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A NEW APPROACH TO THE EXISTENCE
OF ZEROS FOR NONLINEAR OPERATORS

PAOLO CUBIOTTI - BEATRICE DI BELLA

In this paper we present a necessary and sufficient condition for the ex-
istence of zeros for a nonlinear operator from on a compact topological space
X into the topological dual E* of a real Banach space E. Some applications

are derived.

1. Preliminary remarks.

The aim of this communication is just to expose the present state of our
current research. Thus, the results presented in the sequel must be intended as the
“state of art” of a research that we are currently developing. More specifically,
we shall present a result which provides a necessary and sufficient condition for
the existence of zeros for an operator A defined in a compact topological space,
which takes its values in the topological dual E* of a real Banach space E. Then
we derive sufficient conditions for the existence of zeros. We point out that our
approach is absolutely new. Thus, we hope that our result will serve as a spur in
order to investigate consequences and applications.

2. Results.

Our main result is the following.
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Theorem 1. Let X be a topological space, E a real Banach space, withdim(E) >
Lr>0Y = {yeE:|y|l =r} A:X — E* a weakly-star continuous

operator.
Then, one has

sup ©inf (A(u(p())), y) < 0.
(#,9)€C°([0,1],X) xCO(¥,[0,1]) Y&¥

When X is compact, A~ (Og+) is nonempty if (and only if ) one has

sup inf (A(u(p(y))),y) =0.
(u,9)€CO([0,1], X)x CO(¥,[0,1]) YEY

Proof. Arguing by contradiction, assume that

sup . inf (A(u(e(»))), y) > 0.
(.9)€C([0,11,X)x CO(¥,[0,1]) V€Y

Hence, there are (u, ) € C%([0, 1], X) x C°(Y, [0, 1]) and 5 > O such that
(A, y) = n
for all y €Y. Now, put
S={(y,0eY x [0, 11: (A(®)), y) < n}.

Observe what follows:
(a) the projection of S on [0, 1] is equal to [0, 1];
(b) foreach y € Y, the set {r € [0, 1]: (A(u(2)), y) < n} is open in [0, 1] since
the function ¢t — (A(u(t)), y) is continuous;
(c) foreach t € [0, 1], the set {y € Y: (A(u(z)), y) < n} is connected.

Then, by Theorem 2.5-(8,) of [1], the graph of ¢ must intersect S, that is
to say

(Au(p(¥))), yo) <1

for some yy €Y, a contradiction. So, the first part of our thesis is proved. Now,

assume that X is compact and that

sup inf (A(u(p(y))),y) =0.
(u,0)€CO([0,1], X) x CO(Y,[0,1]) YEY

Again arguing by contradiction, let A(x) # Og- forall x € X. Since the function
T — ||T]|g« is weakly-star lower semicontinuous, the function x — ||A(x)|| g+
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is lower semicontinuous in X. By assumption, this latter function is everywhere
positive in X which is compact. So, if 8 = infyex ||[A(x)] g+, we have 8 > 0.
- Fix ¢ € ]0, B[. Furthermore, choose (1, ¢) € C°([0, 1], X) x C°(Y, [0, 1]) in

such a way that
(Awle()), y) = —re

for all y € Y. Now, we get a contradiction proceeding exactly as in the first part
of the proof, the role of n being assumed by —re. U

Now we derive some consequences of Theorem 1. The next result is due to
B. Ricceri (see [2]).

Theorem 2. Let X be a topological space, and let f: X x [0,1] - R, peR.
Assume that:

(1) the function f is upper semicontinuous on X x [0, 1];
(ii) the function f (-, t) is continuous in X for each t € [0, 1];
(iii) for each x € X, one has {t € [0, 1]: f(x,t) > p} # @ and

inf{t €[0, 11: f(x,t) > —p} = inf{r €[0, 11: f(x,?) > p}.

Then, the function x — inf{r € [0, 1]: f(x,t) > p} is continuous.
By Theorems 1 and 2 we obtain the following result.

Theorem 3. Let E be a real Banach space, with dim(E) > 1, Y = {y e
E:|lyll = 1}, A:[0, 1] = E* a weakly-star continuous operator. Assume that:

(i) foreach y €Y one has {t € [0, 1]: (A(z), y) > 0} # 0;
(i) there exists a sequence {€,} of positive real numbers such that {€,} — 0
and for each n e N and each y € Y one has

inf{r € [0, 1]: (A(2), y) = —&,} = inf{r €[0, 1]: (A(2), y) > —&,}.

Then there exists t* € [0, 1] such that A(t*) = Ogs.

Proof. Foreachfixedn €N, let &,:Y — 2[%11 be the multifunction defined by
setting
P, () = {rel0, 11: (A1), y) = —ea}.

By an easy application of Theorem 2 we have that there exists a continuous
@n: Y — [0, 1] such that @,(y) € ®,(y) forall y € Y, hence (A(p,()), y) >
—¢ep forall y € Y. Therefore, we get

infer (A((pn (y))’ y) = —&p
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for each n € N, hence we have

sup  inf (A(p(y)),y) <0.
peCo(Y,[0,1]) YEY

By Theorem 1 our claim follows. : [J

Theorem 4. Let E be a real Banach space, with dim(E) > 1, Y = {y €
E:|lyll =1}, A:[0, 1] = E* a weakly-star continuous operator which is twice
differentiable in 10, 1[, {0, } a sequence of positive real numbers, with {c,} — 0.

Let
I'={@¥) €l0, 1[xY: (A'(¢), y) = 0 and (A" (1), y) < O}.

Assume that:
(i) foreach y €Y one has {t €0, 1]: (A(z), y) > 0} # 0;
) {(A@), »): ¢, y)eT}IN (U, {~0.}) = 0;
(iii) for each y € Y and each 1y € {0, 1} at least one of the following assertions
holds:
(a) 1 is not a local maximum for the function t — (A(t), y);
(b) (A(%0), y) ¢ U, {~on}.
Then there exists t* € [0, 1] such that A(t*) = Op-.

Proof. Lety € Y and n € N be fixed. If ¢ € ]0, 1] is a local maximum for
the function ¢t — (A(¢), y), then (¢, y) € T, hence, by (ii), (A(?), y) # —0op.
Therefore, taking into account (iii), there is not a point £ € [0, 1] such that 7 is a
local maximum for ¢t — (A(z), y) and (A(f), y) = —o,. Now, let

t1 =inf{t €[0, 1]: (A(r), y) > —0,.},
1, =inf{r €[0, 1]: (A(r), y) > —0,}.

We note that by (i) we have
B#{rel0,11: (A@®), y) > —0,} S {r [0, 1]1: (A(2), ¥) = —0}.

Of course we have #; < t,. Assumethat?; < 1. Of course, we have (A(t), y) >
—0n. If (A(t1), y) > —oy, thent; € {t €[0, 11: (A(t), y) > —o0,}, hence #; > 1o,
against our assumption #; < f,. Therefore, (A(t;), y) = —o,. Of course, for
each t € [t;, r,[ we have (A(¢),y) < —o,. Thus, if #; > 0, since we have
(A1), y) < —o, forallt €[0, #;[, the point #; is a local maximum of the function
t — (A(1), y) such that (A(t;), y) = —o,, and this is a contradiction by the
first part of the proof. If #; = 0, since (A(t), y) < —o, for each ¢ € [#1, to[
and A((t1),y) = —oy, again t; = 0 is a local maximum of the function
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t — (A(¢), y) such that (A(t)), y) = —o,, another contradiction. Therefore
t; = tp. By Theorem 3 our claim follows. O

We remark that assumptions (ii) and (iii) of Theorem 4 are satisfied, for
instance, if for each o > 0 one has

1-0,00 & {{A@®), y): (¢, y) €T}
and for each y €Y and 1y € {0, 1} at least one of the following conditions hold:

(a) the point #; is not a local maximum of ¢t — (A(¢), y);

(b) (A(%), y) = 0.
It is not difficult to construct examples of operators A satisfying the as-

sumptions of Theorem 4. Another application of Theorem 1 is the following.

Theorem 5. Let A:[0, 1] — R"(n > 2) be a continuous operator, Y = {y €
R™: {lyll = 1}). Assume that for each ¢ > 0 there exists L, > 0 such that, for

each finite set {y1, ..., yx} C Y, there exists a set {t1, ..., t} C [0, 1] such that
" { (A(t), yi) = —¢ foreachi =1,...,k
It = 4| < Lllyi —yill  foralli,j=1,... k.

Then there exists t* € [0, 1] such that A(t*) = Opn.

Proof. Fix ¢ > 0. Let ¥ be the space of all functions ¢: Y — [0, 1] that are
Lipschitzian with constant L, endowed with the uniform convergence topology.
By the Ascoli-Arzela theorem the space ¥ is compact. For each y € Y, let
Fy = {p € Z:(A(p(y)), y) = —e}. The continuity of A implies that each
set F) is closed. Now, let D = {yi,..., Yt} be any finite subset of Y, and
let 71, ..., 5% € [0, 1] satisfying (1). Let g: D — [0, 1] be defined by setting
g(yi) =t,foreachie{l,...,k}. By (1) we have

lg(i) — g < Lelly — y;|| forall i,je{l,..., k},

hence g is Lipschitzian on D with constant L.. By a classical extension result,
there exists a function ¥: Y — [0, 1] which is Lipschitzian on Y with the same
constant L, such that ¢|p = g. Therefore, ¢ € ﬂf.;l F), and the family {F)},cy
has the finite intersection property. Since X is compact, there exists ¢ € Nycy Fy.
That is, € C°(Y, [0, 1]) and

inf(A(@(y)), y) = —e.
yeY

By Theorem 1 our claim follows. O
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