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ASYMPTOTICS FOR THE GREATEST ZEROS
OF SOLUTIONS OF A PARTICULAR O.D.E.

SILVIA NOSCHESE - PAOLO EMILIO RICCI

This article is dedicated to Prof. W.N. Everitt
on the occasion of his seventieth birthday

This paper deals with the Liouville - Stekloff method for approximat-
ing solutions of homogeneous linear ODE and a general result due to Tricomi
which provides estimates for the zeros of functions by means of the knowledge
of an asymptotic representation. From those classical tools we deduce infor-
mation about the asymptotics of the greatest zeros of a class of solutions of a
particular ODE, including the classical Hermite polynomials.

1. Introduction.

Let H, (&) be the nth Hermite polynomial which belongs to the Orthogonal
Polynomial Set in (—o0, 00), with respect to the weight function e~$ :

Denote by &1, > &, > ... > &,, the zeros of H,(§), enumerated in
decreasing order, and by i; < i; < i3 < ... the real zeros of the Airy’s function

& (x), (iy =3.37213...).
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Remark I. The Airy’s function we consider here is a solution of the ODE y” -+
%x y = 0 [6], pp. 18-19. In the sequel we mention also the more usual standard-
ization, considering solutions &7i(x), %i(x) of the ODE y” — xy = 0 [2], pp.
253-256.

It is well known [4], p. 106, that by putting

Ly 2®) = e T Hy(©),
(1.2) ho=Qn+DY?, &£=h, —x,
‘ N2
(1.3) y(x) = z(§(x)) = exp (_"(“}”lﬁ‘zi> Hy(hy, — x),

the function y(x) satisfies the ODE
(1.4) V' 4 2h,xy = x%y.
The asymptotic behaviour of the greatest zero of H,(x), when n — 00, is

given by &1, > (2n + 1)!/2. More precisely the following asymptotic formula
has been proved (P.E. Ricci [7])

(1.5) Eln _ i1 0.32823...
’ Qn+ D12 6132n + 123 (2n + 1)11/6

n

0.0072757 . . .
o
nt1p (

This asymptotic formula represents an improvement of a very well known
result, which can be found in the book of G. Szego [6], p. 134.

Different estimates have been obtained by L. Gatteschi [3], and general
results connected with the above problem are given by A. Mate - P. Nevai - V.
Totik in [4].

It is shown below that it is possible to obtain information about the asymp-
totics for the greatest zeros 2, of a set of solutions Z, (£) (Vn € N) of the ODE

—25/6) .

(1.6) Z, —25Z; + (£ = 2h(n)§ + 2h*(n) — 1 — f(h(n) — ;1)) Z, = 0,
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where
( h(n) = €(n%) (n — 00),
(1.7) } reim) = [ 5 Ak(n>xk}e<n>,
k=y
L L(n) = O(nP); Ak(n) = 6(1) (n — 00),

and the further hypothesis

(1.8) | B <« (HT”>

is assumed.
Note that the case of Hermite polynomials is obtained by assuming A (n): =

By =Q2n+ DV (@=1/2), f(x;n):=x%,(y =2; B=0).

We use the following mathematical tools

—amethod described by F.G. Tricomi [8] - [9] and improved by L. Gatteschi
[2], which allows to deduce estimates (and bounds for the error) for the zeros of
a function F by means of knowledge of an asymptotic representation of F;

—the Liouville - Stekloff method, by means of which asymptotic expansions
of the solutions of an homogeneous linear ODE are obtained in terms of the
known solutions of a basic equation.

After a short describing of the above mentioned tools, given in the para-
graphes 2 and 3, the application to the asymptotics for the greatest zeros of par-
ticular solutions of the ODE (1.6) is given in the subsequent paragraphes 4 and
5. '

2. A result due to F.G. Tricomi.
In the article [9], F.G. Tricomi proved the following result

Proposition 1. Suppose the continuous function F(x) admits (uniformly with
respect to x ), the asymptotic representation

2.1) F(x) =Y a0u + 6@,  (u—0),
k=0

where the functions g (x) are differentiable m —k + 1 times in a neighbourhood
of a point xo which is a simple zero of the function go(x) (go(x0) = 0, gy(xo) #
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0). Suppose further that g,,(x) € C! in the same neighbourhood. Then Ve > 0
and for || less than a suitable § > 0, the equation F = 0 is satisfied at least
by avalue x§ s.t.: |x} — xo| < €, and the following expansion holds

m
2.2) x§ = x0+ Yo wpipf + O,
k=1

where the coefficients wg, w1, wy, . . . are rational functions of the values

1
Gt = né 8 (x0),
and are determined recursively as solution of a suitable system of equations (F.G.
Tricomi [9]).
The first expressions for the wy, are given by
G g1(x0)
Goa gyx)

(2.3) wp =

G3,Go2 — G10Go1Gyy + G01G20
G

2.4) w; = —

38} (x0)gf (x0) — g1(x0)g)(x0) g (x0) + (85 (x0))” £2(x0)
(g5 (xo))3

Note that formula (2.2) provides an asymptotic estimate for a zero xg of the
function F in terms of the zero xo of go, provided that the representation (2.1)

is known.
A result of L. Gatteschi [2], pp. 372-373, provides an extension of Proposi-

tion L, in order to obtain a bound for the error of the asymptotic formula for the
zeros through the knowledge of a bound for the error of the asymptotic expansion
of the function.

Proposition II. Suppose that the same hypotheses as in Proposition I hold, let
m =0 and m = 1 in the expansion (2.1) and write

F(x) = go(x) + e1(x)u,

F(x) = go(x) + g1(x)u + e2(x) >
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Suppose that in a fixed interval 1, containing the above mentioned zeros xg
of F(x) and xy of go(x), the following estimates hold true

(2.5) ler(x)] < Ay, le2(x)| < Ag,

then the expansion (2.2), when m = 1, can be written in the following form

(2.6) Xg = X0 — =
g

with an upper bound of the error term given by

2 A2
l/« A " / N 7
(2.7) lp] < — L suplgg(x")| + Arsup g} (x")| + A, |,
lgo(xo) \ 2 :

where

~ Al ’ ~ 7" ~

A= —————, and |xo— x| <Au, |xo—x"|<Au.

inf |g,(x)]

3. The general form of the Liouville - Stekloff method.

In a book of E.G. Tricomi [10] can be found a method, ascribed to G. Fubini
[1], which can be interpreted as a general form of the Liouville - Stekloff method.
Tricomi considers a second order homogeneous linear ODE

3.1) Po(x)y" + Pr(x)y + Pa(x)y =0,

with Py(x) # O in (a, b) C R.
Suppose that by splitting (3.1) in the form

32 Y+ @Y + @)y =@y + BEY + 7(x)y,

the following conditions are satisfied
I. — the approximate ODE

(3.3) Y + pi(x)y + pa(x)y =0,

can be integrated explicitly. Denote by Fj(x), F>(x) two of its linearly indepen-
dent integrals.
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II. — the remainder functions a(x), B(x), y(x) satisfy, with respect to a
parameter A, and for a suitable r > 0, the conditions

(3.4) ax)=0(r7"), px)=6 (A7), y(x) =6 (A7").
Denote by W (x) the wronskian of the above integrals and let

a(x)F; (x) + B(x)Fy(x) + y (x) Fr(x)

(3.5) Gn(x): = = aIW ) , (h=12)
F F

3.6 L, &)= 1(§)  F2(8) ’
Fi(x) Fa(x)

Then the following proposition holds true

Proposition III. Anyone of the independent solutions Y1(x), Y2(x) of the origi-
nal equation (3.1) admits the representation

3.7) Ya(x) = Fy(x) + / L(x, )%, (&) dk +

a0

oo x £ :
+Z/ L(x’é)[/ K, (&, n)%(n)dn:] dE,
s=1 v4ao ao

where ag € (a, b), h = 1, 2, and the kernels K;(x, n) are defined by the induc-
tion formulas '

Fi(n) Fy(n) ’

(3.8) Ki(§,n):= K(é,n):zt
1 4E) BE)

3
(3.9) Ky (€, n) = / K DKeor(@mdz, (s> 1).
n

By Proposition III, and using hypotheses (3.4), the approximation formulas,
of increasing precision, for the integrals of equation (3.1) follow

(3.10) Ye(x) = Fo(x)+ € ()\.—r) ,
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BI) KW =FE+ [ LeOGEOE 00,

ao

(3.12) Ya(x) = Fy(x) + / L(x, £)%(€) df +

ap

0

* ¢
+ [ L(x@)[ f Kx(é,n)%(n)dnJ dE + 0 (),
(h =1, 2), and so on.

4. Application of the generalized Liouville - Stekloff method to the present
problem.

Starting from the differential equation (1.6), by putting

(4.1) § =h(n) —x,

4.2) ' () = e~ T Z, (%),

h — )2
(4.3) y(x) =z(5(x)) = exp <—(—@Ti) Zy(h(n) — x),

we obtain the differential equation
(4.4) y' +2h(n)xy = f(x;n)y,

under the hypotheses (1.7) - (1.8).
Writing (4.4) in the form

1 1
4.5 —Y' +2xy = — f(x;n)y = ¢ (x; n)y,
(4.5) o’ +2xy h(n)f(x n)y =¢x;n)y
00
where ¢ (x;n) = | 3. Ap(n)x* | € (nP7), (n — o0), it is possible to apply
k=y
the Liouville - Stekloff method to the approximating equation

1
4.6 —y” 2 :O’
(4.6) non” +2xy
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which is equivalent to fhe following
4.7) o Y'"+2h(n)xy =0
The last equativon is satisfied by the Airy’s functions
Fi(x) = & ((6h(n)x), Fy(x) = B ((6h(n))x).

Remark II. Note that in the present case the coefficients, and consequently the
~ solutions of the “approximate” differential equation (4.7) are depending on n.
Nevertheless the methods exposed in the preceding paragraphes 2 and 3 remain
true. The only difference will be the necessity of a more careful evaluation of the
infinitesimal orders in the asymptotic estimates.

By recalling [2], p. 254, W (i (x), Hi (x)) = =, and using the relationes
between two different standardizations )

X
o (x) = 31/3m( 31/3)
X
;@(X) m%l( 31/3)
we can write

W (Fi(), B(0) = =2 6he)' = 0 (1™7)

Furthermore, recalling an asymptotic property for the Airy’s functions [2],
~ p. 256, we obtain

4.8)  L(x,£):= ((6h(n)7) B ((6h(m)"x) +

— o ((6h(n))'*x) B ((6h(n))'PE) = € (n™/%).
Comparing (4.4) with (-3.2) we deduce

(4.9) a(x)=Bx) =0 yx)=¢kxin)=0 (nf~).
Then
(4.10) 4y = 2T (CENT) _ (n o)
‘ = 7 (6h(n))13 - ’
| 3¢ (x; B ((6h(n))'Px) —Da+p
4.11) G, (x) = — G _6’<n )

As a consequence of Proposition I, we have
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Theorem 1. Using preceding hypotheses and notations, a solution Y1(x) of the
ODE (4.4) admits the following representation

(4.12) Yi(x) = & ((6h(n))x) +

W/ $(&; )L (x, £)o ((6h(n)'E) di +

-3 s+1 X
+ ; [——”(6,1(,1))1,3] /0 ¢ (& n)L(x, &) -

§
- [ /O ¢ (n; W)Ly (€, M ((6h(n))'/*n) dn} d,

where the iterated kernels Ls(§, ) are defined by the induction formulas:

Li¢,n):=L(&,n)

4.13) § |
Ly, n):= / 6 mLE DLsi(z, Mdz, (s> 1).
n

Proof. Itis sufficient to write the representation defined by formulas (3.7) - (3.8)
- (3.9), remarking that, in this case, we have

o ((6h(n) ") B ((6h(n) )
Ki€m = _3¢(6;mer (6h(n)3€) =3¢ (&; n)B ((6h(n))1/3¢)
e (6h(n))!/3 7 (6h(n))1/3
39 (&5 n) i
i | 3 aws o (i),
and, by induction
Ko(Em) = [——3—~—-s m)L
B s 5,77 - 7[(6]’1(7’1))1/3} ¢(évn) S(é’ T))-

We can write, indeed

‘ 13
Ky, m) = / K€ )K,1(z,n)dz =
n



116 SILVIA NOSCHESE - PAOLO EMILIO RICCI

-3

& .
S qs(s;n)/ L(E, DKer(z,n) dz =
7 (6h(n) /3 ! @5t

-3 s §
= | o | #6im [ $@mLE LG dz =
[n(6h(n))1/3} pEim) f #EimLE Dhen(z m)dz

-3 s
B [W] & mLs(E,m).

Then, fors = 1

X & ' |

o £ 3¢En) . 3¢(mn) NINT } _
R R A R P

= [n(éh(n))lﬂ] / P& MLE -

(

: [ /0 ¢ (n; n)L1(€, )l (<6h(n>>”3n) dn] ds;

and, in general

x & 7

x & 3 ’
:/0 L(x,§) [/0 [/ K(g’Z)Ks——l(Z, n)dzJ %(n)dn} d§ =
| ) .

f b(E; mL(x, §) -

[Jr(6h(n))1/3]

é‘ .
[ / [ f ¢<z;n>L<s,z>Ls._;<z,n)dz]%(n)dn] dt =

¢
[W] / ¢ (&; n)L(x £) [/0 Ls(f;‘,n)%(n)dn] dE =

_ s+1
= | @o] / PEMLEE:
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&
[ /O ¢ (n; n)Ly (&, m) & ((6h(n))n) dn] d§. O

By Theorem I, we deduce, in particular, the following asymptotic formulas
for the solution Y (x) of the ODE equation (4.4)

@14)  Yi(x) = o ((6h(n))x) [}:Akm)x] (nt2et),

(4.15) Y)(x) = & ((6h(n))x) +

- e [ SE LD (Gh0)' %) de +

+ [Z Ak(n)xk] 174 (n_%“”ﬂ) ,
k=y
and in general
4.16) Yy (x) = o ((6h(n))"7x) +

m s [ G LG a7 (6 ) s +

s+1
) +Z [n(w | [eentes.

: [ /O ¢ (n; )Ly (€, m ((6h(n))/?n) dn] dg +

o m+1
. (18m+19)
+(> Ak(n)xk:l o (n °‘+(’"+1)ﬁ)

Remark III. The last relationes provide representation formulas for the func-
tion Y;(x) of the same kind needed in Proposition I. It is sufficient to assume

| S ,
U= ) ~n~% (forn — 00).

Since hypotheses of this Proposition are clearly satisfied in our case, we
can infer asymptotic representations of any, order of accuracy for the zeros of
Y1(x) in terms of the zero of the Airy’s function & ((6h(n))!/3x) and using
the function L(x, £), by means of which the coefficients of formula (4.16) are

expressed.
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5. Asymptotic estimates for the greatest zero of Z, (£).

Putting
(5.1) 20(x) = go(x; n): = & ((6h(n))'/’x),
(5.2) g1(x) =gi(x;n):=
—3(6h(n))*?
= =2 / 6 (& ML, §>d(<6h<n))”3s) d |
—3(6h(n))?/3
(5.3) gz(x)=g2(x;n)i=[ ( (”)) ] / $(E;n)L(x, &) -

§
: [ /0 ¢ (n; mIL(E, M ((6h(n))" 1) dﬂ] ds ,

' 2/3
(5.4) gm<x>-—-gm<x;n>:=[ 3(6h(”)) ] /¢<s n)L(x, £)

. ‘
. [/o ¢ (13 n)Lin—1(§, n) ((6h(n))'/n) dn] d§,
writing (4.16) in the form

1
5.5 T1(x) = golxim) + (1(xs m)) o +

1 \? 1 \"
+ (g2(x; n)) (h( )> o+ (gm(x; n)) (h( )) +

m+1

e (18m+19)
+ A (n)xk] Vi <n ot+(m+1)ﬁ)
[g-—;

assuming y = ;17 in Proposition I, and remarking that the coefficients gy (x; n)
in formula (5.5) are depending on »n, we deduce the following asymptotic es-
timates for the greatest zero x5 of Y1(x), which make use of the nearest zero
X0: = gy of the approximating function & ((6h(n))'/?x)
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— From formula (4.14)

.0 —a(%2)+8
(5.6) Xy = __—_———(6h(n))1/3 + O (n | > .

— From formula (4.15)

. i 1 —a ‘}“3‘2’ +28
(5.7 xo—W-l—wom-}-ﬁ(n. ( ) ),

where
3 BGy) [0 ( o
58) == T n)o(x)dx =
O e= @i b P\ermyE ) SO
—p (n—a(l+§)+ﬂ> _
— From formula (4.16), assuming m = 2 -
(5.9) x*—-’———il———-I-a)—l-—%;a) ! 2-!—
o O 6h(n)P T Che) T \ k() )

+0 (n_a(m%)%ﬂ)

with wg given by formula (5.8), and

(510) wip =

2 (gh(x0))’

_ ﬁ(n-a(¥)+2ﬁ)’

where .
(5.11) g1(x0) = g1(xo; n) =

3 ) i X . |
— _;(6h(n))1/3@(11)/0 d)(—(—Wn) % (x)dx,

119

_ 8}00)g5 (o) — 281 (x0)gh(x0)g} (¥o) + 2 (8(x0))” g2(x0) _
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(5.12) g1(x0) = g1(xo; n) =

3 . i X .
= ;(6}1(}1))2/3['% (ll)A ¢ (W, n) d(X)g@(X) dx +

—L@(ll)/ ((6]1( ))1/3, )d2(x)dx:],

(5.13) 26(x0) = gf(xo; n) = &' (i) (6h(n))'/3,
(5.14) g6 (x0) = g (xo; 1) = &7 (i) (6h(n))*3,

' 9
(5.15) 22(x0) = g2(x0; n) = ;(611@»2/39301) -

iy X . X g_- - )
| [/o ¢ ((6h(n>)1/3’ ”> A 0B [ 6 <<6h(n)>1/3 ’ ”) s dx

- " _r . 2 ¥ _&_
A ‘/’((611(;1))1/3’11)%’ (x)/0 ¢((6h(n))1/3’n> W(S)@(S)dfdx],

Remark IV. Note that, at each step, the order of accuracy increases with a con-
stant rate given by —« <5 +y) + B, and by the hypothesis (1.8) this quantity is
negative.

Returning to the original variable &, we can lastly proclaim the result below

Theorem IL. For the greatest zero B, of the solution Z,(£) of the ODE, which
corresponds to Y1(x), we can write the asymptotic estimates

™ J— —_— _..__il—_... _a(é-;-y)+ﬂ
(5.16) Bin = hin) = o s+ 0 (n ) ,
=) — —_— _—ll__ — 1 a(ll-;ZY)-'_zﬁ)
(5.17) Ei1n, = h(n) TELE h( ) + O (

o i 1 Ly
(5.18) 1 = h(n) — (6h(n)1/3 “‘002_(75 @ (h(n)) *
+ O (n“"(wgay) +3ﬂ>.
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Remark V. The method due to Gatteschi (Proposition II) provides a theoretical
estimate for the error term in formula (5.17). However, in the present case, owing

o0
to the general form of the function ¢ (x; n): = | Y Ag(n)x* | & (n~%), itis not

k=y

possible to obtain an estimate which could be of some practical interest.

(1]
[2]
(3]

(4]

[5]

[6]

(7]

(8]

[9]

[10]

REFERENCES

G. Fubini, Studi asintotici per alcune equazioni differenziali, (6), 26, 1937.

L. Gatteschi, Funzioni speciali, UTET, Torino, 1973.

L. Gatteschi, Uniform approximations for the zeros of Laguerre polynomials,
Intern. Ser. of Numer. Math., 86 (1988), pp. 137 - 148.

A. Mate - P. Nevai - V. Totik, Asymptotics for the greatest zeros of orthogonal
polynomials, SIAM J. Math. Anal., 17 (1986), pp. 745 - 751.

A.F. Nikiforov - V.B. Uvarov, Special Functions of Mathematical Physics, Bir-
khiuser, Basel, 1988.

G. Szegd, Orthogonal polynomials, Amer. Math. Soc. Coll. Pubbl., Vol. XXIII,
Providence, R.I, IV Ed., 1975.

P.E. Ricci, Improving the asymptotics for the greatest zeros of Hermite polyno-
mials, Computers & Mathem. with Appl., special issue on Concrete Mathematics,
(in print).

F.G. Tricomi, Un nuovo metodo di studio delle equazioni differenziali lineari,
Rend. Sem. Mat. Torino, 8 (1947 - 48), pp. 7 -19.

F.G. Tricomi, Sugli zeri delle funzioni di cui si conosce una rappresentazione
asintotica, Annali di Mat., (4) 26 (1947), pp. 283 - 300.

F.G. Tricomi, Equazioni differenziali, III Ed., Boringhieri, Torino, 1961.

Dipartimento di Matematica “G. Castelnuovo”,
Universita degli Studi “La Sapienza”,

Ple A. Moro, 2,

00185 Roma (ITALIA)



