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DUAL VARIATIONAL INEQUALITY AND APPLICATIONS
TO ASYMMETRIC TRAFFIC EQUILIBRIUM PROBLEM
WITH CAPACITY CONSTRAINTS

PATRIZIA DANIELE

This paper deals with a general duality theory developed by means of
separation techniques and shows that particular kinds of Dual Variational In-
equalities can be obtained as special cases. An important emphasis is put on
the study of an asymmetric equilibrium problem with side constraints.

1. Introduction.

In this paper, we are concerned with the duality theory for Variational In-
equalities with capacity constraints.

We consider the general duality theory presented by M. Castellani - G. Ma-
stroeni in [1] (see also [3] and [6]) and we apply this general theory to the partic-
ular case of the Variational Inequality that expresses the traffic equilibrium prob-
lem with capacity constraints for which the convex set, that defines the feasible
flows, has a specific formulation.

This particular formulation allows us to get an explicit computation of the sup-
port function, which plays an important role in the Duality Theory.

Before considering the dual approach derived from the separation theory,
we first consider a dual formulation for the Variational Inequalities with capacity

Key Words: Variational Inequality, Quasi-Variational Inequality, Separation Theory,
Duality.
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constraints obtained by means of a particular approach proposed by M. Fukushi-
ma - T. Itoh in [2] and we show that actually this formulation is a particular case

of the general theory.
However, in both the cases we need that the cost functions have an inverse
and, then, the aim of our future works will be to remove this restrictive assump-

tion.

2. The M. Fukushima - T. Itoh dual approach.

It is well known that the feasible set of traffic equilibrium problem in terms
of path flows can be expressed by means of the convex set

2.1) K={FeR$: ¥ Fr==,0j_j=1,...,l}.
R,.E.@j

In K we consider the Variational Inequality
(2.2) HeK:CH)F-H)=>=0 VFeK
where

C(F) = (Ci(F),...,Cu(F))

represents the cost function on the paths.
It W; j = 1,..., € are O/D pairs, by %Z; we denote the set of paths R, which

connect the O/D W;.
By the equilibrium definition, if H is an equilibrium solution, setting

(2.3) C/(H) = Rr,réigz,-{c’(H)}

then it results

. Rré.%j,jzl,...,l
<C.,(H) if H =0

(2.4) C/(H) {

that is
=0 if C/

(2.5) H,{ 0 HCI<GUHD) e i=1,..L
>0 if C/=C.(H)

Setting

C(K)=({T eR":T = C(F), FeK}

let us recall the following result due to M. Fukushima - T. Itoh, whose proof we
report for the reader’s convenience. We consider an equivalent formulation in
terms of path-costs function more useful for our purpose.
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Theorem 2.1. Suppose that the cost function ' : K — C(K) has an in-
verse (1); set V€ € C(K)

2.6) K@) ={reC(®):T, 2 C/ = min (%),

Rey, j=1,...1}.

Then, if H € K is a solution to (2.2), € = C(H) is a solution to the Variational
Inequality

' l
2.2y D22 CHOT, ~%)20 VT ek*(®)

Jj=1 R,E.%j

and viceversa : if € € K*(%) is az solution to (2.2), then H = C~Y(%¥) is a
solution to (2.2).

Proof. Let us show that if H € K is a solution to (2.2), then € = C(H) is a
solution to (2.2)’.

Let us remark that from (2.4), it results:
H (C/(F)—C.(H) >0 R €%, j=1,...,1.
In fact, if C,(H) = C/, for every I' = C(F) belonging to (2.6), it follows

I, =C/(F)=C’

and moreover, from (2.5)
Hr Z Oy

so that the product is non-negative.
On the contrary, if C,(H) > C/, from (2.5) it follows

H, =0..

(}) Notice, i.e., that if C satisfies the hypothesis of strong monotonicity
(C(F))-C(F2), i — R)za|Fi — R, a >0,

then C has aninverse. In the sequel, we will consider the following notation: ¥ = C(H).



214 PATRIZIA DANIELE

Summing over all paths, we obtain
!
(2.7) > > HA(C(F)~C.(H)>=0 VYFeK.
j=1 R,
In virtue of the assumption that the cost function I' = C(F) has an inverse
F = C~Y(I") with F : C(K) — K, (2.7) can be written as
!
DY CTHEOT, —%) 20 VL eK*(¥).
j=1 Re®;
Viceversa. Let € € K*(%) be a solution to (2.2)’; let us show that H =
C~1(%¥) is a solution to (2.2).
First, we notice that H € K because € € C(K).
If we write (2.2)’ as
!

> Y [-g@]m -4 <0

j=l R,E-@j
and take into account that from (2.6)
I'>C/ ReZ, j=1,...,1

by a theorem of the alternative, there exist A, > 0, R, € Zj,j=1,...,1such
that
=C-! if = Cj
(2.8) {A’ @ itg=0C
A =0 if € > C/.
Since we know that H, = C 1), thatis €, = C,(H,), (2.8) coincides with
(2.5).
Remark 2.1. C/ are the Lagrangean variables associated to the equations
Y F=p j=1,..,L
R,E‘%’j
They correspond to the Lagrangean multipliers found by [5] in the standard case.

Remark 2.2. Problem (2.2)’ could be more convenient from a computational
point of view in virtue of the simpler formulation of the constraints set.

{

Remark 2.3. Notice that, even if we start from a model with fixed demand, that
is the convex set K doesn’t depend on the solution H by p = p(H), the dual
problem is always expressed by a Quasi-Variational Inequality, since the convex
K* depends on the solution %.
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3. The dual model with capacity constraints on the paths.

Let us suppose, now, that on the paths there are capacity constraints i.e.

G.1) K;—_{FeR';'_:F,scb,r_—_l,...,m, 3 Fo=p, j=1,...,1}.
R,G.@j

In this case, if H is an equilibrium solution according with the generalized
Wardrop principle (see [4]), setting

(3.2) C/(H) = max C, (H)
where
3.3) B ={r:R, €%, H, >0},
(3.4) LI(H)=C/(H) - C,(H) reB;,
I HY — ¢ i .
65 CH) = { C,(H)+Li(H)y=CI(H) ifreB,
C,-(H) if I‘¢ Bj, R, E.%j

by the equilibrium definition, it follows

H, {:0 if C/(H) < C,(H)

(3.6) . ~
>0 if C/(H)=C,(H).

For a generic F € K, let us set

C’/(F) = max C,(F)
I‘EBj

and . _
Li(F) = C/(F) - C.(F) reB,
& (F) = C,(F)+ LI(F)=C/(F) if reBj={r:R €% ,F, > 0}
AN NoR¢2) if r ¢ Bj, R, €%,
Define

C(K)={TeR":T = C(F), FeK}

and assume that the function C has an inverse defined from c (K) to K; we have
the following
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Theorem 3.1. Let us set V€ € C(K)

(3.7) K¥®)={leC(k):T, 2 C/ = min (€}, R, €%, j=1,.. L1}
r€ J

Then, if H € K is a solution to (2.2), € = C (H) is a solution to the Variational
Inequality

Y GHAOT —6) =0 VI eK* (%)

l
(3.8)
j=1 R.eZ;

and viceversa.
Proof. Let us show that if H € K is a solution to (2.2), then ¥ = c (H)isa

solution to (3.8).
Remark that from (3.5) and (3.6), we derive

H (C,(F)=C,(H))>0 R eZ, j=1,...,1
In fact, if 5,([1) = C/(H),forevery I' = a(F) € K*(¥), it follows
I, = C.(F) = C/(H)
and moreover from (3.6), it follows
H, >0,

so that the product is non-negative.
On the contrary, if C,(H)-> C/(H), from (3.6) it follows

H. =0.
Summing over all paths, we obtain:

> H (C(F)-C,(H))>0 VYFeK.

!
(3.9)
j=1 Re®

By the assumption that the cost functic;n I = C (F) defined from K to c (K)
has an inverse F = C~Y(I") defined from C(K) to K, (3.9) can be written as

oy Cl AT, —%)>0 VYL eKk*®).

J=1 R eZ;
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Viceversa. Let € € K*(%) be a solution to (3.8) and let us show that
H = C~Y(%¥) is a solution to (2.2). N
First, we remark that H € K because € € C(K).
If we write (3.8) as

I
> Y [-&@|r -6 <o
Jj=1 R,E-@j
and take into account that from (3.7)

I>C' ReZ, j=1,...,1

by a theorem of the alternative, there exist A, > 0, R, €Zj,j=1,...,1such
that
= c -1 i = J
(3.10) {A’ €@ g =0
Ar=0 if € > CJ.

Since we known that H, = C~(%), that is &, = C,(H), (3.10) coincides with
(3.6).

4. Dual Variational Inequality in terms of separation theory.

Consider the cost-path function C(F):

C:K — RY
where
K={Ferr: Y F=p =11}
R,e.%’,-
Assume that
C:.:K— C(K)

has an inverse
I'=C(F) & F=C(I).

Since the cost function C(F) is not defined in the set —K as required in the du-
ality theory obtained by means of separation theory, let us consider the extension
of C(F) to —K obtained setting

C(—-F)=-C(F) VFeK
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and assuming the reasonable condition
C0) =0.
The extension
C:KU{-K}—> C(K)U{-C(K)}
has still an inverse

C™H() : C(K)U{=C(K)} - K U{—K}

and preserves the eventual continuity of C.

Let
0 if FekK

+oo if F¢K

be the indicator function of the convex set K, then the Dual Variational Inequal-
ity associated to the Variational Inequality

Ig(F) = {

4.1) HeK C(H)F-H)>0 VFek

by means of the separation theory is:

l
(4.2) € eC(K) 2 (=T ER)T -4 =
j=1 R e%;
=2 2 CTlOT %) 2 (%) - [;()
J=1 R, eZ;
where

Ixg) = sup (T, F) — Ig(F)) = szpﬂ“, F).

I (T') is also known as the support function of K. We have to compute 73 (")
withI" > 0, T" e C(K). We have a P. L. problem

sup(l’, F)

F,>0

Z F,-:,Ojj:l,,l
R,E.%j

(4.3)

where in the coefficient matrix of the system

Y F=p j=1,..,1
R.eZ;
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there are only canonical vectors. '
In virtue of this remark, it is easy to show that, setting

Iy =maxT', j=1,...,1],

,E.@j
it results

!
sup(l", F) = Z Ty, 0
j=1

and, then, the problem (2.2) becomes

l

1
CeCk) ) Y GOT -2 (Gyor, ) YT eCE)
j=1

j=1 R.eZ;

where
Gy =max % j=1,...,1L
R.€X;

]

Then, M. Fukushima - T. Itoh dual can be obtained by choosing the vectors

I' e C(K) such that
r, <%, j=1,...,L

vj_

Let us consider, now, the model with capacity constraints on the paths.

K={FeR?: Y F =y, F, <& R e, i=1...1}.
R,-E@j

Let us suppose that

Y dzp j=1,...,1
Rreﬂ’j

Then, assuming that the function C : K — C(K) fulfils the conditions above
about the extension, we get the Dual Variational Inequality

42 FeCK):) > CTUAOT, —€) = I4(®) — I5(D).

1
Jj=1 R,E.%’j

Also in this case we are able to compute I (I'). We have to solve the problem

[ sup(T", F)
F, >0 R, €%, j=1,...,1
) Z F,=,0j j=1,...,l
R €ZX;
| F, < &, r=1,...,m.
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Let us dispose I', : R, € %Z; in decreasing order:
FI’] z rrz Z e > Frej

and define r,; the index such that it results

r, + By 4+ Br, | < P
q)rl, +d)r2 + tee + (Dr"j—l + 5'rvj - p_’, gr,,j 2 O'

Then, we have:

I
sup(T, F) Z Z F,fID,i + T &,

Jj=1 rigry,_,

and, so, (4.2)’ becomes

!
CeCK): ) D> CT@EOT-%) =

j=1 R eZ;
!
Z Z[ Z G s — Z F"'d)"'] +%‘#ng#1' o F"’jg"’i'
j=l1 51<5v r,<rv! 1

It may be convenient to look for the dual problem by using

C.(F) = {Cr(F) +L{(F)=CI(F) ifreBj={r:R €%, F >0)
' Cr(F) otherwise
where
C/(F) = maxC (F)
and

L](F)=C/(F) - C.(F) reB;,

(see [4] for more details). {,
In this case, the Variational Inequality (4.1) can be expressed as

HeK: CH)F—-H)>0 VFeK.

If we assume that - N
C:K — C(K)
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fulfils the same conditions of C about the extension, being the expression of the
function I (I') the same,we obtain:

(42" CeC(K): ) ) CHOT, -6 2

1
Jj=1 R eZ;
l

= Z[ @5 D — Z F"'CD"'] +%,1,5ij —F"’jg"'f'
1

j=l sifsvj_ riSrvj_l

To obtain again M. Fukushima - T. Itoh dual, we need to restrict to the vectors
I eC(K)

such that

Do Tn®, 4T & < D G0 + 5,8, O

FiSry; Si SHj-i

j—1
Remark 4.1. The Lagrangean function associated to the Variational Inequality,
in our case, is

(C(F), F) + Ix(F) + Iy (C(F)) = Ap (F, F, C(F))

and H € K is a solution to the Variational Inequality if (H,% = C(H)) is
solution to

pmax, min {(I‘, F)+ Ix(F) +IK(F)} =

= —(C(H), H) + Ix (H) + I¢(¥).

(?) If the assumption of strong monotonicity holds, the solution of the Variational Ine-
quality restricted to a convex subset of the convex K* doesn’t change.
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