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VARIATIONAL SETS AND NECESSARY OPTIMALITY
CONDITIONS IN NONSMOOTH OPTIMIZATION

MARCO CASTELLANI

In this paper we underline the strict connection between the second-
order necessary optimality conditions in nonsmooth optimization and the sep-
aration of two particular sets. Introducing two approximating second—order
variational sets, we give an alternative proof of a result in [15] (with presence
of inequality constraints only) and we build a new result without the presence
of regularity conditions. ’

1. Introduction.

In the last years a lot of first—order necessary conditions in nonsmooth op-
timization have been given and they have been built using various kinds of di-
rectional derivatives (see for example [7], [10], [14], [16], [17] and references
therein). Moreover the strict connection between these necessary conditions and
the separation of particular local cone approximations has been analysed ([3],
[5], [8] and [12]), drawing a general abstract scheme to build such conditions. In
this paper we shall adapt this scheme for praving a second—order necessary op-
timality condition due to Studniarski [15]; moreover it is possible to extend this
result either omitting the regularity condition or weakening the assumption about
the constraints [4]. The key tools of our proof will be two particular second—
order variational sets that represent a generalization of the concept of local cone
approximation and they have been investigated also in [1], [9] and [11].



190 MARCO CASTELLANI

We introduce the notations that will be used in the sequel. X will be a real
Banach space with norm || - | and X* will denote the dual space of continuous
linear functionals on X. For any subset Q of X we shall denote with cl Q and
int O respectively the topological closure and interior of Q; Q€ is the algebraical
complement. For any x5 € X and for any p > 0 we shall denote with B(xg, p0)
the open ball with radius p and centre xp. Given the function f : X — R the
epigraphic of f is the set :

epif = {(x,») eX xR | f(x) < y}.

If f is lipschitzian at xq the Clarke’s directional derivative of f at x; in the
direction v is defined by

f°(xp; v) = limsup S+ = [x)

X=X t

t10

and f°(xp; -) is areal-valued sublinear function. The Clarke’s subdifferential of
S at xq is defined by

9°f (x0) = {x" €X* | f(xo; v) = (¥, v), VveX]

and it is a nonempty convex and weak*—compact subset of X*. In conclusion for
any xo € X we call subdifferential of f at x, the set

8f (x0) = {x* €X* | f(x) 2 f@o) + (x*,x —x0), VxeX]

and we observe that if f is lipschitzian at x, then 9° f (x) = 3f°(xo; - (O)
The mathematical problem that will be studied in this paper is
min f (x)
® reo=e

iel

where Q; = {x € X | gi(x) < 0} with £, g : X — R locally lipschitzian
functions and I = {1, ..., m}. Besides, for every xo € @, we shall put

I(x0) = {i €| gi(xo) = 0}.

Now we introduce the first and second—order directional derivatives that have
been used in the Studniarski’s theorem.
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Definition 1.1. Given the function f : X — R, the point xy € X and the
directions v, w € X, we define the following directional derivatives:

(a) the upper Dini derivative of f at xq in the direction v

Dy f(xp; v) = limsup fxo+ “:) - f(xo);
t}0

-

(b) the lower Dini derivative of f at xg in the direction v

f(xo+tv) — f(xo0)

t

D_ f(xp; v) = liminf
t|0

(c) if D4 f(xp; v) € R the second-order upper Dini derivative of f at xy in the
directions v and w
f(xo +tv +r*w) — f(x) — tDy f (x0; v)

Dif(xo; v, w) = limsup 2 :
t}0 -

(d) if D_ f(xo; v) € R the second—-order lower Dini derivative of f at x¢ in the
directions v and w

\ t t2 —_ —tD_ .
D? f(xq; v, w):n“ié“f f(xo + tv + t2w) t{(xO) tD_ f(xo: v).
t .

Remark 1.1. If f is lipschitzian at xy with constant K, we have that
|D+ f (x0; V)| < K|lvli;

hence the second—order Dini derivatives are well-defined.
Besides D f(xp; 0) = 0 and it is immediate to observe that

Dif(x0;0,w) = Dyf(xo;w). O

Remark 1.2. If f is twice Fréchet differentiable at xg, using the Taylor’s for-
mula, we have:

1
D2 f(x0; v, w) = (V.f(x0), w) + 5, Vif(xov). O

- Now, we formulate the main result of [15].
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Theorem [Studniarskil. Let xo € Q be a local optimal solution for (P) and
suppose that the following regularity condition holds:

(1.1) for each set {x} | i € I(xo)} with x} € 3°g; (x0) and for each y; > 0 with
i € I(xo), theequality Y y;x} = 0impliesthaty; = 0foralli € I(xp).

iel(xo)

Then D? f(xp: v, w) > 0 for' all v, w € X satisfying the following condi-
tions:

(1.2) D_ f(xo; v) <0,

and, for each i € I1(x,), we have either

(1.3) D,gi(xp;v) <0
or
(1.4) Dygi(;v) =0 and  Dlgi(xo; v, w) <O,

Remark 1.3. Using the Remark 1.1, we observe that for v = 0 the theorem
affirms that for each w € X such that D, g; (xo; w) < O for every i € I(xp) we
have D_ f (xo; w) > 0. This result is quite similar to a result in [10]. O

First of all we give an equivalent form of the regularity condition (1.1) that
we shall use in our proof.

Theorem 1.1. Let g; be lipschitzian at xo; the following assertions are equiva-
lent: '

(a) foreachset {x} | i € I} withx} € 3°g;(xo) and for each y; > 0, the equality
> yix! = 0implies that y; = 0 foralli € I;
iel

(b) for each y; > 0, the inequality

Zy,-g,-"(xo; v) =0, VveX

iel

implies that y; = 0 forallieI;
(c) there exists v € X such that & (xo;v) <O foreveryiel.
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Proof. (b) = (a) Choosing y; as in the hypothesis, we have that
D o yigloiv) = Dyl v)=(0,0)=0, VveX
iel iel
Therefore, by (b), we have y; = 0 for all i € I and the thesis is proved.
(a) = (b) The functions g;(xo; -) are sublinear and g7 (xo; 0) = 0; therefore,
choosing y; as in the hypothesis, we have that the real-valued convex function

> ¥ (x0; -) has minimum at xg and then
iel
Oe a( > yigs (xo; ')) (0) = i0g7 (x0; )(0) = Y _ %18°g: (o).
~iel iel iel
Hence there exists a set {x}' | i € I} with x € 3°g;(xo) such that }_ y;x} = 0;
iel
by (a) the thesis follows.

(¢) = (b) Itis trivial.
(b) = (¢) Assume, ab absurdo, that (c¢) does not hold and let

C={®=01...,0,) €eR" | JveX suchthat g’(xo; v) <6;, Viel}

be a nonempty convex subset in R”. By assumption we have that C is disjointed
- from the nonpositive orthant

Rm={8=(51,...,§m)€Rm |$,-50, Yiel}.

Therefore there exist a nonzero vector y = (y1,..., ¥m) € R™ and a constant
o € R such that

Y wEi<a<y w6, VOeC, VEeR”.

iel iel ’
From the first inequality we obtain that « > 0 and all y; > 0; therefore
Z ¥i6; = 0. For every € > 0 and for every v € X, we get

iel
0= (g (xo;v) +e).
iel
Since € is arbitrary we get .
Y yigsto;v) 20, VveX
iel

and y; are not all zero; this is absurdo. O
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2. Second-order variational sets.

The study of the local properties of sets and functions is often confided to
the analysis of their approximations: the most classic example is the Taylor’s
formula for Fréchet differentiable functions. As regards the sets, the immediate
generalization of the linearization through the tangent hyperplane, is given by the
use of local cone approximations [8]. In the case that the set is the epigraphic
of a function, the local cone approximation is thought as the epigraphic of a
generalized directional derivative. Following this scheme, in this section we
introduce two kinds of second—order approximating sets that extend the concept
of two particular local cone approximations and we investigate some properties.

Definition 2.1. Given aset Q C X, a point xy € cl Q and a direction v € X, we
define the following sets:

(a) the cone of the feasible directions of Q at Xo

D,(Q; x0) = {y€X |31 > Osuch that V7 €10, A[, xo +ty € Q};
(b) the cone of the weak feasible directions of Q at xg

D_(Q;x0) = {yeX | Vx>0, 3r€]0, A[ such thatxo + ty € Q};

(¢) the second—order variational set of the feasible directions of Q at xg in the
direction v

D3 (Q;x0,v) = {y€X | 3A > Osuch that V¢ €10, A[, xo +tv + 1>y € Q}
= {y € X | V{t,} | O definitively xq + t,v +t3y€ Q};

(d) the second—order variational set of the weak feasible directions of Q at xg
in the direction v

D% (Q;x0,v) = {yeX | VA >0, 3re0, A such that xo + tv + 1%y € 0}
= {yeX|[3{t} { 0 such that xo + t,v + 17y € 0}.

Remark 2.1. It is immediate to observe that
Di(Q;x0,0) = Ds(Q;x0). O

Other easy properties of the above defined variational sets are described in
the following theorem.
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Theorem 2.1. The following properties hold:
(a) Foreach A C X and for each xy € X we have

2.1) D% (A; x,v) = (D2(A% x0,v))°,  VveX.

(b) D2 are isotone, thatisif A € B € X and xo € X then

(2.2) Di(A;xo,v) € DA(B;xp,v), VveX.

(¢) Foreach A, B C X and for each xy € X we have

(2.3)  Di(ANB;xp,v) = D3(A;x0,v) N D2(B; x0,v),  VveX.
(d) Foreach A € X and for each xg € int A we have

(2.4) | Di(A;x,v) =X, VveX

Proof. (a) Itis an immediate consequence of this chain of equivalences:

we (D2(A% x0,v))° & w ¢ D2(AS; xg, v)
& 3{t,} | 0 suchthat xq + t,v + tw ¢ A°
& 3{t,} | 0 suchthat xo +t,v +t3w€A.

(b) Itis trivial.
(c) Letw € D2 (A; xo, v)ND2(B; xo, v); therefore there exist A4, A > 0 such
that for every t4 €0, A4[ and t3 €]0, Ag[ we have

x0+tAv+tﬁweA and xo+t3v+t,23weB.
Choosing A = min{A4, Ag} we get
D2 (A; x9, v) N D2(B; x9, v) € D2(A N B; xp, v).

The other inclusion follows immediately from the isotonicity.
(d) Itis trivial. O

Itis well-known the following connection between the Dini derivatives and
the previous local cone approximations

Dy f (xo; v) = inf {B € R | (v, B) € D (epif; (x0, f (x0)))} .

A similar relation exists between the second—order directional Dini derivatives
and the above mentioned variational sets.
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Theorem 2.2, Let f X > R be aﬁmction and xg, v € X such that
Dy f(x; v) €R; then

D2 f(xo; v, w) =
= inf {8 €R | (w, B) € D (epif; (xo, £ (%0)), (v, Dx.f (x0; v)))} -

where inf (J = +o00.

Proof. We state the proof for Dfr only because the other one can be proved
similarly. First of all we observe that

(w, B) € D (epif; (vo, £ (), (v, D £ (05 1))

if and only if for every {¢,} | 0 we have

@+ 40+ fyw) = fx0) = tn Dy fEoiv) _
12 -

Let D2 f(xo; v, w) = £; we have three cases:
£ = +00. Then there exists {#,} | 0 such that, for every 8 € R, we have

S (xo+ v + 12w) — f(x0) — t, Dy f(x0;v) _
‘. t2 > ﬁ’

hence (w, B) ¢ D2 (epif; (x0, £ (x0)), (v, Dy f (x0; v))) for every B and there-
fore the thesis.
{ = —o0. Then for every {t,} | 0 and for every 8 € R, we have

J (X0 + tav + 12w) — £ (x0) — 1, D4 f (x0; v)
t

<8

hence (w, B) € Di (epif; (xo, f(xo)), (v, D f(xo; v))) for all B and therefore
the thesis.
£ eR. Then for each € > 0 we have, for every {t,} | 0,

f o+ tav + t7w) — f (o) — ta Dy f (40 V) _

£+e€
te
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and there exists {¢,} | O such that

f(xo + v + £2w) — f(x0) — t, D4 f (x0; v)

> f — €.
12 -

From the first inequality we have

(w, £+€) & D2 (epif; (3o, £ (), (v, D f (i ),
from the second inequality we have

(w, £ =€) ¢ D (epif; (x0, £(x0)), (v, Dy £ (303 ) );

therefore the thesis is proved. O
The strict lower level set of the function f
Li(xo) = {xeX| f(x) < f(x0)},
plays a key role in optimization; in fact we have that xy € Q is a local optimal
solution for (P) if and only if there exists p > 0 such that
(2.5) Ly (x0) N QN B(xg, p) = 0.

The verification of this condition is quite arduous; therefore, in order to get more
tractable optimality conditions, the sets L¢(xp) and Q are usually approximated
by other sets with a simpler structure, for instance the local cone approximations.
In the sequel we shall show that the previous second—order variational sets are

an effective pair of approximating sets.

Theorem 2.3. Let xo € Q be a local optimal solution for (P); then:
(2.6) Di(Ly(x0); x0, v) N DZ(Q;x0,v) =B,  VveX.

Proof. 1t is an immediate application of the properties (2.1) and (2.2); in fact,
using the characterization of optimality (2.5), we have

Ly (x0) N B(xo, p) € Q° = D% (Ls(x0); x0,v) € DI (QC x0,v), YveX
= D} (Ly(x0); x0,v) € (D2(Q; x0,v))", YveX
= D (L;(x0); X0, v) N D2(Q; x0, v) = B, Yv e X.
Similar proof for the other disjunction. O

The crucial point of this paper is to be able to identify the directions belong-
ing to the second—order variational sets D3 (L (xo); xo, v) by means of the first
and second—order Dini derivatives.
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Theorem 2.4. Let f be a lipschitzian function with constant K ;
(@) if D1 f(xp; v) <O then

2.7) D& (Ly (x0); %0, v) = X;
(b) if D1 f(xo;v) =0 and Difﬁ(ixo; v, w) < 0 then
(2.8) w €int D (L (x0); X0, v);

(¢) ifthere exists y € X such that f°(xp; y) = —L < O then for every v, w € X
such that Dy f (xg; v) = 0 and Dif(xo; v, w) = 0 we have

(2.9) w € ¢l D} (Ls(x0); x0, v).

Proof. 'We state the proofs for Di only because the other cases can be proved
similarly.
(a) By assumption there exists L > 0 such that

—L = Dy f(xo; v) = limsup fxo + tvt) — f(x()).
tl0

Therefore there exists A9 > 0 such that for each ¢ € ]0, Ag]
L
f(xo+tv) = f(xo) < —5t

Fix w e{X; then for each ¢ € ]0, Ay[ we have

f(xo+1tv+1*w) — f(xg) =
= f(xo+tv+12w) — f(xo +1v) + f(xo + tv) — f(xg) <

» L L
<K|(xo+tv+1t w)—(xo+tv)|l—5t=t tKHwII——Z— .

Hence, choosing A = min { X0, m}, we get the thesis.

(b) By assumption there exists L > 0 such that

v+ FPw) — —tD_ f(xp; v
_L>D_2*_f(x0; U,w)=limsup f(x0+ v+ UJ) t{(xo) +f( 0 )
t}0

f(xo +tv+12w) — f(xp)
p 2 :

= lim su
tl0
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Then, for each {¢,} 0, we have

L L
L+—-=_=
+2

f o+ v+ tjw) — f(x0)
- 2

7

and therefore w € D3 (L ¢ (xo); X0, v). Fix w’ € X; then

f (o + tv +12w') — fxg) =

199

= f(xo-}-t,,v—}-tfw') - f(xo+t,,v+t3w) +f(xo+t,,v+t3w) — f(xp) <

, L
S KlGo+tv+5w) = Go+ v+ )l - 17 =

L

Choosing w’ such that |jw’ — w]| < gL-E we get the thesis.

(¢) Fix t > 0;therefore we have

Dif(xo; v, w+TYy) =
f{xo+1tv 412w+ 1y)) — f(x0) — 1Dy f (%05 ) -

= limsu
t10 P tz
: £2 12 _ 2
Slimsupf(xo+ v+tcw + rg) f(xo+tv+tw)+
t0 4
tv + rfw) — —tD :
+ limsup Jfxo+1v+17w) {(xo) +f (x0; V) <
110 ' 4
. xX+sy)— f(x
< tlimsup A };) /() + D3 f (x0; v, w) = Tf°(x0; ¥),
X—>Xg
540

where we have placed in the last inequality x = x¢ + v + 2w and s = t2.

Then, for each v > 0 we get

D3 f(xo; v, w 4+ Ty) < Tf°(x0; y) = —L.

Hence, by (2.8), we have w + Ty € int Di (Lf (x0); v, w) for every T > 0 and

therefore, for v | 0, we achieve the thesis. g
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3. Second-order necessary optimality conditions.

This section is devoted to give an alternative proof of the Studniarski’s
result by means of the above mentioned variational sets. Moreover we extend
this result also in absence of a regularity condition.

Proof of Studniarski’s theorem. Placing

=)o ad @= () o,

iel(xo) ' iel\I(xp)

we note that, thanks to the continuity of g;, xo € int Q”. Being xo € Q a local
optimal solution for (P), using (2.6), we get

D?(Ly(xo); x0,v) N D3(Q;x0,v) =8,  VYveX.
Moreover, by (2.3) and by (2.4), we obtain

D2 (L (x0); xo, v) N D3(Q'; xp, v) = 0, VveX.
We observe thatif A, BC Xand AN B = @ then int A Ncl B = @J; therefore
3.1 int D2 (L (x0); x0, v) N cl D2(Q'; xp, v) = @, VveX.

Suppose, ab absurdo, that there exist v, w € X satisfying (1.2) and either (1.3)
or (1.4) and such that Dfr f(xo; v, w) < 0; therefore by (1.2) and either (2.7) or
(2.8) we get

w € int D? (Lf(xo); X0, v).

Defining g(x) = _rrlla(lx)g,-(x) we have Q' = {x eX | glx) < O}; by
1e€i(xg) -

Theorem 1.1, using the assumption (c), and by a well-known result in [7], we
have that there exists y € X such that g°(xp; y) < 0. Moreover it is immediate to
observe that either D g(xp; v) < 0 or D, g(xp; v) = 0 and Dig(xo; v,w) <0.
Therefore, using again the Theorem 2.4, we have

w ecl Di(Q’;xo, v)

that contradicts (3.1). ]

Remark 3.1. We observe that, as a matter of fact, the assumption (1.2) is break-
able in two cases:
(a) if D_ f(xo; v) = 0 we get our statement, that is, D2 f (xo; v, w) > 0;
(b) if D_ f(xg; v) < O then D2 (L £(x0); xo, v) = X and therefore there is no
w € X satisfying either the hypothesis (1.3) or (1.4). |
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Taking advantage of this method of proof, we are able to prove a second—
order necessary optimality condition without using regularity conditions but
weakening the test directions. In the sequel, for every xy € Q, we consider the
following sets:

D(xo) = {veX | D_f(xo;v) <0, Dygi(xo;v) <0, Viel(x)}
and, for every v € D(xp),
A(xo, v) = {i € I(xo) | D4gi(x0; v) = 0},

Theorem 3.1. Let xo € Q be a local optimal solution for (P). For every v €
D(xp) there is no w € X such that

(1) if D- f(xp; v) <0, solves
(3.2) ‘Digi (%05 v, w) <0, i € A(xo, v);

(i) if D_ f(xp; v) =0, solves
D? ‘v, w) <0
(3.3) 2_f(JCo w) |
Digi(xo; v, w) <0,  i€A(xov).

Proof. Fix v & D(xp); forevery i € I (xo) \ A(xo, v) we have D2 (Q;; xo, v) =
X and hence, similarly at the previous proof, we get

D2 (Ly(xo); %0, v) N ] D3(Qi; x0,v) = 0.

ieA(xo,v)

(i) Let D_ f(xp; v) < 0 and, ab absurdo, suppose there exists w € X sat-
isfying the system (3.2); then we have D? (Lf(xo);xo, v) = Xand w €
int Di(Qi; Xo, v) for each i € A(xp, v) against our assumption.

(i) Let D_ f(xp; v) = 0 and, ab absurd&i suppose there exists w € X sat-
isfying the system (3.3); then we have w € int D% (Ly(xo); xp, v) and w €
int D2 (Q;; xo, v) against our assumption. O

If the functions f and g; are twice Fréchet differentiable at x, the Theo-
rem 3.1 collapses in a result obtained in [2].
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Corollary 3.1. Ler xy € Q be a local optimal solution for (P). For every v €
D(xg) there is no w € X such that

(1) if (Vf(xg), v) <O, solves
(Vgi(x0), w) + (v, V2gi(xo)v) <0, i€ A(xo, v);
(1) if(V f(xp), v) = 0, solves

{ (Vf(x0), w) + (v, V2 f (xo)v) < 0
(Vgi(x0), w) + (v, V2gi (xo)v) <0, i € A(xo, v).

4. Conclusion.

It is possible to extend this result considering also non-lipschitzian func-
tions even if we have to change directional derivatives and second—order varia-
tional sets [4]; other results have been obtained using metric regularity properties
[18]. Besides, following this scheme, it is possible to build second-order neces-
sary optimality condition in presence of abstract constraints [6]. Another impor-
tant application of the second-order directional derivatives seems to be in the
research of sufficient second—order optimality conditions that extend the well-
known Penissi’s result [13].
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