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A REMARK ON INFINITE-DIMENSIONAL
VARIATIONAL INEQUALITIES

FRANCO GIANNESSI

An infinite-dimensional Quasi-Variational Inequality is considered, whose
domain is expressed as intersection of the level sets of functionals having
infinite-dimensional image. A proposal is made to handle it by means of

Lagrange multipliers.

Assume we are given the positive integers m and n, the interval T :=
[%, #1] C R with 7y < 1, the real Hilbert space E whose elements are x : T —
R”, the multifunction X : € = &, the functions A : E — & and

p R"xRxR*™ >R, iel:={l,...,m).

Let p be an integer such that 0 < p < m and consider the sets 70 := {1, ..., p},
It :={p+1,...,m} with the stipulation that Z° = @ if p = 0 and T+ = @ if
p =m. Let 7, 1 € R with 79 < 1) be given, and VY y € Z introduce the set:

K(@y) := {x eX(y)NCHT)":

f A O@i 1,3 (), X (1) dr [jg o jjg], wer],

where x(¢) := (x;(t),i € 1), x'(t) := (1%9, i GI), and C%(T)" denotes the n
times Cartesian product of the set of real-valued functions on T having the first

two derivatives continuous.
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Consider the following Quasi-Variational Inequality (in short, QVI): to find
y € K (y) such that:

M / (AD) x() = y(B)) dt 20, Yx€K(),

where (-, -) denotes the scalar product in E.
If wesetC := 0, x R':_p and consider, Vy € E, the multifunctions:

1,0‘,' E= 8, with
vi(y; x, x)) = [/tl ¢ (y(x); 1, x(1), x'(1)) d teT} iel,

where y plays the role of parameter, then we can write
Ky ={xeX(NCXT) : ¥i(y; t,x(1), x'(1)) €C, VieT},

where ¢ := (¥, i € I); this shows a more general form for K (y), C being a
closed and convex cone with apex at the origin and g a suitable multifunction.

When X (y) and ¥ (y; x, x’) are independent of y (in this case they will
be denoted by X and v (x), respectively), then (1) collapses to a Variational
Inequality (in short, VI). If, moreover, K(y) = X(y) and, Vy, K(y) is a
closed and convex cone with apex at the origin, then (1) collapses to a Quasi-
Complementarity System (in a Hilbert space).

We want to give some hints on how to extend to (1) the image space ap-
proach defined for constrained extremum problems [4] and for VI having a finite-
dimensional image [5], [6].

For each y, v; is a multifunction which sends an element of X (y), i.e. a
function x(t), t € T, onto a subset of R, i.e. the image of T through the function
of ¢ (x being fixed) 1,7f,~ (y;t) :=¥i(y; t, x(¢), x'(¢)). Thus, Yy, we consider the
multifunction F : X (y) = R*™ defined by

F(y;x):= {(u, v)eR xR™:

131
u =/ (A, y —x)dt; v=19y(y;t,x,x"), teT}.
to

For each y, the image of (1) (see [5], [6]) is the set F(y; X(y)) which is
a subset of a finite-dimensional space, like it happens when y is a function.
Thus, the approach adopted in [5], [6], which is heavily based on the finite-
dimensionality of the image of the QVI, seems to be useless here. A natural
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attempt of overcoming the difficulty of handling the infinite-dimensionality of
K (y) should be an extension of such an approach. In this order of ideas, instead
of accepting the infinite-dimensionality as soon as it appears, we suggest the
viewpoint of postponing it as long as possible. This seems possible by introduc-
ing a multifunction approach, which has been suggested in [4] for constrained
extremum problems, it allows us to circumvent the infinite-dimensionality and
to reduce ourselves to handle finite-dimensional sets in order to study the image
of (1).

We start with the obvious remark that y € X (y) is a solution of (1) iff the
system (in the unknown x): '

@ / (AG)Ly—x)dt >0 Y(it,x,5) SC x€X()

is impossible. For each y, consider the functions w; : X (y) x T x X(y) — R,

i € Z, and denote by Q(y) the set vectors w(y) := (wi(y), i € I), whos
elements are not identically zero on T and such that w;(y) > 0, i € Z%.
Consider the vector function ® : X(y) x R x Q(y) — R!*m, defined,

VxeX(y),by:
O (y; F(y; x); o(y) =
(/I(A(y),y—x)dt, /'wi(y; X)W (ys 8, x, x") dt, ieI);

0 fo
and set
H = {(u,vl,...,vm)ele”‘:u >0; v; =0, ieZ% v; >0; ieIt}.
We ask @ to be such that, Vy € X (y),
B) Fx)SH = 0 FO;x);0()eH, Yo(y) e Q(y).

When this happens, ® can be called generalized selection function (in short,
GSF) and w selection multiplier (in short, SM); indeed, ® selects an element
from the set F(y; x). The relation (3) holds under assumptions like those which
make valid the so-called Fundamental Lemma of Calculus of Variations; it would
be useful to find general conditions on (1) under which (3) holds.

The main purpose here consists in suggesting a way for extending to (1) the
separation scheme in the image space introduced in [5], [6]. Such a scheme can-
not be applied to (2): y being a solution of (1), F(y; X(y)) and H are not neces-
sarily disjoint (unlike what happens in [5], [6] where 1 is a function), so that they
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cannot be separated, even nonlinearly. When (3) holds, ¥y, the set F(y; X (y))
can be equivalently (in the sense of preserving the impossibility of (2)) replaced
with an element (of its convex hull), which plays the role of “representative” of
the set, namely &; this justifies the connection with the theory of selections for
multifunctions.

Thus, assuming that (3) holds we can introduce the selected image of (1)

as the set:

Ky o) =20 F; X)) 0(), yeX(), o(y) Q).
Thus, obviously, y is a solution of (1) iff there exists a SM w(y), such that
4) HNKQy; w(y) =0

Now, a separation scheme can be set up to prove (4) as a consequence of sepa-
rations of H and K. Hence, it is conceivable to try to transfer here all the topics,
which have been discussed in [5], [6] for the case where ¥ is a function (as the
definition of gap functions, duality, penalty, etc.), even if this does not seem triv-
ial.

Recently, it has been shown that a VI or a QVI can be useful in the study
of equilibrium flows in a network (see [2], [3]). The VI and QVI, which have
been studied in this context, are independent of time. They do not necessarily
reflect a static situation, in the sense that they may mirror the average behaviour
of flows in a given time interval. In spite of this simplification, such models have
represented a great improvement with respect to the optimization ones. Due to
this fact it would be important to introduce explicitly the time in such models.
Among several advantages, this should contribute to achieve a better definition
of equilibrium flows in a network; indeed a solution of a static VI or QVI cannot
represent in a fully satisfactory way the real notion of equilibrium flows in a
network, whose nature is essentially dynamic. The above remarks mlght suggest
a way for studying dynamic models.

At least in the field of equilibrium flows on a network it would be useful to
introduce a time-lag in the models. For instance, instead of the functional which
appears in (1), it might be interesting to consider one of type:

) / HAG( = A)), x(1) = y(t — A))d

where A may or may not dependent on #, and represents a delay with which the
users of a network react to what happens. The extrema of integration in (5) may
also contain a time-lag not necessarily equal to A.
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Another generalization of (1) is that where the operator A depends also on
the gradient of y; in this case (1) is replaced with

(6) / (A(y, y),x — y)dt.

If there exists a function f such that

/ / d /
A(y’y)zfy_g;fy’a

and K (y) is independent of y and is an open subset of Z, then (1) is VI which
leads to the classic Euler equation.
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