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EQUILIBRIUM IN ASYMMETRIC MULTIMODAL
TRANSPORT NETWORKS WITH
CAPACITY CONSTRAINTS

PAOLO FERRARI

The paper presents an equilibrium model for asymmetric multimodal
transport networks with capacity constraints. It is shown that these networks
may have no equilibrium flow pattern which satisfies the capacity constraints,
but additional costs can be imposed on some network links, so that an equilib-
rium solution that satisfies the capacity constraints always exists. A method
of computing both the equilibrium flow pattern and the additional costs is pre-
sented, and is used in a simple numerical example.

1. The user equilibrium problem.

Consider an urban area, divided into k zones, and let G(N, L) be the graph
representing the multimodal transport network serving the area, where N is the
set of nodes and L is the set of links: m is the number of nodes and a the number
of links. Each zone is identified by a centroid, and w = (i, j),i # J, represents
an ordered pair of centroids. Consider a period T (e.g. the period in the morning,
when people go to work) belonging to a sequence of periods during which the
probability distribution of the utility function [4] of people living in the urban
area is the same. Let:

indicate the transpose of a vector or a matrix
W = the set of ordered w pairs
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the number of pairs w € W
the set of transport modes joining the pair w € W

U T. the set of all transport modes on the network
weW

the number of elements in T

Al ; = the average trip cost expected by users on mode 7 € T,, between the
pair (i, ) = we W

the generation capacity of centroid i, i.e. the number of people that can
decide to move from the zone i during 7

a’i’j = the demand on mode ¢ between the pair (i, Jj) = w, that is the
average number of people that during 7 travel on mode ¢ between w
.. d{l: ...)" =the vector of demand between the pair w € W on all modes
teT,

(...d"...) = the vector of demand between all w € W on all modes
teT

the average number of people that during ¢ remain in i

the measure of the attractiveness of zone i

a; = the average of utilities that people derive from remaining in i during
T

BA, = aj — BA}, the average of utilities that people derive from moving
from i to j during .

We assume that the demand d,-’j is given by a logit model [9]:

(1)

o t

, &% ﬂ/\,.j
dij = Ni — a—BA!
EES

z#i tel;,

and the average number of people that during t remain in i is:

(2)

e
— + — t — . .
di =N - Z Zdiz =N e+ 3 Y e%PH,

2#i teTy,
z#i 1€T,

After some manipulations one obtains from (1) and (2):

z#i tely,

ditj — eaj—ai—ﬁ)»;j (Nl — Z Z ditz)
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and

1
3) My =2 = E[a,- —a —Indl+In(N; =) > d,.'z)]

ZH#i teTy,

which is the relationship A} = A} (d) between the average trip cost expected by
users on mode ¢ between the pair w € W and the demand vector d. Eq. (3) is
called the inverse of the demand function (1): we take in it In(:) = 0if () < 1
in order to assure the continuity of A};.

Let:
S = the set of centroids
P] = the set of paths p joining w on mode ¢
P = [J P] thesetof all p joining all w € W on all modes ¢ € T,

teTy
weW

M = the number of paths p € P

h, = the flow on path p € P, that is the average number of users which during
T travel on path p

h € RY = the vector of flows on all paths p € P

Ji = the flow onlink i € L, that is the average number of users which during ¢
traverse link i

f € RY = the vector of link flows

fi = p;) hpdip Vi € L, where §;, = 1 if path p traverses link i, 0 otherwise

d, = ZPhP(S{DP VieT,, Vw e W, where §,,, = 1if path p connects the pair
Z)e on mode ¢, 0 otherwise.

The network has v capacity constraints, which are linear functions of link
flows [11]:

) gH=) Bifi—H =0, re(l,2,...,v)
iel

where H, are constants.
We can express the capacity constraints as functions of path flows, so that

expression (4) becomes:

5) G =) B hpbiy—H <0 for re(l,2,...,v).

iel peP
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The set:
(6) le{heRM:hzO, G'(h) <0 Vre(1,2,...,v)}

is the supply set. The set:

7) Q={neR":h20, Y Y h, <N, vzes]
l?;zzj p EPZ’J’
is the demand set. Both @ and €2, are compact polyhedra.

The set Q2 = Q1 N, is the set of feasible solutions: in transport networks,
whose study is of actual interest, Q; C £, and the demand constraints which
appear in (7) are not binding in §2, because a flow vector 4 which saturates the
generation capacity of at least one origin does not satisfy the capacity constraints.
The set of feasible link flow vectors is:

) O={feRe:fi=3 hdp VieL, he@l.
peP
Let:
¢i(f) = the average of trip costs perceived by users who travel on link i € L;

¢;(f) is continuous function of f in ®.

Co(h) = Y ca(f)é p = the average of trip costs perceived by users who travel
iel
on path p € P; C,(h) is continuous function of 4 in Q.

Ay(h) = A, 3 hp..., X hy) =the trip cost expected by users between

peP,) pepry,
the pair w on mode ¢; A! (h) is continuous function of 4 in 2, as a
consequence of the hypotheses assumed on Eq. (3).
Cp(h) — A}, (h) = the difference between the perceived cost on path p € P, and
the expected cost between the pair w on mode ¢ € .

[C(h) — A(h)]: 2 — RM = the vector function whose components are
Cp(h) — Ay(h), pe P, VteT,,VweW.

A vector h € Q is an user equilibrium (UE) solution if and only if, for every
pair w, every mode ¢ € Ty, and every path p € P,:

hp > 0= Cyo(h) — A',(h) =0

®) _ o _
Ry =0=> C,(h) — A% (h) > .
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The traditional approach to the theory of transport network equilibrium [2]
is founded on the hypothesis of equivalence between the UE conditions (9) and
a variational inequality (VI), which can be written in terms of path flows as

follows:
(10) [C(h) — A()I(h—h) >0 forall heQ.

This VI has at least one solution 4 in the compact polyhedron Q. However
it can be shown [5] that this equivalence holds if capacity constraints are written
as strict inequalities, whereas if capacity constraints are <, then the UE prob-
lem and the VI problem are not necessarily equivalent, and the solution of the VI
problem in the set 2 may not be solution of the UE problem, if any capacity con-
straint is verified as equality. However additional cost terms can be introduced,
which ensure that in all solutions of the VI problem the capacity constraints will
in fact be satisfied as strict inequalities. This also ensures that all the solutions
of the VI problem in the compact set 2 are solutions of the UE problem, hence
the corresponding UE problem has at least one solution (an equilibrium). Thus,
introducing appropriate cost terms ensures that the UE problem always has a so-
lution.

The result that additional costs can assure the existence of equilibrium when
capacity constraints are active has been obtained also by other authors, using
different methods, in the hypothesis of fixed demand (see Eq. (2.3) in [7] and
Egs. (2.4) and (3.10) in [8]).

In this paper the problem of network equilibrium with capacity constraints .
and elastic demand is studied by an approach different from that used in [5], and
a method is presented which provides both the equilibrium solution and the mod-
ifications of cost functions that ensure in any case the existence of equilibrium.

2. The solution of equilibrium.

Let
sp(h) =—h, <0 VpeP

be the nonnegativity constraints and let

G'(hy=) B hpdip—H, 50 forre(l,2,...,v)

iel pEP

be the capacity constraints. Since the demand constraints are satisfied as strict
inequalities in the set 2 of feasible solutions, the latter is defined as follows:

Q=1{heR:s5,(h) <0 VYpeP, G'(h)<0 forre(l,2,...,v)
P
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Given a vector & € Q, the cone D of feasible directions e of 2 at 7 is given
by:

D={e:e#0, h+%eeQ forall§ e (0,3) for some s > 0}.

Let J; = {p:s,(B) =0} and J, = {r: G’ (&) = 0} be the index sets of
constraints s,(h) < 0 and G"(h) < 0 which are active in A. Since both sp(h)
and G' (h) are linear, a direction e 7 0 belongs to D if and only if

Vs,(h)e <0 Ypel

(11) _
VG'(h)e <0 Vrel,.

Theorem. A vector h € Q is a solution of VI (10) if and only if there exists a set
of multipliers u,>0VpeJ;andy >0Vre Jg such that:

(12) ChY = AR+ ) upVs,(W) + Y »:.VG'(h) =
peJ; red,

Proof. Suppose that % is a solution of VI (10). Consider any directione€ D :
we can finda & > 0 such that & + §e = h € Q. Thus [C(h) — A(B)] §e = 0
Ve € D for some £ > 0; if we denote by F the set of directions e for which:

(13) [c) —Am] e<0

we have D N F = (. In this case Eq. (12) follows from Farkas’ theorem.

Suppose that Eq. (12) holds. By Farkas’ theorem we have that any direction
e that verifies (11) does not satisfy (13), so that [C (k) — A(R)] e > 0. Let h be
any point belonging to 2: since  is convex, the direction (A — h) satisfies (11),
thus 4 satisfies VI (10) for all 4 € Q. (]

We suppose that the gradients Vs, (h) and VG’ (h) are independent, so
that the multipliers u, and y,, given a solution 4 of VI (10), are unique: this
hypothesis is in general verified in transport networks. If we let u, = 0if
sp(h) <0and y, =0if G"(h) < 0, Eq. (12) becomes:

(14) C(hy— AR+ Y upVsy(h) + Z »wVG () =0
peP

and we have the following corollary of the previous theorem:
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Corollary. A vector h € Q is a solution of VI (10) if and only if there exists a set
of multipliers u, > 0Vpe Pandy, > 0Vre(l...v) which satisfy Eq. (14)

and the complementarity condition ) ups, (h) + Z y,G"(h) =
peP

The ps component of Eq. (14), p; € P}, is:

— — Z" dG"(h
r=1 ps

and taking into account the expression (5) of G"(h), we have:

v
(16) Cp, (B) = AYy(B) —up, + D > Briyrdip, = 0.
iel r=1

Ify, =0Vre(l,2,...,v), Eq. (16) written for all p;, € P coincides
with the definition (9) of UE. As a matter of fact, if h > 0, p; € P,, we have
up, = 0andso C, (h) — Al (h) = 0; whereas if hp = O we have u, > 0, and
so C)p, (h)— ~Al (h) > 0. Thus if capacity constraints are not binding in a solution
h of VI (10), h is an equilibrium solution; and if no solution of VI (10) has the
multiplier vector y = 0, no equilibrium solution exists. It is worth noting that
the same conclusion was obtained in a previous paper using a different approach
[5].

Let 7,- =Y E,,a,- »; suppose that one increases the link cost function ¢; (N

pEP
by adding a road price equal to the linear combination of multipliers y, that

appears in Eq. (16). Let
(17 D =N+ Bive  Viel
r=1

be the new cost functions. The modified path cost C;; (h), ps € PIL, is:

(18)  Cp(h) =D cl(F)dip, -Zc,ma,,, +ZZﬂ,,y, ip, =

iel iel ) iel r=1

= Cps (h) + Z Z ,Brt yr ip, *

el r=

By substituting the expression (18) into Eq. (16), the latter becomes

(19) Cy.(h) — Ay(h) —up, =0
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and coincides with the definition (9) of UE. Thus, if one adds to link costs
ci(f) Vi € L the linear combination of multipliers that appears in Eq. (17), the
solution 4 of VI (10) becomes an equilibrium solution.

3. The calculation of the equilibrilfm solution and of the capacity constraints
multipliers.

In this section we propose an iterative procedure which provides both the
equilibrium solution and the capacity constraints multipliers, when each capacity
constraint is a function of only one link flow:

(20) g(f)=fi—H <0 VieL.

The proposed procedure is derived from the well-known iterative scheme
used for solving the variational inequalities [3].

During each step of the procedure a nonlinear programming problem is
solved, and its solution is the starting point of the successive step. At the be-
ginning of the k-step a vector A* € Q is known, and f* is the corresponding link
flow vector. During the k-step we consider the following symmetric link cost
functions, in which the cost cf on link / is a function only of the flow f; on this
link: '

@) d=alt S ffa e B Yiel

and the following symmetric inverse demand function, in which the trip cost )»f;,k
on mode ¢ between the pair w is a function only of the demand d,:

(22) A (dy) = A, dk L al dtk L gk
VteT,, YweWw.

We write:

23) Co(h*, by =D "k (f)sip =
iel
= Zci<"'2hf’5i_l’-" s thgip , Zh§6i+l’p ...)8,-,, VpE P
el peP peP pEP
(24) Rulh )y = (Yo hpsy) =
peP

= KL,(- LD RS, Y s Zh§5;+1,p...) VieT,, YweW
pepP peP peP
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[C(h*, h) — K(h" m)]: Q2 — RM = the vector function whose components are

Cp(h*,h) =K, (h*,h) pe P! VteT, Vwe W.
During the k-step we solve the following problem. Given the compact
polyhedron:

(25) Q={heR™:h,>0 VpePr, hpbi, — Hi <0 Viel,
P prip
pEP

> Y h, <A, Vzes}

J#z DE P’

teT
find a solution A**! € Q of the following VI:
@6 (COH K =R R = n*) 2 0 forhen

and the corresponding multipliers yk“Vi € L of capacity constraints.
It easy to verify that the operator C(h*, h) — A(h*, h) of VI (26) is the
gradient of the following function 2 — R :

> s '
27 R h) = Z/OP cil(ffs o flnx fi o dx -

>k
—Z/w @t dE Ly dtk L dvRy dy

where, as usual:;

=D "hks, and dbf = > hke, .

pEP pEP

As a matter of fact the p; component of the gradient VR(h*, h) is:

k .
@ I = S S i e ), -

ieL peP

) k u,
SD DL CHa N S T )8,

teTy eprP
weW p
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and taking into account Eq. (23) and Eq. (24), and that Swp, = 1lif p; e P, 0
otherwise, we have:

dR(R*, h)

=C, (h*, h) = K. (K*,
o, = Cn i h) = F, G b

(29)

where the pair w is connected on mode ¢ by path p;.
Thus a solution #**1 and the constraint multipliers of the following nonlin-

ear programming problem:
(30) min[R(h*, k) : h € Q]

are solution and multipliers of VI (26).
We denote by s,(h,) = —h, <0VpeP and

G'(h)=) hydip—H; <0 VieL
pEP .

the nonnegativity and capacity constraints. Taking into account that the demand
constraints are not active in €2, the Kuhn and Tucker (KT) condition of problem

(30) in A**! is;

B VRGSHTY Y ust s, () + 37 3V Gty = 0
pepP iel

where uk™ and yf*! are the Lagrange multipliers of the nonnegativity and of
the capacity constraints, which are unique as a consequence of the supposed
independence of Vs, (h**t1) and VG' (h*+1).

Consider the following new link cost functions Vi € L :
G(f) = cf(f) iffi<H

G a = UGN+ (i—H) e>0 iff> B

and denote by 13(/1" , h) the function (27) when the cost functions (32) are used.
We have:

(33) R(H*, h) = R(H*, h) + a(h)
where
: , 2
S hybip [ 2 hpdip — Hi]
&P 1 peP
69 at)=YTn [ w-Hyzdr=Y
ieL H; € ieL 2¢
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withm; = 0if ) h,8, — H; < Oandn; = 1if 2 hpdip — H; > 0,is a
peP peP
differentiable penalty function.
In order to calculate both the vectors A**! and y**!, we solve the following
problem of nonlinear programming:
(35)
min | RU* h) - heRY, S 3" b, <N VzeS, 5,(h,) <OVpe p]
7 PPy
It can be shown (see [1], pp. 366-368) that when ¢ — 0 the solution of
problem (35) tends to the solution 2**! of problem (30). Let A, be the solution
of problem (35) for a particular value of ¢. If ¢ is sufficiently small, since
he — h**! as & — 0, we have that the demand constraints, which are not active

in h**1, are also not active in h,; and that 3" h,.8;, — H; < 0 for all capacity
peEP

constraints for which 3 h%+16;, — H; < 0. Thus the KT condition of problem
peP
(35) in h, for ¢ sufficiently small can be written:

(36) VR he) + D yieV(D hpebip — Hi) + > e Vsp(he) = 0
iel peP pepP

where [ is the set of links whose capacity constraints are active in A¥*1, 4 pe YD E
P are the Lagrangian multipliers of the nonnegativity constraints s, (k) < 0, and

S hpebip — H;
peP

(37) - Yie =
| &

By noting that G'(h) = }_ hpdip — H;, Eq. (36) can be written:

peP
(38) VR, he) + D 3ieVG (he) + Y upeVsy(hs) = 0.
iel peP

We observe that R, G* Vi € L and Sp Y p € P are continuously differen-
tiable and that h, — h**! as & — 0. Since there exist unique Lagrange multi-

pliers yi*!' > 0Viel, y¥l =0vigl andiuf,+1 > 0V p € P which solve Eq.

(31), by comparing Eq. (31) with Eq. (38) as ¢ — 0 we have that lim y; = yFtl
£

Vieland limup, = ut'vpePp.
e—>

Thus the solution of problem (35) for ¢ — 0 gives the solution of problem
(30), and at the same time the values of Lagrange multipliers y{‘“. The solution
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of problem (35) can be made arbitrarily close to the solution of problem (30) by
choosing ¢ sufficiently small. However high computational difficulties can arise
if we use a very small ¢ value. For this reason the popular approach to the so-
lution of problems that use penalty functions employs a sequence of decreasing
parameters. With each new value of ¢ a problem (35) is solved, starting with the
solution corresponding to the previously chosen parameter value.

Suppose that the sequence {h"} obtained in the successive steps of the

calculation procedure is convergent and klim h* =h.
—2>00

Since C(h*, h*t1) and A (h*, h**1) are continuous, we have:

Jim CH*, WYy =Ch, h) = C(h)
- 00
(39) B L _
Jim ARE, Y = AR B) = A()
>0
and from VI (26):
(40) lim [C*, B — AF, Y] (h - B =

=[C(h) = AR)](h—h) =0

so that % is a solution of VI (10). ~
We observe that klim VR, i1y = C(h) — A(h) and that both G
—> 00
VieLands,VpeP are continuously differentiable. Since there exists unique
multipliers that, given 4, solve Eq. (14), by comparing Eq. (14) with Eq. (31)
as k — oo, we have:

(41) upzklimuk VpeP  y = limyf VielL.

o P k—00

Thus the equilibrium flow vector and the corresponding additional costs
yiVi € L can be obtained by solving a succession of nonlinear programming
problems (35). In general the solution of problems (35) is computed in terms of
vectors of link flows f and of demand d instead of path flows, in order to avoid

the numeration of paths. If we considerthat Y 4,8;, = fi and Y hpdy,, = d,
peP pEP

Eq. (27) can be written as a function of f and d:

fi
ROSI =Sy = 3 [l shm Sl D =

iel
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/ M@, .. duE Ly dik L dv ) dy
teTy ’

weW

and Eq. (34) can be written as a function of f:

ﬁ

am) =y(f)=)

ieL

If we use the variables f and d instead of h, and denote S( fd) =
S(f,d) + y(f), the problem (35) is transformed into the following:

(42) min [S(f,d): fi =) hyd, Viel,
peP
0= hpdup VIET,YweW, h,>0 VpeP, Y d<N,|]

’ reT

peP
#z

which can be solved by the usual algorithms of traffic assignment to networks
with elastic demand (see [12], Chapter 6): in such a way we can calculate both
k+1 gy
the vectors f**! and d**!, and the multipliers yf*! = lirr(l) I’g—’ VielL.
E—>

It is worth noting that S(f, d) is strictly convex, so that the solution ( f¥+1, g¥+1)
of problem (42) and the multipliers yk+l Vi € L are unique. However the
uniqueness of f*, d* does not ensure the uniqueness of the sequence { f*, d*},
because the latter depends on its starting point. If we use the variables (f, d), VI
(10) is transformed into the following [2]:

(43) c(fY(f = F)—rd)@d—d)=0.

The convergence point of the various sequences { fk, d"} obtained using
different starting points is unique if the solution of VI (43) is unique; in this
case also the corresponding multipliers y;Vi € L are unique. The uniqueness
of the solution of VI (43) depends on characteristics of its operator ¢(f) — A(d)
[6]; however the uniqueness of the solutions of VI (43) is verified in most actual
urban transport networks [10].

It is worth noting that, even if VI (10) has various solutions, only that solu-
tion whose capacity constraint multipliers are used as additional costs becomes
the equilibrium solution. Thus the imposition of these additional costs ensures
the uniqueness of the equilibrium solution in any case.

The iterative procedure can be stopped when the distance || f¥t1 — f%|| is
less than a fraction £ of the length || f*|| of f*:

LA — 5 < ENFH
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Fig. 1. Bimodal network considered in the computational example

If £ is sufficiently small, the vectors f**1 and y**! so obtained are good
estimates of f and y.

4. A computational example.

The method illustrated in the previous Section has been applied to the small
network reported in Fig. 1, which is travelled by two transport modes: car and
transit. Nodes 1...5 are centroids: O/D flows depart from them and arrive
at them, but cannot go through them. Only one transit path joins each pair of
centroids; every centroid is connected by a dummy link to car links. Some
roads are travelled by transit along with cars, so that the transport cost of transit .
depends on car flows, whereas it is supposed that the car link costs do not depend
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on transit flows.
Transport cost coincides with journey time. The time on dummy links is

0.1 minutes; the time of every car link depends only on the flow f; on it and is
given by:

1000

where parameters a; and b; are reported in Tab. 1 for every car link i.

] 4
(44) b=ai+b, [——’f-—]

Link a; b; EC; l
6-7 6.00 7.26 1200
6-9 4.00 2.94 4000
7-6 6.00 7.26 1200
7-8 8.00 7.04 1300
7-10 6.00 2.94 1200
8-17 8.00 7.04 1300
8§-11 7.00 2.10 1300
9-6 4.00 2.94 4000
9-10 9.00 342 1300
9-12 6.00 1.44 1300
10-7 6.00 2.94 1200
10-9 9.00 3.42 1300

10- 11 10.00 3.00 1000
10-13 7.00 1.33 1400
11-8 7.00 2.10 1300
11-10 10.00 3.00 1000
I1-14 | 8.00 1.92 1400
12-9 6.00 1.44 1300
12-13 9.00 5.94 1200
13-10 7.00 1.33 1400
13-12 9.00 5.94 1200
13-14 8.00 2.40 1200
14-11 8.00 | 192 1400
14-13 8.00 2.40 1200

Tab. 1. Parameters of cost functions and capacity values
EC; (Pph) on car links of the network in Fig. 1

The journey time on transit is independent of transit flows, and is given by
the line-haul time and of the access and waiting time ¢, which is equal to 10
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minutes for all pairs w. The line-haul time ¢2 for each pair w is given by the
sum of the line-haul time when flows on car links are zero, which is reported in

4
Tab. 2, and of congestion time b; [ ﬁ] due to car flows.

O/D 1 2 3 4 5

1 - 29 12 28 27
2 29 - 17 32 32
3 12 17 - 16 15
4 28 32 16 - 31
5

27 32 15 31 -

Tab. 2. Transit line-haul times (min) between the O/D
of the network in Fig. 1 when flows on car links are zero

Flows on both car and transit links are measured in passengers per hour
(Pph). Capacity constraints express the condition that flow f; on every car link
- has to be less that the EC; value reported in Tab. 1

Since the transit costs depend on flows on car links, the equilibrium flows
on network and the additional costs were obtained by the iterative procedure
shown in the previous Section, solving a succession of nonlinear programming
problems. At the k step the function of demand for car travel d5* is obtained
from Eq. (1), which in the case under examination becomes:

exp [t ]
exp [—ﬂtﬁ,] + exp [—yta — ,Btff,’k]

(45) dok = d,

where #{ is the journey time by car for pair w, r2* is the transit line-haul time
depending on flows on car links obtained in the k — 1 step, and coefficients B
and y are equal to 0.1 and 0.15 respectively.

Each nonlinear programming problem under examination is equivalent to
that obtained if one considers only the car network with elastic demand given
by (45): flow on the transit link between the pair w is df; = dy — d;,. In this
case the demand d can be assigned to the bimodal network by the usual Frank-
Wolfe algorithm, if one attributes to each transit path j the following dummy
cost function (see [12], pp. 155-157):

1 d’
(46) =2 [znz—_w—d-,; itk yta] .
w w
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A cost function 7 (f;) modified following (32) was attributed to every car
link:

- f =14
i=a; +b | = if i < EC;
(47) -

f; = -{—brfi-d'—}-1 EC) 0 iff, > EC

The Frank-Wolfe assignment procedure was repeated 20 times in each &
step, starting with ¢ = 100 and taking in each successive assignment half the
¢ value of the preceding one. The equilibrium flow vector obtained in each
assignment was assumed as starting point in the successive one.

k 2 3 4 5 6 7 8 9 10
0.0385 | 0.0302 | 0.0104 | 0.0035 | 0.0030 | 0.0038 | 0.0036 | 0.0041 | 0.0031
0.3695 | 0.0902 | 0.1098 | 0.0710 | 0.0950 | 0.1033 | 0.0479 | 0.0581 | 0.0354

Tab. 3. Values of the convergence gaps £ and 7 at various steps &
of the equilibrium computation for the network in Fig. 1

Ten steps of nonlinear programming problems were solved, in order to ver-
ify the convergence of the sequence {f*} and of the sequence {y*} of the ca-

. . - 1A = £
pacity constraints multipliers. The values of & = T and of n =
1™ = Y1 btained for different k+1 values when & = 0.00019 d
¥ obtained for ditferent K+ 1 values when ¢ = 0. , are reporte

in Tab. 3. It can be noted that the convergence is very quick; the fluctuations of
the gap n are essentially due to the difficulties in computing the exact values of
Yie when € is very close to zero. The flows f;. on car links and the estimates
Yie of multipliers obtained for different values of & during the step k = 6 are
reported in Tab. 4. It can be noted the progressive approach of link flows f;; to
capacities EC; as ¢ approaches 0.
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Link &g = 100.0 £ =06.25 e =0.195 e = 0.0061 e = 0.00019
! Jie Yie Jie Yie Jie Yie Jie Yie Jie Yie

6-7 |1374.02]1.740/1260.80| 9.728|1202.66|13.610{1200.08|12.498 | 1200.00| 13.586
6-9 [1659.480.000] 1613.24 | 0.000{1614.92| 0.000|1614.51| 0.000]|1614.51] 0.000
7-6 |1348.181.482|1245.83 | 7.33411201.62] 8.284|1200.05| 8.0201200.00| 6.798
7-8 {1357.75|0.577{1323.87 | 3.819|1300.85| 4.333]1300.03| 4.617|1300.00| 5.127
7-10{1159.90|0.000{ 1106.95 | 0.000|1045.91| 0.000|1043.52| 0.000|1043.44| 0.000
8-7 |1443.86|1.439 1367.17 | 10.747 | 1303.05 | 15.648 | 1300.10| 16.030| 1300.00| 13.925
8-11]1826.75|5.267| 1440.95 [ 22.552|1305.39(27.611 | 1300.17|27.222 | 1300.00 | 26.617
9-6 {1602.68]|0.000| 1562.32 | 0.0001551.36] 0.000|1551.99| 0.000|1551.97| 0.000
9-10(1367.76|0.678 | 1308.94 | 1.430/1289.61| 0.000|1289.60| 0.000|1289.61{ 0.000
9-12/1812.95(5.130| 1414.94 {18.390 | 1304.48 [ 22.927 | 1300.12{20.340| 1300.00{ 19.532
10-7 |1047.93(0.000| 1048.68 | 0.000/1042.66] 0.000]|1043.42| 0.000|1043.44| 0.000
10-9 |1245.17(0.000{ 1227.30 | 0.000|1225.57| 0.000|1227.06| 0.000]1227.07| 0.000
10-11} 997.8310.000| 968.96| 0.000| 987.05| 0.000| 986.67| 0.000| 986.67| 0.000
10-13)1168.31/0.000| 1119.71 | 0.000{1114.66| 0.000|1113.75| 0.000|1113.71} 0.000
11-8 |1708.67|4.087 1398.87 | 15.8191304.04 | 15.555|1300.10| 16.026 | 1300.00{ 16.291
11-10]1078.8510.789 1011.73 | 1.879| 989.75| 0.000| 986.74| 0.000| 986.67| 0.000
11-1411645.01|2.450| 1455.23 | 8.837|1402.1711.1311400.07|11.529{1400.00| 9.779
12-9 11878.73(5.787 1445.65 |23.305 | 1304.96 | 25.384 | 1300.15 | 24.962 | 1300.00 | 24.743
12-13]1459.43(2.594 | 1304.85 | 16.777 | 1204.62 | 23.632 | 1200.13 [ 22.103 | 1200.00| 21.581
13-1011247.20|0.000] 1158.64 | 0.000{1117.04] 0.000|1113.79| 0.000]1113.71} 0.000
13-1211390.41|1.904 | 1267.89 | 10.862 [ 1202.75 | 14.088 | 1200.10 16.527 | 1200.00| 14.132
13-1411592.263.923 | 1295.01 [ 15.202 | 1203.07 | 15.725|1200.10| 16.197 | 1200.00| 14.772
14-111607.95|2.080| 1455.92 | 8.9471402.51|12.873|1400.0712.138| 1400.00|10.599
14-1311602.1314.021} 1296.98 | 15.518|1203.58 | 18.350{ 1200.11 17.574 | 1200.00 | 20.048

Tab. 4. Flows f;. (Pph) and estimates y;. of the capacity constraints multipliers
for the network in Fig. 1 corresponding to various values of parameter &
at the 6th step of the equilibrium computation
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