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COMMUTATORS OF INTEGRAL OPERATORS
WITH POSITIVE KERNELS

MARCO BRAMANTI

Let K be an integral operator on a- homogeneous space (X, d, i), de-
fined by a positive, locally integrable kernel k, and assume that K is contin-
uous from £? to .£4 for suitable p and g; let a € BMO(X). Here we prove
that, if k satisfies a “pointwise Hérmander inequality”, the operator

Caf(x) = /X Kl = aOIF 0 du)

satisfies the ¥? — ¥9 estimate

1Ca fllg < Cilaﬂ Hfllp

(with p, ¢ as above). This estimate in partxcular implies an analogous one for
the commutator of K with a.

0. Introduction.

This note deals with commutators of some integral operators on homoge-
neous spaces, and it is a continuation of [2] and [3]. In [2] it is proved that,
if K is a Calderén-Zygmund operator on a homogeneous space (X, d, u) and
a € BMO(X), then the commutator

0.1) CIK,alf = K(af)—a-Kf
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satisfies the .#? -estimate;

0.2) ICIK, alfllp < cllall«ll fllp, 1< p <oo.

(This generalizes a theorem by C01fman -Rochberg-Weiss [10], valid in the eu-

clidean case). ;
In [3] a similar result is estabhshed for fractional integrals. More precisely,

if
0.3) Lo f(x) = / ka5 1) £ () A (y)
X\(x}

is the fractional integral on (X, d, i), thatis k,(x, y) = u(B(x d(x, y))* 1,
0 < a < 1, and, for a e BMO(X), we set

(0.4) Cif(x) = /;{\{ }ka(x, y)]a(x) —aWIf () duny),
then it is proved that for p € (1, ) % = % -,
©05) ICE Sl < cllalll £l

Inequality (0.5), clearly, is a stronger estimate than the analogous one on
the commutator of I, proved, in the euclidean case, by Chanillo [9].

The idea of the present paper is that what allows to put the absolute value
inside the integral, in the definition of C2 f, is the positivity of the fractional
integral kernel k., and that for any integral operator with positive kernel the
analogous estimate can be proved.

Theorem 0.1. Let (X, d, 1) be a homogeneous space (see n.1 for the definition),
K an integral operator of the kind

0.6) Kf@= [ L HEDFO)dR0)

with k non-negative measurable function, such that K is continuous from

ZLP(X) into LP(X) for every p € (1, 00). Moreover, assume k satisfies a point-
wise Hormander inequality: . :

there exist constants cx > 0, B > 0, M > 1 such that for every xo€ X, r > 0,

X € B.(x0), y ¢ By, (x0),
Ck . d(xg, x)?
w(B(xo,d(xo, ))) d(x, y)f

(0.7) lk(xo0, y) —k(x, y)| <
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In the following, we will briefly write (B (xo; ¥)) for i(B(xg, d(x9, ¥))).
If X is bounded, assume that also k*(x,y) = k(y, x) satisfies (O 7). For a €
BMO(X), set 4 _

0.8) Caf (x) = /X e Wlatx) —a(If () dul).
Then
0.9) ICafllp < clallulifl,  forevery pe(l, o).

Example 0.2. Consider the half-space R, = R"~! x (0, 00). For x = (x', x,) €
RZ,let ¥ = (x’, —x,) be the “reflected point”. The operator

kfw= [ Foa

is £P — £F continuous on R’ . This operator and its commutator appear in [7]
in connection with boundary estimates for solutions to elliptic equations, and this
example was the first motivation for the present study. Analogous “parabolic”
operators are studied in [1].

Note that if we want to bound the kernel |¥ — y|™ with some power of
|[x — y|, then the best pos31ble exponent is —n; nevertheless, the kernel is not

singular.

Theorem 0.1 implies in particular that the .#’? -estimate on the commutator
of K (see (0.1) - (0. .2)) still holds if the kemel k is replaced with any other
equivalent function, &, that is . :

crk(x,y) <k(x,y) < crk(x,y)

for some positive constants ¢1, ¢3. Note that this fact cannot be assured for a
singular integral of Calder6n-Zygmund type (that is, which is not absolutely
convergent). .

The proof of Theorem 0. 1 giveninn. 2,is a Varlatlon of the one given in
[2] for commutators of Calder6n-Zygmund operators, which makes essentially
use of an estimate on the “sharp function” of C, f and is, in turn, based on the
analogous result proved in the euclidean case in [16], p. 418. The same technique
can be adapted also to fractional integrals: this leads to another proof of the
main result in [3] (see inequality (0.4) above), which holds for a completely
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general homogeneous space (whereas in [3] a geometric condition on the space is
required). This is discussed in n. 3. Finally, n. 4 contains the proof of the inverse
of Theorem 0.1 (and its analogous for fractional integrals): i.e., if the operator
f = C,f is bounded on .#?, then a € BMO.

Acknowledgements. I wish to thank Prof. Filippo Chiarenza for stimulating
discussions on the subject of this paper.

1. Some basic facts about homogeneous spaces.

In this section we give precise definitions and recall some known results
about homogeneous spaces.

Definition 1.1. Ler X be a set. A functiond : X x X — [0,00) is called
quasidistance if:
l) d(x,y):()@x:y;

ii) d(x,y) =d(y, x);
iii) there exists a constant c; > 1 such that forevery x,y, zeX

(1.1) d(x,y) < cqld(x,2) +d(z, y)].

If (X,d) is a set endowed with a quasidistance, the “balls” B,(x) =
B(x,r) = {y €eX :dx,y) < r} (for x € X and r > 0) form a base for a
complete system of neighbourhoods of X, so that X is a Hausdorff space. Note
that the balls are not in general open sets; if they are, then they form a base for
the topology of X. '

Definition 1.2. We say that (X, d, u) is a homogeneous space if- ‘

i) X is a set endowed with a quasidistance d, such that the balls are open sets
in the topology induced by d;
ii) W is a positive Borel measure on X, satisfying the doubling condition:

(1.2) 0 < w(Bor (%)) < ¢ p(By(x)) < 00

for every x € X, r > 0, some constant ¢, > 1.

The numbers ¢y, ¢, in (1.1) - (1.2) will be called “constants of X” and we
will write ¢(X) for a constant depending on the constants of X.
We start recalling two theorems due to Macias-Segovia (see [15]).
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Theorem 1.3. Let d be a quasidistance on a set X. Then there exists a quasi-
distance d’ on X such that:

(i) d and d’ are equivalent, that is there exist positive constants ci, ¢, such that
forevery x,yeX:

(1.3) cid'(x,y) <d(x,y) < cad'(x, y);

(ii) d' is “locally Holder continuous”; more precisely there exist y € (0, 1] and
¢ > 0 such that for every x,y,z€ X

(L.4)  |dx,2)—d 0l <cd @ y)[dx, 2)+d )17,

Theorem 1.4. Let (X, d, ) be a homogeneous space. Define:
é(x,y) = inf{,u,(B) !X,y € B, and B is a ball with respect to d},

ifx#y and é(x,x)=0.
Then:
(i) & is a quasidistance;
(ii) & and d are topologically equivalent
(note that they are not, in general, equivalent in the sense of (1.3)!);
(iii) the space (X, 6, () is normal, that is there exist positive constants ci, ¢,

such that
cir < u(#x,r)) <cor

for every x € X and every r such that u({x}) < r < u(X). Here HB(x,r)

denotes a ball with respect to é;
(iv) for any 8-ball 9B there exist two d-balls By, By such that By € & C B,
and ((B;) < c u(B,), for some constant c independent of .

The definition of standard real analysis tools, such that as the maximal func-
tion A f,the sharp function f* and the BMO seminorm || f ||, naturally carries
over to this context, namely:

xeBJB

A f6) = sup f 1F DI dulr)
where the sup is taken over all balls containing x and]L o= ——— / cens
B n(B) Jp

Fix) = supf FO) = f5ldn(y)

x€BJB
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where fz =7L Fx)du(x);
B

1 £ 1l = sup f*(x) = sgp]é 7O) = falduy);

BMO = {f € ZL(X) : I/, < oo}.

We recall three results related to these concepts, which have been proved in
the context of homogeneous spaces in [5], [11].

Theorem 1.5. (Maximal Inequality). For every p € (1, 0o] there exists a con-
stant c(X, p) such that for every f € £P:

12 fllp <clifllp-

Theorem 1.6. (John-Nirenberg Lemma). For every p € [1, 00) there exists a
constant c(X, p) such that for every f € BMO, every ball B:

1/p ,
(Ji [f(x) — fBI”du(x)) <cllflls.

Theorem 1.7. (Sharp Inequality). For every p € [1, 00) there exists a constant
c(X, p) such that for every f € LP:

if wX)y=o0: |fl, <clf,

f wn(X) <oo: “f—]ﬁf <clffllp -
p

The following two lemmas about BMO functions can be proved as in the
euclidean case:

Lemma 1.8. (See [16], p. 206). Let a € BMO and M > 1. Then for every ball
B, (x) and every positive integer j:

lag,, —ap,|<c-jlal.

where ¢ depends on M and on the doubling constant c,,.
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Lemma 1.9. Let f € BMO, and let:

f&x) i 1f&x)]<n
fn(x)={n f f@x)zn
-n if f(x)<-n

Then f, € BMO and :
I falle < cliflls

with ¢ an absolute constant,
Finally, we will use the following:

Lemma 1.10. (See Lemma 1.9 in [2]). Let (X, d, 1) be a homogeneous space
Then u(X) < oo ifand only if X is bounded.

2. .¥¢?-Estimates for integral operators with positive kernels.

Here we keep the same notations and assumptions that appear in Theorem
0.1, which we want to prove in this section. Moreover, let us define the space

= {f € £%(X) | the support of f is bounded } .

Note that 2 is dense in £7 for every p € [1,00). For f € £}, let f!, 4 f
denote the sharp function and maximal function of f, defined in n. 1. Then:

Theorem 2.1. Foreveryr € (1, 00) there exists a constant c¢(r, K, X) such that
for every a e L*(X), fe 2,

(€)@ = e lall, | (# K AFDI®) + (A 1E) ]

for every x € X.
Proof. Let Bs = Bs(xp), x, x € Bs.

QD (€)= fX () — aO) kG ) F )X () A () +

+ /X la(x) —ak@, N fFD Xy, P ALD) = F(x) + B(x).

(2.2) i | (x) — gl di(x) < - | (x)| du(x) <
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S% du(x) ; la(x) —a(W)kCx, IFDdu(y) <

527{3 an) [ (laGx) = ag,| + la(y) — ag,]) -

kI fFONduy) = o + o .
(2.3) &) = g la(x) — ap,|du(x) ’ k(x, I fnldu(y) <

(by Holder)

<2 ( " la() — as, " du(x))

1/r

’ 1/r
: < i 1K@ du(x)> <
* (by Theorem 1.6)

< o(r, X)lalls (. (K(F)7) @)

Q4) =< 2]£ du) [ la(y) = ag, kG, NIF O duly) =

Bys

=24 k(la- d
J & (la-anlifiz,, ) dueo <

(forevery g > 1)

e s o )

(by the .£?-continuity of K)

1
SC(q,K)<

1/q
i o, (a0 —as 17N duen) <

(choosing g < r, by Holder)

1 q/r
, K "d .
< c(g >{MB§) (/Bmlf(x)l u(x))
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(r—q)/r y1/q
: </ la(x) — ag, l"’/(’“‘”du(x)) } <
Bus

(by Lemma 1.8: |a(x) —ap,| < |a(x) — ap,,| + |ap,, —ag,] < |a(x) —ap,,| +

cllalle) "
< c(r, K)pu(Bs)~ 14 ( fB lf(x)l’du(x)) :

(r—q)/qr
) (/ 'CI(X) — QB Iqr/(r—q)d'u(x)) + ”a“* /L(BM,;)(r-q)/qr <
Bus

(by Theorem 1.6 and the doubling condition)
1/r
<c(r K, X) <][ lf(x)lrdu(x)> Malle <
Bus

<c(r K, X)llall (2 (f7)@)7

Bx) = /X e = a Ik, SOV ).

@.5) ]é |B(x) — By, | dpx) szﬁ B(x) — cldu(x) =

(with ¢ to be chosen later)

_ 2][
B;

+/ (la(x) = a)| = lag, — a(I) k(x, y) f () du(y), du(x) <
X\Bus

< 2][ du(x){
Bs

+ /X\B lla(x) —a(y)| — lag, —a)|| k(x, y)lf(y)ldu(y)} =B+ B,.

[ lan = a1k fO) ) ~ e+
X\ Bas

+

/ lag, — a()| kG, ¥) FO) du(y) — ¢
X\Bus

In &#;, choose

¢ = / las, — a()|kGxo, y) £ ) du(y).
X\Bus
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Then:

H < 2]£ du(x) " lag, — a(y)| |k(xo, y) — k(x, I fDMIdu(y).

By (0.7), the inner integral in % is bounded by:

2.6 - d(xo, ﬂ/ la®) —an | IfDI o
(2.6) ck - d(xo, x) B M(B(xo;y))'{l'(xo,)’)ﬁ u(y) <

(by Holder)

' 1/r
@) - anl
. 88 / 5 d .
= o <X\Bm w(Bo; ) - (s, )P ‘“”)

| ( f fOI dw)y”
X\Bys (B (x0; ¥)) - d(x0, y)P '

Now:
L f DI |
2.7 | e =
o /X\Bm w(B(xg; ¥)) - d(xo, y)P w(y)
3 FOI
N d
;‘/It‘lf5§d(xo,y)<Mj+la /,L(B(xo’ y))fd(XO,y)ﬂ ,LL(y) 5
S 1
"d
;[MJ(S]ﬂ 1£(B(x0, Mi8)) Jpe, Mma)lf(y)l u(y) <
(by the doubling condition)
=X, M, ﬂ) //!(lfl )(E) .
Analogously:
» la(y) — ag,|”
28 ; d <
- /X\Bm p(B(xo; ¥)) - d(xo, y)? piy) =

< o(X, M) Z T Ty 1800 =8 du() <
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(by Theorem 1.6 and Lemma 1.8)

1 & 1+J"
<5 Z . K, X)lall” ( - )—e(r K, ) 55 Nl

From (2.7) - (2.8):

(2.9) B < c(r, K, X) lalls (2 1F1H®)" .

2.10) B <2 - la(x) —ax|du(x) s ke, IFOdu(y) <

r tr - 1/
<2 (Jia ’K (If!XX\Bm) (X), dl/«(X)) : ( g la(x) — ag,] dﬂ@)) <

(by Theorem 1.6, and since K (] 7l XX\Bm) x) < K (If]) (&) ¥x)

< e(r, X)llall. (A CK (1 FDINE)" .

Collecting inequalities (2.1) - (2.10), we get the theorem. |

By the .#’?-continuity of K and the maximal inequality (Theorem 1.5), we
get from Theorem 2.1 the following

Corollary 2.2. Under the same assumptions of Theorem 2.1, for every p €
(1, 00) there exists a constant c(p, K, X) such that for every a € L*°(X),
fe, |

”(Caf)ﬁHp < cllall« IIfllp.

Proof of Theorem 0.1. In view of Lemma 1.9 and the density of 2 in .£? for
every p < o9, it is enough to prove the theorem for a € > and f € 2.
Taking a € £ and f € &, we have that C, f € Z? forevery p € (1, 00).
Now, if u(X) = oo, thatis X is unbounded (see Lemma 1.10), the theorem
follows from Corollary 2.2 by the “sharp inequality” (Theorem 1.7). If u(X) <
oo, from Corollary 2.2 and Theorem 1.7 we get:

c.r-§

2.11)

< llallil £l
4
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Then it is enough to prove that

(2.12) <O Yall N fIl, -

/ Caf () dp(x)
X

This can be done repeating the proof of Theorem 3.2 in [2]. For convenience of
the reader, the proof is included below.
Let us consider:

/X (Ca f)(x) dpu(x) = /X du(x) /X kG, WIa) — aIF o) du() .

Since a, f are bounded functions and ©(X) < o0, the integral on the right hand
side of the last equation converges absolutely and equals

~Af(y)du(y)/}(k(x,y)[a(y) —ax)]du(x) = ~/Xf(y)C21(y)du(y)-

Here we denote by C} the operator defined as in (0.8), with k(x, y) replaced by

k*(x,y) = k(y, x).
Hence:

(2.13) < W fllp ICZ 1

| €Hrane)
X
Since also k* satisfies (0.7), (2.11) holds for C}, too, and

(2.14)  ICipy < cllalle pGOYP 4+ pu(X) ™7 /X (CoDx) dp(x)

Again by Fubini’s theorem, we get:

@15 [ @cvmdue = [ &ae)dum - [ & awdue).
b'e X X

By Holder and the .#? estimate on K :

(2.16) < |Kafl, - p(X)V? < clal, - n(x)V7

/X (Ka)(y)du(y)

Without loss of generality, we can assume

/ a(x)du(x) =0
X
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since the commutator we are estimating is not affected by adding a constant to
a. We claim that

(2.17) lall, < cp llalle p(X)VP.

To see this, recall that, by Lemma 1.10, X is bounded, so it coincides with some
ball B. Then, by Theorem 1.6,

| taPdin) = w00 - f 1ot - aplPan) < cu(x) Jal?
Therefore frbm (2.16) we get:

2.18) fX (Ka)(y) du(y)’ < cllall, w(X).

An analogous estimate holds for the second term in (2.15) and from (2.13) -
(2.18) the result follows. O )

3. Fractional integrais.

As we said in the Introduction, Theorem 0.1 can be rephrased for fractional
integrals on homogeneous spaces; this leads to another proof of the results in [3].

Define the fractional maximal function:

(D M) =sup f FO)ldp() for0<p <1

xXeB (B)l A

(i.e., the sup is taken for all the balls containing x). When 8 = 0, we have the
standard maximal function. Reasoning as in [16], p. 153, the followmg can be
proved: .

1 1 1
Proposition 3.1. If0 < 8 < 1,1 < p < —, — = — — B, then there exists
' q D
¢ = c(x, B, p) > 0 such that for every f € ¥*
(3.2) N fllg <cliflly.

Moreover, we know that
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Proposition 3.2. (See [13]). If

I f () = /X KB F0) )

is the fractional integral-on (X, d, p), that is ke (x, y) = n(B(x,d(x, ¥)))*~L,
1 1- 1

O<aoa<landl<p<-—~-, —-==—q, then there exists ¢ = ¢(x,a, p) > 0
@ P
 such that for every f € £P

(3.3) | - Iaflly <clifll,.

Theo_rem’3.3. Let ky be as in Proposition 3.2 and assume that if satisfies the
Jollowing “Hérmander inequality”:

there exist constants ¢ > 0, B > 0, M > 1 such that for every xo € X, r > 0,
X € Br(x0), y ¢ Bur(x0),

c . d(xo,x)ﬂ
(B (xo, d(xo, y)))l—a d(xg, y)#

(3.4) ke (X0, ¥) — ko (x, )| <

If X is bounded, assume that also kx(x,y) = kq(y, x) satisfies (3.4). For a €
BMO(X), set

(3.5) | Cﬁff(x)=/)'({‘}ka(x,y) la(x) —aWIf ) duly).
\x}

Then, if p, q are as in Proposition 3.2,

(3.6) - ezrl, =clal s, -

Sketch of the proof. We claim that:
for every x € (0, 1), r € (1, é) there exists ¢ = ¢(r, o, X) such that for every
xeX

G (€' s elal {(M ([T 0) + (Mar(F10) ]

(3.7) can be proved similarly to Theorem 2.1, using (3.3) and (3.4), with a careful
choice of the exponents. We do not give account of the details. By Theorem 1.5,
Proposition 3.1 and Proposition 3.2, inequality (3.7) implies:

(3.8) HC;"f)“'Hq <cllall Il fllp.
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Then Theorem 3.3 follows from (3.8) like Theorem 0.1 follows from Corol-
lary 2.2. 0

The previous Theorem requires that the kernel &, satisfies inequality (3.4).
This is a “geometric” assumption on the space (X, d, i), which can be false, for
instance when the space has “atoms”: in this case the function x — (B, (x))
is discontinuous, while (3.4) requires its continuity. Moreover, even in non-
pathological cases, the proof of property (3.4) can be difficult: for instance, if
X is a manifold with variable curvature, the function x — (B, (x)) has not a
simple explicit form. On the other hand, a nontrivial example where (3.4) can
be proved is R with the euclidean distance and a weighted measure dyu =
w(x)dx, where w (w € ,Zj(l)c, w > 0) is such that u satisfies a doubling con-
dition (for instance, w is an A, weight of Muckenhoupt). These homogeneous
spaces are studied in [12], in relauon with fractional integrals; in particular, they
prove that, under the above assumptions,

w(BG. 1 +1)) = u(BGx,D) < e n(BGx, 1) ™ - u(BGx, 1)

forevery [ > r > 0, x € RY, some ¢ > 0 and B € (0, 1). From this result with
some computation, (3.4) can be proved.

However, it is possible to remove assumption (3.4) without loss of gener-
ality, using some known results on homogeneous spaces: what follows is an ex-
planation of this extension.

Let (X, d, 1) be any homogeneous space let us construct the quasidistance
§ as in Theorem 1.4; then, starting from &, let us construct the quasidistance &’
as in Theorem 1.3. The fractional integral kernel k,, in the space (X, &', i), can

be defined as:

EX) Ko (x, ) = 8'x, )L,
Lemma 3.6. The kernel k,, defined as in (3.9) satisfies a Hormander inequality
(3.4).
Proof.

ks, (2, ¥) = ki (x0, )| <
(for 8'(xg, y) > 28'(x, xo))
G = 8o, ) K, y) = 80, )
- §"(xo, 2= T 8 (xp, y)20) -
(by (1.4)) '

8 (o, x) =7
c
= 8o, )0

(8'(x, ¥) + &' (x0, )70 <
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8 (xo, x)(l—a)y
= 8 (xg, y)0-0 )
with 8 = (1 —@)y. 0
Theorem 3.7. Let (X, d, 1) be any homogeneous space. Then the conclusion of
Theorem 3.3 holds. %

Proof. By Theorem 3.3 and Lemma 3.6, estimate (3.6) holds in (X, §, ). By
definition of § and since & and &’ are equivalent, we see that

ka(x, y) = w(B(x, d(x, )™ and ki (x,y) =8 (x,»)*"
are equivalent (where B denotes a d-ball). Therefore we can write:
(3.10) [c2 7], = cllalgyom.y.p 1£ 1
with C7 f defined as in (0.4) by k4 or k,,. We now claim that:

8 (xg, X) )ﬂ

= ek, 0, (o

(3.1 ~ Malismow.sy = € lallpmocta,w -
To prove (3.11), it is enough to show that

(3.12) lallgmox.s. =< € Nallsmocx.a ) »

since 8 and 8’ are equivalent. By Theorem 1.4 (iv), we know that for any §-ball
2 there exist two d-balls By, B, suchthat B € % C By and u(B,) < cu(By),
for some constant ¢ independent of #. From this fact and Theorem 1.6:

f la(x) — agl*du(x) <
(foranyke]R)
(33) / la(x) — AP du(x) < (Bz) Ia(x)--/\lzdu(x)s

u(ﬂ)

(for A = : a(y)du(y)).

1
(B2)
2
So (3.12) is proved. From (3.10) - (3.11), the theorem follows. O

Remark 3.8. Theorem 3.7 improves the analogous result in [2], where a geo-
metrical property of the space (X, d, w) is assumed. Let us call (P) this assump-
tion: it means, roughly speaking, that X has not too many empty spherical shells.
Condition (P) could be removed also from the proof given in [2] noting that,
whatever the space (X, d, u) is, the space (X, 8, u) satisfies always condition
(P): this fact was proved by [6]. Therefore the result holds for (X, &, 1) and so,
reasoning as in the proof of Theorem 3.7, also for (X, d, u).
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4. The inverse theorem.

We conclude pointing out that the inverse theorems of Theorem 0.1 and
Theorem 3.3 hold. Namely:

Theorem 4.1. (Inverse of Theorem 3.3). Let (X, d, 1) be a homogeneous space,

LL(X), Co f be defined as in Theorem 2.3, p,q,a as in Proposition 2.2
and assume that following inequality holds

4.1 Icarl, <HIfN,

for some positive constant H, every f € £P. Then a € BMO and
(4.2) lallx <c- H,
for some constant c independent of a.

Theorem 4.2. (Inverse of Theorem 0.1). Let (X, d, u) be a homogeneous space,

LX), Ca f be defined as in Theorem 0.1 and assume that the kernel k sat-
isﬁes the growth condition:

c

4.3 k(x, y)| = '
(4.3) ks »I = w(B(x,d(x,y)))

If, for some p € (1, 00), the following inequality holds

1Cafllp < HIfllp
for some positive constant H, every f € £?, then a € BMO and
”a”* _<_ c: Ha

for some constant c independent of a.

Theorem 4.1 has been proved in [4]; the proof of Theorem 4.2 can be carried
out similarly, setting @ = 0 in the proof of Theorem 4.1 and using assumption
(4.3). For convenience of the reader, the proof of Theorem 4.1 is included below.
Proof of Theorem 4.1. Let f = x, with B any fixed ball. Then

o fx) = / ke, Wla() — a(y)| du(y).
B\{x})
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If x,yeB,

(4.4) uw(B(x,d(x, y)) < c(X) - u(B),

then

4.5) )| 2 € (B)*,

and

(4.6) cife) = eu@*™ [ lat - a)ldu) 2

2 c u(B)* la(x) —]ia(y) du(y)l -

Raising to the g both sides of (4.6) and integrating on B:
en ) [ la) - anl duto) < [ lezseolt duw <
(by (4.1))
<1 [ | = e uce.

Then from the relation between p, ¢ and o we get

1/q
(][ la(x) —ap|? du(x)) < ck.
B

Since B is generic, by Theorem 1.6, (4.2) follows. O
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