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APPROXIMATE SOLUTIONS TO VARIATIONAL
INEQUALITIES AND APPLICATIONS

M. BEATRICE LIGNOLA - JACQUELINE MORGAN

The aim of the paper is to investigate two concepts of approximate so-
lutions to parametric variational inequalities in topological vector spaces for
which the corresponding solution map is closed graph and/or lower semicon-
tinuous (upper and/or lower convergent when considered under perturbations)
and to apply the results to the stability of optimization problems with varia-
tional inequality constraints.

1. Introduction.

Let (U, 7) be atopological space, (V, o) be a topological vector space with
(V*, 0*) as dual space and F be a function from U x V to V*. We consider the

following parametric variational inequality:
(VL) Findy € I" such that (F(x,y),y —z) <Oforanyz el

where I' is a closed convex subset of V and (-, -) denotes the pairing between V
and V*. The pair (o, o*) will be supposed ta.be such that:

(1) (u, v) <liminf(u,, v,)

n—-+o00

3 *
f(?r any sequence {”"}n o -converging to u and any sequence {v,,}n o*-conver-
ging to v.
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If F(x,-) is a monotone hemicontinuous operator it is well known ([11])
that the problem (VI,) is equivalent to the following one:

(\ﬁx) Find y €' such that: (F(x,z),y —z) <OforanyzeT.

Let 7 and T be the multifunctions from U to V defined respectively by the
solutions to the problems (VI,) and (VI,) that is:

T(x) ={yeV :ysolves (VI,)}
Tx) = {FeV :7¥solves (\ﬁx)} .

While it is easy to establish conditions under which T or T are sequentially
closed graph (see Definition 2.1), in general T and T are not sequentially lower
semicontinuous (Definition 2.2 and Remark 2.3). Moreover, if {F,,}n is a se-

quence of functions from U x V to V*, (VI,), and (\’/\Ix)’,,\ are the corresponding
perturbed variational inequalities and 7, (respectively T,) are the correspond-
ing solution maps, while it is easy to establish conditions under which { T, }n or

—-—

{T,,}n_ are sequentially upperconvergent (Definition 3.2) in general {T,,}n and
{T‘,,}n are not sequentially lowerconvergent (Definition 3.3 and Remark 3.1).
However, in dealing with multilevel optimization problems with variational in-
equality constraints, the sequential lowerconvergence of the sequence of multi-
functions defined by the constraints is a crucial property in order to obtain con-
vergence results for the solutions to the perturbed problems. The aim of the paper
is to exhibit a concept of approximate solutions for which the corresponding so-
lution map is sequentially lower semicontinuous (lowerconvergent when consid-
ered under perturbations) and to apply the results to the stability of optimization
problems with variational inequality constraints ([12]).

More precisely in Section 2 we consider two concepts of approximate so-
lutions for (VI,) and (V\Ix) and we study the continuity properties of the corre-
sponding solution maps. In Section 3 we consider the perturbed problems and
we study the properties of upper and lowerconvergence of the sequence of the
approximate solution maps. Finally, in Section 4, we apply the previous results
to optimization problems with variational inequality constraints under perturba-
tions finding conditions which guarantee convergence of the approximate solu-
tions and /or convergence of the approximate values.

For the sake of simplicity we present the results in a sequential setting but
we wish to point out that analogous results can be obtained in a topological
setting (by using nets instead of sequences) so during the paper we shall omit
the term “sequentially”.
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2. Approximate solutions for variational inequalities.

For ¢ > 0 we consider the following problem for any x € U:

(VI,)(e) FindyeTl suchthat: (F(x,y,y—z) <eforanyzel
(VI,)(¢) FindyeT suchthat: (F(x,z),7—z) <eforanyzel

and the corresponding solutions maps defined by:

T(x,e) ={yeV :¥ysolves (VI,)(e)}
?(x, €)= {;'y'e V .y solves (VI,,)(S)} .

We have:
T(x,0) =T(x)

T(x,0) =T (x).

Remark 2.1. Letx e U. If F(x, -) is a monotone operator, that is
(F(x,¥),y—2) 2 (F(x,2),y — 2)

forany y € V and any z € V, then we have T (x, &) C f(x, ¢) forany € > 0.
' However, differently from the case & = 0, in general the opposite inclusion does
not hold, for ¢ > 0, as it is shown by the following trivial example:

LetU =V =R, T =[1/2,2] and F(x,y) = y%.

Then T'(x, &) = [1/2,2¢ +1/2] and T(x, €) = [1/2,1/4+ 1/2/T/4+ 4 ¢].

Remark 2.2. T(x) C T(x, ¢) for any ¢ > 0 and, for a large class of problems,
T (x) is nonempty (see, for example [5], [1]). In the following we will consider
the real numbers ¢ > 0 for which T'(x, ¢) is nonempty.

Now, when the variational inequality (VI;) derives from an optimization
problem, let us study the connection between the approximate variational in-
equality solution and the e-solutions to the optimization problem. For the sake
of simplicity we consider non parametric problems. -

Let f be areal valued function on V, bounded from below. For ¢ > 0 we
denote by M (e) the set of e-solutions to the minimum problem:

(P) min f(y)
yel

that is:
M(e) = {ye eI such that £(y,) < inf £(7) + e].
y
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Proposition 2.1. Let f be a convex function on V and f'(y, h) be the direc-
tional derivative of f at'y € V in the direction h € V. If we consider the varia-

tional inequality defined by the problem (P):
(VD) Find y €T such thataf’(?,j)'—z) <OforanyzeV

then _
T(E)C M) CT(e)

for any ¢ > 0, where
T(¢) = {yeT suchthat f'(y,y —z) < ¢ forany z€T}

and
T(e) = {?e " such that f'(z,7 —z) <eforanyze F} .

Proof. Lety e T (g). From the convexity assumption we have:
fO)-f@Q=f0,5y-2

then: f(y) < f(z) +eforany zeT.
Letye M (¢). From the convexity assumption we have:

f@y-2<f0O) - fk

forany zeI', then f'(z,y —z) <eforanyzel.

Now we study the continuity properties of the multifunctions 7'(-, &) and
T( ¢) defined respectively by T (x, €) and T(x €). More precisely we look
for conditions ensuring that these multifunctions are closed graph and/or lower
semicontinuous in the sense of the following definitions:

Definition 2.1. A multifunction M from U to V is closed graph at xo € U

whenever for any sequence {x,, }n converging to xgy in U we have:

limsup M(x,) C M(x)

n—--00

where

limsup M(x,) = { y €V : there exists a sequence { Vi } ‘ converging to
n——+00 ‘

y in V such that y;, € M(x,,) for a subsequence {n;}}.
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Definition 2.2. A multifunction M from U to V is nearly lower semicontinuous
at xo € U ([7]) whenever for any sequence { Xn }n converging to xy in U we have:

M(x) c iminf M(x,)
n— 400

where

hm infA, = { y € V . there exists a sequence { y,,} converging to
. n—=>+00 n

y in V such that y, € A, for n large}

and A *% is the sequential closure of A.

Remark 2.3. If (U, o) and (V, t) are first countable topological spaces the
previous definition is equivalent to M is lower semicontinuous ([7])

Definition 2.3. A multifunction M from U to V is continuous at xo € U if it is
lower semicontinuous and closed graph at xo € U.

Now, it is easy to prove the following theorem:

Proposition 2.2. Let ¢ > 0. The multifunction T (-, g) is closed graphat xo € U
if the function F is continuous on {xo} xI" and the multzfunctzon T( €) is closed
graph at xo € U if the function F (-, y) is continuous at xy forany y € V.

Proof. Let {x,} be asequence converging to xo in U and (), be a sequence
converging to yp in V such that Y« € T(x,,,¢€). Since I' is closed and F is
continuous on {xg} x I it results from (1):

(F(x0, ¥0)» Yo — 2) < liminf (F (X, y&), s —2) < €
k—+oo .

and similarly for the second result.

In the case in which V is a Banach space thh weak (w) and strong (s)
topologies on V and V* we get:

Corollary 2.1. Lete > 0. If the function F is contmuous from ({xp} x F TXW)
to (V*, s) then the multifunction T (-, &) is closed graph at xp € U with respect to
(t, w). If F is continuous from ({xo} xT", T xs) to (V*, w) then the multifunction.
T (-, &) is closed graph at xo € U with respect to'(t, s). '

An analkogous-result is obtained for f(-, ‘s).
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Corollary 2.2. Let & > 0. If, for any y € T the function F(-, y) is continuous
at xqo from (U, t) to (V*,s) then T (-, €) is closed graph at xy € U with respect
to (t, w) and consequently also with respect to (T, 5).

For what concerning the lower sermcontmulty we obtain the following re-
sult for T( €):
Theorem 2.1. Let ¢ > 0. If the function F is continuous on {xo} x I, the pair-
ing (-, ) is sequentially continuous and T is sequentially compact then the multi-
function T (-, €) is nearly lower semicontinuous at xg € U (lower semicontinuous
if V is a first countable topological space).
Proof. We start by proving that the following multifunction is lower semicon-
tinuous at xy € U':

S(-,e):x — {yeTD suchthat: (F(x,z),y—z) <e¢ foranyz€el}.

If {x,, }n is a sequence converging to xo on U and we consider yg € S(xo, €) then

we have that yo € S(x,, ¢) for n large. Indeed, assuming that yo ¢ S(xy,, €)

for a subsequence {n;},, there exists a sequence {z;},, with z; € T, such that

(F(xn,,2k), Yo — 2x) < € for any k. From the compactness of I" there exists

a subsequence of {zk} converging to a point zg € I" and for such zo we have

(F(x0, 20), Yo — 20) = € in contradiction with the assumption yg € S(xp, €).
Now let us prove that:

) T(x, &) C (S(x,0)

forany x € X. Let yp € f(x, €), ¥y € S(x, €) and y, = (1 —0a,)yo+ny, wWhere
o, €[0, 1] for any » and ¢, — O.

The sequence { ) }n is convergent to yg and we can prove that y, € S(x, ¢) for
any n. In fact

(F(x,2), 9, —2) = (F(x,2), l —an) 00 — 2) + @ (¥p — 2)) =
= (1 = @) (F(x,2), o — 2)) + au(F(x,2), (g — D) <
<(—-a)e+o,e=c¢
for any n. Then, from relation (2) and lower semicontinuity of S(-, €) at xo we

infer that:

-~ - seq seq = se
T(x,e) C (S(x,¢)) Clim inf (SCxn,8)) € liminf (T (x4, 8))
n-—> n—

When (V, o) is first countable the sequential closure coincides with the topolog-
ical closure and the liminf is always a closed subset of V.

When we deal with Banach spaces we obtain:
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Proposition 2.3. Let ¢ > 0. If the function F is continuous from ({xo} x I', T X
w) to (V*,s) and T" is weakly sequentially compact then T (-, €) is continuous

with respect to (T, s) at xo€ U.

Proof. From Corollary 2.2 we have that T(-, ¢) is closed graph at xo € U
with respect to (7, s), while lower semicontinuity can be proved arguing as in
Theorem 2.1. :

3. Approximate solutions for variational Inequalities under perturbations.

Given {F,} a sequence of functions from U x V to V*, fore¢ > 0 we
define the following perturbed problems:

(VI)n(¢) Findyel suchthat: (F,(x,y),y—z) <eforanyzel
(V,).(¢) Findy €T suchthat: (F,(x,z),y—z) <eforanyzeTl

and the corresponding solution maps:
T,(x,e) ={y eV :ysolves (VI,),(¢)}
To(x,&) ={y €V : ysolves (VL) (e)} .
First let us recall some convergenée properties for functions and multifunctions.

Definition 3.1. A sequence { f,,}n of functions from U to V is continuously
convergent to f if, for any xo € U and for any sequence {x,,}n converging to

Xxg, we have: v
lim f,(xp) = f(x0).
n—-+00

Definition 3.2 ([6]). A sequence {M,1 }n of multifunctions from U to V is upper-
convergent to a multifunction M if

lim sup M, (x,) C M(xq)

n—+00

for any xog € U and for any sequence {x,, }n converging to xp in U.

Definition 3.3 ((7]). A sequence {M,} of multifunctions from U to V is nearly
convergent to a multifunction M if

seq

M(xo) C lim inf (M (%))

for any xo € U and for any sequence {x,, }n converging to xy in U.
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Remark 3.1. In first countable spaces {Mn},, nearly lowerconvergent to M on
U is equivalent to {M,,}n lowerconvergent to M on U ([7]), that is:

M(xg) C liminf M,(x,)
n—>+400
for any xo € U and for any sequence {x,, }n converging to xg in U.

Proposition 3.1. Let ¢ > 0. The sequence {T,(-,€)} (resp. {ﬁ(-, e)} ) is
upperconvergent to T (-, €) (resp. ?(-, €)) on U if the sequence {F,,}n is con-
tinuously convergent on U x V (resp. the sequence {F,,(', y)}’2 is continuously
convergent to F(-,y) on U forany ye V).

Proof. Let xg € U, {x,}, be a sequence converging to xo in U and {y}, be

a sequence converging to yo such that y; € T, (x,,, &) (resp. yx € T,,, (X, , €)).
Since the sequence { F, }, is continuously convergent to F on U x V (resp. the
sequence F,(-, y) is continuously convergent to F(-, y) on U forany y e V)it
results forany z € I': '

(F(x0, Y0), Yo — 2) < Lim inf (Fo, (., Y4), Ye—2) <€

(resp.
(F(x0,2), Y0 —2) < E_T_E?of(Fnk(xnky 2), Yk —2) < ¢).

In the case in which V is Banach space with weak (w) and strong (s)
topologies on V and V* we get:

Corollary 3.1. Let ¢ > 0. If the sequence {F,,}n is continuously convergent
Jrom (U xV,txw)to (V*,s) then the sequence {T,,(-, 8)]n is upperconvergent
to T (-, €) on U with respect to (t, w).

If the sequence {F,2 }n is continuously convergent from (U x V, 1 xs) to (V*, w)

then the sequence {T,,(-, 8)}n is upperconvergent to T (-, €) on U with respect
to (1, ).

An analogous result is obtained for ﬁ(-, €):

Corollary 3.2. Ler ¢ > 0. If. for any y € V, the sequence {F,(-, y)} is
continuously convergent, from (U, t) to (V*,s) then the sequence {T,, G, 8)}n
is upperconvergent to T (-, €) on U with respect to (1, w).
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Theorem 3.1. Let ¢ > 0. Let the pairing (., ) be sequentially continuous and
I" be sequentially compact. The sequence { T, (, 8)}n is nearly lowerconvergent

(lowerconvergent if the space V is a first countable topological space) to T(-, €)
on U if the sequence {F,,}n is continuously convergent to F on U x V.

Proof. Let ¢ > 0. We start by proving that the following sequence of multi-
functions is nearly lowerconvergent on U to S(-, &) (as defined in the proof of

Theorem 2.1):
Sa(-,€) :x = {y €T suchthat: (F,(x,2), y —z) <¢eforany ze T},

If {x,2 ]n is a sequence converging to xo on U and we consider yg € S(xy, &) then,

for n large, we have that yg € S, (x,, €).
Indeed, assume that yg ¢ S, (xn,, €) for a subsequence { ng } A then there exists a

sequence {zx},, with zx € T, such that
(Fnk('x"k’ Zk), Yo — zk) =&

for any k. From the compactness of I'" there exists a subsequence of {zk } ‘
converging to a point zp € I' and for such zy we have

(F(x0,20), Yo — 20) > ¢

in contradiction with the assumption yy € S(xy, ¢€).
Therefore, from (2), we have:

se

T(x,0) C (S&, ) Climinf (5,050, 0) € liminf (TyCxn, 0))

Arguing as in Proposition 2.3 we have:

Proposition 3.2. Let ¢ > 0. Ifthe sequence {F,,}n is continuously convergent
Jrom (U xV, 7 xw)to (V¥ s)and T is weakly sequentially compact then the
sequence {T,,(-, 8)}n is lowerconvergent to T (-, €) with respect to (1, 5).

Combining Corollary 3.2 and Proposition 3.2 we obtain:

Corollary 3.3. Lete > 0. If T is weakly sequentially compact and the sequence
{F,,}n is continuously convergent from (U x V, 1 x w) to (V*, 5) then, for any
xo € U and for any sequence {x,, }n converging to xy, the sequence {T‘,, (xp, &) }n
is Mosco convergent to T (xg, €), that is: %

w-limsup Ty, (x4, €) C T (x0, &) C s-liminf T, (x,, €).
n—+00 n—+00
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4. Applications.

Let f and f,, for any n € N, be extended real valued functionson U x V
and consider the following problems:

FindxeU such that :

(P) yel?(f;a f@&,y) = inf yelg(fx ) fx,y)=aq,

where T (x) is defined as in Section 1

and
Find X, € U such that : .
i f ’ = i f i f ’ = ’
(P), yelrr:an Jon(Xn, y) inf It fa(x,y) =,

where T, (x) = T, (x, 0) is defined as in Section 3.

Problem (P), which arises, for example, in shape optimization, in economic
modelling and in design transportation networks, has been investigated from dif-
ferent points of view: necessary conditions, sensitivity analysis and algorithms
(see [12] and [4] for references). Nevertheless, no results have been given in a
general framework on the connections between (P,) and (P) and, particularly,
on the convergence of the solutions to (P,) and of the value «, of (P,). Unfor-
tunately, even for nice perturbations of F and f these properties are not always
satisfied, as shown by the following example:

Example 4.1. Let U = V = [0,1], f(x,y) = fu(x,y) = x —y + 1,
F(x,y) =0, F,(x,y) = 1/n, I’ = [0, 1]. Itis easy to verify that « = 0,
a, = 1 then the convergence of the values is not obtained.

So, in line with what done in [10] for the weak Stackelberg problem and [8]
for the strong one, we will use the concept of approximate solution for variational
inequalities defined by (\7\Ix)(8) in Section 2 in order to obtain not only existence
but also convergence results under perturbations on the data and more precisely,
for ¢ > 0, we consider the following problems:

Find x, € U such that :

P(e) inf  f&.,y)=inf inf f(x,y)=a(e)
yeT (X.,e) xelU yeT(x,g)

where ?(x, ¢) is defined as in Section 2
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and
Find X, , € U such that :
P,(e) _inf  fu(Xsn,y) =inf inf  fi(x,y) =T, (e)
" YET,(Xen,8) xelU yeT,(x,e)

where ﬁ,(x, ¢) is defined as in Section 3.

Let M (¢) and A?,, (&) be the set of solutions respectively of '13(8) and ﬁ, (¢). Then
we have:
Theorem 4.1. Let ¢ > 0. Let U be a sequentially compact topological space.
If the pairing is continuous and T is sequentially compact, under the following
assumptions:

1) for any y € V, the sequence { F, }n continuously converges to F,

2) forany (x,y) e U x V, any sequence {x,,}n converging to x in U and any

sequence { y,,}n converging to y in V we have:

fx,y) < iminf fo(xn, yn),
3) for any (x,y) € U x V, there exists a sequence {f,,}n converging to x in
U such that for any sequence {y,}, converging to'y in V we have:

f(x,y) = limsup f,(Xn, ¥),

n—+4+00
we have:
i) limsup M, (s) C M(e),
n——+00
ii) liT o, (e) =a(s).

Proof. From Proposition 3.1 and Theorem 3.1 we infer that the sequence
(T, ¢)}, is lower and upperconvergent to T (-, €). So, from Proposition 4.3.1
in [6] we can deduce that the sequence of marginal function {@, (-, &)} (defined
by:

Z’3n(-7c, g) = lnf fn(x }’)
yeT (x,8)

for any x € U) is epiconvergent to the marginal funcuon @(-, ) (defined by:

Dx,e)= inf f(x,y)
yeT (x,¢)

for any x € u). Then, from a classical result ([2], [3] or Proposition 2. 3 1in [6]),
we obtain i) and ii).

Similarly we have:
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Corollary 4.1. Let ¢ > 0. If the assumptions of Corollary 3.3 and the following
are satisfied:
1) forany (x,y) e U x V, any sequence {x,,}n converging to x in U and any
sequence { Vn }n weakly converging to y in V we have:

f(x, ¥) < liminf f, (e, yn),
2) forany (x,y) e U x V, there exists a sequence {35,, }n converging to x in U
such that for any sequence { Vn }n strongly converging to y in V we have:

f(x7 }’) ..>_. limsupfn(fm )’n);

n—+400
then:
i) w-limsup A?,,(e) C A?(e),
n—>+400
ii) lim @,(e) =a(e).
n—>—+400
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