
in Proposition 2.4.

Lemma S5.1. For every m € N there exist three constants ¢~, ct, sy > 0 such
that
(5.24) Q) (20) € Q™ (z0) € Q¥ (20)

for every zo € RNt and for every s €10, sq].
Proof. Asin (5.5), let

(525 L= (Ay +L), o+ = (Ay +L+), - = (Ay +L‘).

Apply Theorem 1.2 to the corresponding fundamental solutions T, f‘jf I’“V with
£ = 2, and subsequently apply Proposition 2.4. Then there exist three posmve
constants ¢, ¢, k such that

~ 1~

(5.26) ¢ T (30,205, 2) < =Z(¥0,20; ¥, 2) < T (%0, 205 ¥, 2) <

3~ ~
< ZZ(}’O,ZO, ,z) < ctTH(yo, 203 ¥, 2)

[\

for every (o, 20), (¥, 2) € R™*V+1 satisfying T (o, z0; ¥, z) = ko-
From (5.26), with an obvious meaning of notation, it follows

1
¢ T™(z0;2) < 2Z(m)(Zo 2) < T (z0; 2)

3
5Z( )(ZO 7) < C+F(m)+(20, 2)
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for every z.€ RV*! such that '™ (z4: z) > kg, from which (5.24) follows. O

Proof of Theorem 1.3. Fixm € Nym > 3 and let ¢, ct,s0 > O be the
constants determined in Lemma 5.1, and put

(5.27) = inf{r—;> 0: QMF c H,},

where H, was defined in (1.16). Since 52('" is a bounded set, the definition of

o is well posed and, by continuity, we have Qﬁmc)f C H,,. Suppose that u is
a non-negative solution of Lu = 0 in Q and that for a fixed zp € €2 and for
some r € ]0, rg], we have H, C Q2. We remark that it is not restrictive to assume
zo = 0, since it will be shown that ¢ and 6 do not depend on z;. '

Since I'™ and I'" are invariant with respect the dilation group (D(A)) 150

Q™ 0)=D (m‘r) Q™= (0),

(5.28) |
_ (m)+(0) ()\'m> Q,(.mH_(O)

Q+m
Hence, if we put s = s ( %) , from Lemma 5.1

(5.29) Q™= 0) c @) c M) c H,.
For every k > 0, set
(5.30) | L, =div (A(D(A\)z)D) +Y

and u, (z) = u(D(\)z). Then
. : 1
(5.31) Lu=0inQ <<= Lu,=0inD (X) 2.

In the sequel we will use the following remark. For every Ag, L, verifies Hy-
potheses H.2-H.4 uniformly in A € ]0, Ao[. Indeed, from Hypothesis H.3 and
(1.9),
|a;;(DM)2) — ai (DM <M (DM o (DM, =
=MD (7 o2)|y =] oz,

A similar bound, with A replaced by A2, holds for the derivatives 0y, ai,j (D(A)z),
1 <i,j = po. '
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1
In order to prove Theorem 1.3 we need to show that, if we put Ao = SOQ+'” ,

there exist two constants ¢ > 0 and 6 € 10, 1[ such that, for every A € ]0, A¢] and
for every non-negative solution v of Lyv = 0in D ( ) 2, we have

(5.32) supv < cv(0).
HS

Let us denote by ")) the level set 2™ corresponding to the operator L,

and by My, N, Mr( A) the functions defined in (5.2), (5.12) and (5.13), respec-
tively, corresponding to L;. The fundamental solution of L, can be written as

[, = AT o D (4). Hence, if we put A = s Q+m , (5.29) yields

(533)  2M7(0) c 2 (0) c 2 ©) DG) H cD (%) Q.

Then, by Proposition 5.2,

(5.34) v(0) = / M (0; 2)v(z) dz.
270 |
Since, M, (0; z) > 0 (see (5.2)), the definition of M,(”‘) yields

NP2 (05 2)
"m+2 412

(5.35) M (0;2) > w

Moreover, from (5.11) and (5.12) we have, for z € Q("’) 0,

(5.36) N1, (0;z) > \/ —4t log (-;4-)

Then, from (5.34), (5.35) and (5.36) it follows that

(5.37) v(0) > f (=) T v(x, t) dxdt,

Q)
3

for some positive constant ¢,, depending only on m.
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Note that the;e exists @ € ]0, 1[ such that

Hy c Q= (0),
2

and put
K =20~ ©0)n {z RN ¢ < —9}.
4

Since, from Lemma 5.1, it follows K C Q(g"') (0), relation (5.37) yields
. 4 .

(5.38) ., v(0) > 0T / v(z) dz.
K

In order to complete the proof of Theorem 1.3 we need the following Lemma,
whose proof is postponed to the end of this Section. 4

Lemma 5.2. For every m € N, m > 3 there exist two positive constants o, k >
0, depending only on m, ry and on the constants of Hypotheses H.1-H.4, such

that, for every A €10, Ag]

i) Q@) c K VieH
ii) M, 2) <k VYieHy,zeQ™ ).

Then, for every ¢ € H,, from Lemma 5.2 (i) and from (5.38) it follows
v(0) > " / v(z)dz >
270
(Lemma 5.2 (ii))
> Om gt / M D@ de = Z26F u(r)
275 ©)

This proves (5.32), and hence, Theorem 1.3. O

We end this section with the proof of Lemma 5.2 above.
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Proof of Lemma 5.2. We begin by observmg that the level set Q(”’)+(O) is
bounded and that

(5.39) QI (z0) =200 (D (a -Q'r) ‘Q§”‘>+(0)-) .

Equation (5.39) follows from the fact that L™ is invariant with respect to the dila-
tion and the translations groups. Then, since the group operations are continuous
functions, and H, and 0K are compact sets, there exists § > 0 such that

(5.40) Q" ¢)yck YceH;. |

Then, setting o < 8c¢™, (i) follows from Lemma 5.1.
In order to prove (ii), we note that, from (5.10) and (5.12),

2
N2 (z0,2) <2(o = 1)1 , :
(20, 2) = 2000 = 1) log ((47F)m+"(f0'—f)’"+g detCz,A(l))
Moreover (see Proposition 2.4) . |
detC™(1) < detC,x(1) < detC*(1),

for every A > 0 and for every z € RV*!, Therefore there exists a positive
constant c;, that does not depend on A, z, zo and such that

(5.41) Nz, 2) < c1v/lo = \/log O_I)

On the other hand, Hypothesis H.1 ylelds
(5.42) < ADMWzZ)n,n><Aln*  VYneRP,

for every A > 0 and for every z € RV*1, Moreover; using (5 16), there ex1st :
8, ¢ > 0, such that, for every o €]0, §]

18, T (z0; 2)| iy [ |D((to = H7V2) (0 = Etp — )x))| ) 1} |

4
(5.43) e T

for every 29,z € R¥*1, z € Q%) (z0) and for every A € 10, Agl. Substituting -
(5.42) and (5.43) in definition (5.2) of M, , we then obtain

|D((t ~ ;) 1/2) (x0 — E-(to —nx)|? N 1}

Ih—1t

(5.44) M2 < 2 [
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for every A € 10, Aol, for every o €10, 8] and for any z € Qf,"}) (z0). Finally, since
Z€ Q(mk) (zo), there exists a constant ¢, > 0 such that

o

,D((to—z)—l/z)(xo—E(to——t)x),2 < ¢, log (t ! t)’

<

and then

C3 1
5.45 M) (z0; 2) < 1 .
(5.45) x (2o z)_to_t0g<t0__t)

This estimate, together with (5.41) and (5.13), for m > 3, gives (ii). O
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