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INVESTIGATION OF THE WELL-POSEDNESS OF
THE MIXED PROBLEM ON THE STABILITY OF FAST
SHOCK WAVES IN MAGNETOHYDRODYNAMICS

ALEXANDER BLOKHIN - YURI TRAKHININ

In the present work the question on the stability of fast magnetohydrody-
namic shock waves is studied in the case of a polytropic gas under the assump-
tion that the magnetic field is weak. With the help of techniques of dissipative
energy integrals, an a priori estimate showing the well-posedness of the cor-
responding mixed problem on the stability of a fast shock wave is obtained.

Introduction.

The equations of magnetohydrodynamics are widely applied in the descrip-
tion of actual processes in such fields of physics and technology as astrophysics,
aerodynamics of high velocities etc. It is known that in these processes strong
discontinuities (for example, shock waves) are present while a gas is in motion.
In this connection, the problem of strong discontinuities (including shock waves)
stability in magnetohydrodynamics is of great interest.

The term “stability of strong discontinuity” was introduced by physicists.
This term means the following. Let a strong discontinuity front be slightly per-
turbed. The question is if this perturbation either increases or decreases with
time. If this perturbation decreases, then the strong discontinuity is stable, oth-
erwise it is unstable. Mathematically the question of the stability of strong dis-
continuity is reduced to the investigation of some linear mixed problem.
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One of the first investigations in this field was carried out by L. D. Landau
and his disciples. Their approach was as follows. They formulated the above-
mentioned mixed linear problem and sought exponential solutions to this pro-
blem. By the behaviour of these solutions they judged about the stability or
instability of the strong discontinuity.

Our approach implies the inve%tigation of the well-posedness of the above-
mentioned mixed linear problem by means of techniques of dissipative energy
integrals. Here we use the term “well-posedness of mixed problem” in a classical
sense. In the case the mixed problem is well-posed the strong discontinuity is
stable (as a physical structure). Otherwise, the strong discontinuity is unstable.

It should be noted that unlike the situation in gas dynamics, ordinary and
relativistic (see [1], [2]), the question of the stability of strong discontinuities
in magnetohydrodynamics has not been fully investigated. Actually, after the
publication of classical works [3], [4] only a few works in which the question
of the stability of strong discontinuities is discussed in one degree or an other
may be named. They are, for example, [5], [6].

In the present work the so-called “equational” approach (see above) to the
investigation of the stability of fast shock waves in magnetohydrodynamics is
used. It contains the study of the well-posedness of the corresponding linear
mixed problem of the stability of fast shock waves. The basic method of this
investigation is the construction of an a priori estimate implying to the well-
posedness of the linear mixed problem. This approach (in connection with pro-
blems of magnetohydrodynamics) is described in the recently published mono-
graph [7]. It should be noted also that in this monograph two special cases of the
above mentioned linear mixed problem on the stability of a fast shock wave are
considered, and its well-posedness is proved by obtaining an a priori estimate
with the help of techniques of dissipative energy integrals.

In the proposed work the case of general statement of linear mixed problem
on the stability of fast magnetohydrodynamic shock wave is considered, and the
well-posedness of the mixed problem is proved by obtaining a corresponding
a priori estimate. While preparing the material of this work we used ideas and

notations of the monograph [7].

1. Statement of problem on the stability of fast magnetohydrodynamic
shock wave.

In this section we shall formulate the mathematical statement of the prob-
lem of the stability of a fast magnetohydrodynamic shock wave in the plane case.
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This problem is obtained as a result of the linearization of magnetohydrodyna-
mics equations and relationes on the strong discontinuity. The process of linea-

rization is described in detail in the monograph [7].
So, following [7], we formulate the linear mixed problem on the stability
of a fast magnetohydrodynamic shock wave in the case of two space variables.

Problem &% . We find the solution
U=0U(x), x=(x1,x2)

of the syétem
Lp +divv =0,
LS =0,
(1.1) )
M“Lv+ Vp— (rotH)yxh =0,
LH—rot(vxh)=0; >0, xe]Ri,
satisfying the following boundary conditions
vi +dp —diH, +d,H, =0,
Fy = wup + w1 Hy — po Hy,
V2 = AoFy, + A1p + AH + A3 Hy,
Hy =mq(1 — x)F: + hyva — havy,
Hy =mq(l = x)Fy,,

(1.2)

S=«kp+x1H
att > 0, x; =0, x, € R! and the initial data under 7 = 0:

U= = Up(x), xeRZ,

(1.3) :
Fli—o = Fo(x2), xR

Here

| 9
L= , V=(018), =7 si=7—, =12
T+ & (61, 6)%, Py £ el

t is the time, X = (x1, x,) are the Cartesian coordinates,

R:={x|x1 >0, xmeR!'}), U=(p,S, v, H)*
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v=(v,v)*, H=(H, H)*

P, S, vk, He (k = 1, 2) stand for small perturbations of the pressure, entropy,
components of the velocity vector and magnetic field strength reduced in the
corresponding way to the dlmensmnless form;

h= (i, )", g = A

hi, ha, M are some constants characterising the piecewise constant solution of
the initial magnetohydrodynamics equations and the relationes on the shock
wave provided that the front of shock wave is stationary and described by the
equation x; = 0, moreover hx > 0 (k = 1,2), M > 0. For the polytropic gas
with the isentropic exponent y > 1 and under assumption that magnetic field is
weak (g < 1), the coefficients from boundary conditions (1.2) and the constant
M are determinated as follows:

d=d%+ 0%, dia=dY%q+0@H,

nw=p9+0@H, w.= //«1 hg + 0(gh,
b= +0@, M=0(@,
M3 =A5q + 0D, k=«@+0(g?,
ki =k{"+0@), x=x0+0(@,
M? = M} + 0(g?),

where

JO_ 3= r+CGy-DM; o L
2MEQ2+ (v — DMZ T 2ME’
m (1 2y =1 - M§)2)
2M§ Q2+ - DhM)?
o__r+l1 o 12— (y +3)M})
amz’ 1 4ME(1 — M?)
L (1 2(y = 1)(1 —M§)2> 2+ (v — )M}
2 T am? 2+ (y — 1)M2)? 1— M2
o_20-M) q___ my+D
" T wHDME T 24 - DM

a =

,

’
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Lo r=D =M

A':(;l) = 5, - )
M? M2+ (y — DMP)
m _ 2mly =D~ M§)? o= (y + DM
LM A4 (v - DME)? 2+ (y — HME’

Il =hy/q, m = hy/q,
moreover the parameter M, (=const) for the fast magnetohydrodynamic shock
wave satisfies the inequalities (see [7]):
O0<My<l1.

We note also that F = F (¢, x;) is a small perturbation of the shock wave front
(with the equation x; = F(z, x3)).
Remark 1.1. While solving the mixed problem %, we also determine the fun-

ction F' = F (¢, x3). For this purpose, one of boundary conditions (1.2) must be
the equation for determination of the function F.

Remark 1.2. Itis shown in [7] that for the case of weak magnetic fields (g < 1)
the mixed problem % is correct (by the number of boundary conditions), i.e. the
fast magnetohydrodynamic shock wave in this case is evolutionary by the one-
dimensional attribute (for the concept of evolution see, for example, [8]).

Remark 1.3. The linear mixed problem % is formulated with regard to the fact
that without loss of generality we may assume
U(t,x) =0 under x; <O,

since for the fast shock wave in the one-dimensional case all the characteristics
of the linearized magnetohydrodynamics equations system under x; < 0 are
arriving (for the boundary x; = 0) and, thus, under x; < 0O the solution is com-
pletely determined by the initial data given at + = 0 (both in one-dimensional
and multi-dimensional cases).

Remark 1.4. It is shown in [7] that on the smooth solutions of problem .Z the
necessary for magnetohydrodynamics condition div H = 0 (see, for example,
[3]) is true for ¢ > O if it-holds for t = 0:

(1.4)  (divH)|mo =0, " xeR2,
That is, the condition

- 2
(1.5) divH=0, >0, xeRj

becomes, as a matter of fact, a corollary of (1.4) on initial data (1.3).
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Remark 1.5. We remind that boundary conditions (1.2) are obtained as a result
of the linearization of the relationes on the strong discontinuity in magnetohy-
drodynamics (about these relationes see, for example, [8]).

Remark 1.6. In this section and in sections 2, 3 we suppose that problem % has
the sufficiently smooth solution.

2. Some properties of problem .%.

In this section we shall write out another formulation of problem % and
also discuss a number of properties of system (1.1). First of all, we rewrite system
(1.1) in the following form:

Lp +divv = 0,
LS =0,
2.1 M2Lv+Vp —qEHy, — &H)o =0,

LH; + g&v, =0,

LH; — g& v, =0,

where o = (—m, )*, vy, = (v, o).
The last two equations in (2.1), by virtue of (1.5), imply the existence of the
function ® = ® (¢, x) such that

Hy = —q§5P, Hy = q51P, LD = v,.
Then, problem # may be rewritten as follows.

Problem. #'. We find the solution for the system of equations

Lp +divv =0,

LS =0,
2.2)
( M2Lv+Vp—q2A<I>0' =0,

Ld=v,; t>0, XERi,
satisfying the boundary conditions
' v1+c?p;N1§2F,

tF = ip + N>&F,
(2.3) vy = A& F + N3p,
S =Kop + Ni& F,
b =-m(l—-x)F
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att > 0, x; = 0, x, € R! and the initial data under ¢ = O:

ﬁll:() = ﬁO(X), Xe R.zf_a ’
Fli—o = Fo(x2), x2€R".

Here U = ( p, S, V¥, d)*, A = 512 + 522, and for the coefficients from boundary
conditions (2.3), previous assumptions (i.e., gas is polytropic, magnetic field is
weak) held, the expansions

d=d9%+01@», p=u?+0@d,
=204 0gY, =« + 0@,
Ne=0(g%, 1,4

are valid.

Remark 2.1. Let initial data (1.3) be such that
Hil—o =qec(x), xeR%, k=1,2.

Then the function ®o(x)(= P|,—o) is found as the solution of the Dirichlet
problem for the Poisson equation:

Ady = &9y — 01, x€RE,
Qoly=0 = —m(1 — x)Fy(x2), xR

We introduce the differential operators
LO’ = (61 V), LV = (V, V)’
where v = (I, m)*. Then system (2.2) can be rewritten as follows
Lp+L,v, + Lsv, =0,
LS=0,
(2.4) M?Lv, + L,p =0,

M?*Lv, +Lop — qg*Ad =0,
LD =v,.
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Here v, = (v, v). By simple manipulations, from system (2.4) we obtain that
the functions p, & satisfy the following equations:
(2.5) M*L%*p — Ap + ¢*AL,® =0,
(2.6) M?’L?® — ¢g*Ad + L,p = 0.

At the end of this section we write down system (2.2) in the form of the
following symmetric z-hyperbolic (by Friedrichs) system:
(2.7) AV, + BV, +CV,, +QV =0.

Here |
V=(p,5v,Q0,R, ®)*, Q=£D, R=69,

A = diag(1, 1, M?, M?, g%, g%, 1) is the diagonal matrix,

B=A+ By,
0 0 1 0 0 00
00 0 0 -0 00
1 0 O 0 mg®> 0 0
Bo=|0 0 0 0 -—lg> 0 0],
0 0 mg> —lg> 0 0 O
00 O 0 0 00
0 0 O 0 0 0 0
/0 0 0 L 0 0 0y
00 0 0 0 0 0
0 0 0 0 0 mg®> O
C=]10 0 0 0 -Ig*? 0},
00 0 0 0 0 O
0 0 mg> —lg> 0 0 O
\0o 0o 0 0 0 0 O
(ooooooo\
000 0 000
100 0 0 00 O
Q=]10 0 0 0 0 0 O
000 0 00O
000 0 000
\0 0 m 0 0 0



INVESTIGATION OF THE WELL-POSEDNESS OF. .. 131

3. Well-posedness of mixed problem .# under g < 1.

In [7], as it was noted in introduction, the a priori estimates for the solution
of problem % under g « 1 are obtained for two special cases: m = 0, [ = 1
(parallel shock wave), I = 0, m = 1 (transversal shock wave). Here we shall
consider the general case, i.e., we shall prove the well-posedness of problem %,
when a weak magnetic field is given.

Theorem. Mixed problem F is well-posed under q <1, and also the following
a priori estimates take place for the solutions of this problem.

< <
WAR?) <K;, 0<1t<T < o0,

3n U@

<K,

(3.2) | F

W3((O T)xRY —

where K; > 0, i = 1,2 are constants dependingon T (0 < T < 00);

OTk

WZ(R2 /,/]'{2 {(U’ U) + (le, UX)) + (U)CZ’ UXz) +
+

+ (Ux1x1 ’ 'lexl) + (lexz, UXIX2) + (Ux2X2’ UX2X2)} dX ’

I FI?

T
2 2 2 2
W3((0,T)xRY) /O/R1 {F2+ (F)* 4+ (Fu)* + ...+ (Fuyxys)?} dxdt.

Proof. Following [1], [7], to obtain a priori estimates (3.1), (3.2) at the ﬁrst stage
we construct the following symmetric ¢- hyperbohc (by Friedrichs) system from

system (2.7):
(3.3) Ap(Vp)e + By(Vp)s, + Cp(Vp)sy + 2,V, = 0.
Here |
V, = (V3 oV, 6V, 6V, 12V, 16V, 6,V 62V 616,V E2V0)%,

A, =diag(A, A, A, A, A, A, A, A, A, A) i the block-diagonal matrix etc.
Writing down the energy integral for system (3.3) in the differential form
(see [1], [7]) and, integrating it over the domain R? , we obtain:

d
B4 =~ / (B, V)liy—o o+ / /R (@ + 2V, V) dx =0,
R! 2
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where

Jo(t)=// (ApVp, V) dx, (A,V,,V,) = (AV,V) + (AV,, V,) +
R |

+ (AVy,, Vi) + (AV,,, Vo) + (AV, Vi) + (AVey,, Vi ) + (AVo, Vir,) +
+ (AVX1X| ’ Vxlxl) + (AVxlX27 VX1X2) + (AV)C2X2’ XQXQ)
(AV,V) = p*+ 824+ M?v)®+4%(Q “+RYH+ 0% = pP 4+ 87+ M2V +[H) + &

etc. When deducing (3.4), we assume that (Vp, Vp)z = |V,|—0 as x;—o00 or

|x2 [ —00.
By virtue of boundary conditions (2.3) and system (2.2) under x; = 0, we
estimate the second and the third terms in equahty (3.4). As the result, we obtain

the inequality:
d 2 2 2, 2 2
(3.5) = Jo(0) — 5 {Mi(p* + v3 + p; +p5, + by, t P+
+ My (W2 + 0P+ WD) dxasMydo(r),
where My, M, > 0O are some constants independent. of q;
Mq = O(qz)’ lI/ : FXZXZ ’

2 2 2 2, 2 2
P:ptf+ptx1 +ptx2+px,x1+px1x2+px2x2'

Considering again system (2.2) under x; = 0, after cumbersome calculations,
we obtain from it, with the help of boundary conditions (2.3), the following

equality:
(3'6) \II = (Clpl + Cszl + NSP)Cg)lX[:O .

Here

+0(g%, Ns=0(gh.

c1 = —

1+d 1
— 4+ 0@, cg=——"
. q v2 M3,

Estimating the integral

/R1 {Mi(p* + v} + p? + P2, + ps,) +,qu,2} ,x,=odx2
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with the help of the property of the function trace from W21 (Ri) attheline x; = 0
(see [10]), by virtue of (3.6), we reduce inequality (3.5) to the form:

d ~ -
(3.7) 77 Jo(t) = M /Rl Py =0 dx2<M3 Jo (1),

where M;, M, > 0 is some constant inde—pendent of g. |
Now we proceed to the second, more complicated, stage in the construction
of the expanded system. Following [1], [7], we rewrite equation (2.5) as follows:
~ ~. q2
(3.8) (L3 - L5 - L§)p__+ EEAL(,d) =0.

Here 5
Li=MLy, Li=1t/8* Ly=& —ML,,

Ly=Ls3/B, Li3=k&, | B=v1—-M?

moreover, M < 1 for weak magnetic field (see section 1). If the function p
satisfies equation (3.8), then the vector

W= (Y], Y3, Y3,
where Y] = ZlY, Y2 = LQY, kY3 : l~,3Y, Y = 6p, 6 = (Zl,Lz,Z3)*,
satisfies the system of the form (see [7]):
A~ A A~ q2 » ~
(3.9) {AL1 _BL,- CL3} W+t (2 )aL. e =0
M

Here

2 AN AN & XN
A:(.,Sf H M/), B:(% & %)

M =N KT —iN M -
R M =N K
C=<L/V A .i”);
. A SN 4

KX, L, A, N are as yet arbitrary Hermitian matrices of order 3. Returning
in (3.9) to the differential operators t, &, &2, we obtain the system:

A 1 A q2 % ~
(3.10) [D'c — B&) — ~C§2‘] W+ vyl 2L VAL, (VP) =0,

M . n
where D = E(A + M B).
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Remark 3.1. The following relationes are valid (see [4]):

A =THLxH)T,
s [0 -1\ -
(3.11) B=1 [(—1 0 )XH}TO’

E=1p {(—01 ‘1’) xﬁ}To.

Here
1 0 -1
e L[0 -1 0| , o (-l -ZL—iN
= 2lo -1 o YU\ -2+i A+
1 0 1

Lx<H ié»the Kronecker product of the matrices I, and H etc.; I, is the unit
matrix of order 2 etc. By virtue of (3.11),

D= ﬁ_AiTO* {(—-iw *IM) xﬁ} To.

Let us obtain the boundary conditions for system (3.10). To this end, we
multiply system (3.10) scalarwise by the vector (M?t, 0, —t, 0, 0)*. Conside-
ring the obtained expression at x; = 0 and making use of boundary conditions
(2.3), we obtain the following relationes:

(3.12) {2201 +dp)7? - Bopte + MUE + Ntto) p=0, 1 =0,

where A = Ao, p; = 1 + 0(g?,i =1,2; Ng = 0(g?). We consider also
equation (3.8) at x; = 0. Using boundary conditions (2.3) (see also (3.6)), we
reduce it to the form:

(3.13)  (03L7 — p4L3 — psLY) p+
+(N7ZIL2 -+ NgZILg, -+ N9L2[~/3)p =0, x3 =0,

where p; = 14 0(¢?), i =3,5; Ny = 0(¢?), k = 7,9. Accounting (3.12),
(3.13), we take the following expressions as the boundary conditions at x; = 0
for system (3.10) (see [7]):

p3L1(L1p) — paLy(Lap) — psLa(L3p) +
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+ a{psL1(Lap) — prLa(L1p)} + NgL1(L3p) + NoLa(Lsp) = 0,
L3(Lyp) — Ly(Lap) = 0,

. - M _ . .
psL1(Lap) — poMdL,(Lyp) — —EmL3(L3P) +
+ NioL1(L3p) + N1 Lo(L3p) + N12L1(L1P) =0,
which we shall rewrite in the followmg form
(3.14) A]»Yl + B1Y,+C1Y3 =0.

Here

P03 ape Ng | —0p7  —p4 No
Al = 0 0 0 ), Bi= 0 o -=11,

Niz  pg  Ni. 0 —poMd Ny
0 0 —bs
Cq =A<O 1 0 ) ,
, : _Mmn
: 0 0 5
a > 1 is some constant; ﬁ’zj plﬁd + ﬁ y o =1+0(0g?,i = 6,9;

Ny = 0(q?), k = 10, 12. Moreover for polytroplc gas and weak magnetic field
m=m®+0g, r=r2+0(?,

MO f
m©® = pa® + —5— >0, 20 = @30 <.

Let

where

Ag, k = 1, 4 are the vectors of dimension 3. As

J3 SR V2
Yi=""(A1+Ay), Yo= V20 = V243 Y3 = —-(As = Ay),
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then conditions (3.14) may be also presented in such form
(3.15) A= GAyy,
where

G -G P _
G=<131 02), G =2(A1=C)7' B, Ga=(A41=C1)7'(A1+C).

Let all the eigenvalues of the matrix G lie strictly in the left semi-plane,
ie, ReAj(G) < 0, j = 1, 6. The latter is valid if /2 > 0, 2 < O (.e., gasis
polytropic, and ¢ < 1, see [7])! Now we compose the Lyapunov matrix equation

(3.16) G*H + HG = -G,

to find the matrix H, which appears in the formulas (3.11). Equation (3.16), as
it is knov__vn, has the unique solution (see, for example, [11D

H:(gz* f}3)>0’ H1:H1a H3=H3*,

for every real symmetric positive definite matrix Gy. Therewith, the matrix H
is also real and symmetric, and the matrices ¥, .&, .#, A are the following:

1 -~ . 1 -~ -
%=§(H1+H3), ///=§(H3—H1),

1 . - 1~ -
L =—sUh+ H), iN =50~ ).

As H > 0, then D > 0 (see Remark 3.1).
Let us write out the energy integral in the differential form (see [12]) for

system (3.10):

2

(3.17) (DW, W),—(BW, W), —%(éw, W)XZ+% [2(Y1, ALy (VO))+

+2(Ya, LAL, (TD)) + 2(Ys, /{ALG(WD))} =0.

With reference to (2.6) and the last equation of system (2.2), we obtain the fol-
lowing equations:
L,Y =¢*X — M*LZ,

3.18
©.18) LX = AZ,
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where X = A(f7<b), Z = Y~7v,,. Then, in view of (3.18), the expression in curly
braces in equality (3.17) may be transformed as:

(3.19) {+} =100+ &2 + £Q2,.

Here

Qo = — ¢*(X, HX) + ML\ Z, #X) + 2(L,Z, LX)+
+2(LsZ, AX) + (812, K61 L) + (82, H52)),
Q) = —2m{(Y1, #X) + (Y2, ZX) + (Y3, #X)}—
— ¢*(X, LX) + M*2(L1Z, #'X) + 2(L,Z, LX)+
+ 2(L3Z, MX) - 2(TZ, K6, Z)+
+ (622, L85 1) — (512, L& L) - 2(5ZL, 4,6 1)},
Qy =21{(Yy, X) + (Y2, ZX) + (Y3, #X)}—
—¢*X, X) = M*2(TZ, H16:2)+
+ 2612, LEL) + +(5Z, M05L) — (512, 416 7)),
My = %/// = BM-Z-(;{— MZ).

Let us integrate identity (3.17) (with reference to (3.19)) over the domain
Ri assuming that [W|— 0 as either x;— 00 or |x2]— 00 etc. Finally, we obtain:

dx; =0.
=0

X1

3.20 iJ(z)+/ {(éw W)-—-‘ﬁsz}
(3.20) pred - , gail

Here

2
I = // {(DW, W) + q—zszo} dx.
R? B

Note that, by virtue of (3.11), (3.15), the quadratic form
(BW, W)lx,—0 = (GoAs7, Ar)lx=o > O.

Since

then

G2 (BW, Wlyeo > My{(£3p)* + (LiLap)? + (EaLap)® +
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> M3P|x1=0,

Xi=

+ (L3P + (LaLap) + (L2p)?)

where M3, M3 > 0 are some independent of g constants. Note that with the help
of boundary conditions (2.3), system (2.2) at x; = 0 and (3.6), we may obtain

the inequality

(3.22) Qll 0 > N3Py =0,

ﬂz
where Ni3 = 0(g?).
In view of the smallness of g, quadratic form
_ 2

/32520>O (A, >0, D=>0).
So, adding equality (3.20) to inequality (3.7) and accounting that, by the choice
of matrix Gg (see inequality (3.21)) and in view of (3.22), it is possible to achieve
the positive definiteness of the form

(A,V,, V,) + (DW, W) +

2

= [(éw, W) — %szl — MIP} > (M3 — My + Ni3) Ply—g > 0,

X1=O

we finally obtain the following inequality:
dJ(t)<M J(@), t>0
It =My , ,

where J(¢) = Jo(t) + J1(t); M4 > O is a constant independent of q. From this
inequality the a priori estimate for problem %' follows:

(3.23) J(t)<eM'J(0), >0,

which shows that mixed problem %’ is well-posed.

Remark 3.2. Let the functions ¢ (x) (see Remark 2.1), k = 1,2, x € R%r be
finite, with the compact supports lying within the bounded domain Q C Ri with
the smooth boundary 92. Then we determine the function ®y(x) as follows. In
the domain H—Qi \ 2 &p(x)=—m (1 — x) Fy(x,); and in the domain Q it is found
as the solution of the Dirichlet problem:

Ay = &1 — 201, x€Q,

Dolag = —m(1 — x) Fo(xz).
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Then for thus constructed function $¢(x) the following estimate is valid
(see [13])

190055, <Ms {uwl Lz, + 1920y, + 10l W;(Rl)} ,

where Ms > 0 is a constant independent of ¢;,, Fy. From the last inequality
with the help of boundary conditions (2.3) we easily deduce the following esti-

mate:
-
”(D‘)“wg(m) <Ms {||g01 I WARE) + lle2|l W2R) +
w;(Rl)} ’

where A7I5 > 0 1is a constant, pg = pli=o, V2,0 = V2/;=0. Using the property of
the function trace from W21 (Ri) at the line x; = O we finally obtain:

+ || Polx,=0 ”W‘(R') + v2.0lx =0
2

<
| Dol wawe) Mo {Htm “W§(R2+) + lleall we) T ”p(’”wg(m) + vz sz(Ri)} :

Here Mg > 0 is some constant independent of ¢ 5, pg, 2.
Considering the introduction of the function & as an auxiliary action, with
reference to Remark 3.2, from inequality (3.23) we deduce the desired a priori

estimate for the solution of problem % :

U@l

< <
WARR) <K;, 0<t<T <0,

Adding equality (3.21) to inequality (3.7), we obtain:
4 .

(3.24) —J () +/ & dx,<MyuJ ().
dt R!

Integrating (3.24) over the interval (0, T') and accounting that J(¢) > 0, & > 0,
we obtain the following inequality:

T
(3.25) /0 /R 1 {(F)? + (F)? + (F)2 4 (Fi)? +
+ -1+ (Fupnyn)?} dxadt<My,

where M7 > 0 is a constant depending on T'. From the second and the third
boundary conditions of (2.3) we obtain the equality

. NN N
Ft.—.(u—- 33)p+~—2v2, x1 =0.
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Multiplying it by 2F and integrating with respect to x, € R!, using the Holder
inequality, we obtain the following estimate:

— H Ol

Ly SCIFOI @) {t]plxlzo{le )t v 2lx,_0”L - } :
where ¢ > 0 is a constant, || F(¢)||> = le F? dx, etc. The last inequality, if we
use the property of the function trace at the line x; = 0 (see [14)), is rewritten

as:
d cM,
(3.26) 7 ”F(t)”Lz(R’) ST {”P(UHW;(RQ + llvz(l‘)HW;(Ri)} .

Here M, > 0 is some constant. From inequality (3.26), with reference to proved
estimate (3.1), we obtain

(3.27) | F |l Mg,

<
Ly((0,T)xRY) —

where Mg > 0 1is a constant depending on 7. Then, combmmg (3.25) and (3.27),
we obtain finally the desired a priori estimate for the function F:

1E s 0.y <Kz

and that completes the proof of Theorem.

Thus, on the basis of proved theorem we may conclude the well-posedness
of linear mixed problem on the stability of fast magnetohydrodynamic shock
wave in polytropic gas under the weak magnetic field. It means that the given
type of strong discontinuity in magnetohydrodynamics is stable (with respect to
small perturbations).

Remark 3.3. We remind that we find the unique solution of system (1.1) with
boundary conditions (1.2) and initial data (1.3) and for which a priori estimates
(3.1), (3.2) take place. These estimates specify the behaviour at infinity of the
perturbations of the pressure, entropy, velocity, magnetic field and the front of

fast shock wave F.
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