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SOME RELATIONS BETWEEN DUALITY THEORY
FOR EXTREMUM PROBLEMS AND
VARIATIONAL INEQUALITIES

GIANDOMENICO MASTROENI

After revisiting the well-known relationships with the minimax theory,
some duality results for constrained extremum problems are related to varia-
tional inequalities. In particular, the connections with saddle point conditions
and gap functions associated to the variational inequality are analysed.

1. Introduction.

Consider the variational inequality:find y* € K € R” such that
(VD (F(y",x=y") 20 VxekK

where F : R” — R". From the simple remark that if the point (y*, x*) € K x K
is a saddle point for the function ¢ (y, x) := (F(y), y — x) on K x K thatis

(L1) (FOY"), y*=x) S (F"), y*—x*) <{F(),y—x*) Y(,x)e KxK

then y* is a solution for (VI), we will consider (Section 2) the problem suggested
by the second inequality of (1.1), the problem of finding x* € K such that

(VI¥) (F(y),y—x")>0 VyeKk.
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It is known that if F is continuous and pseudomonotone then y* € K solves (VD)
if and only if x* = y* solves (VI*).
In Section 3 we will consider the generalized complementary problem:

(GCP) find y € K such that F(y) € K* and (F(3), y) = 0

where K is assumed to be a closed convex cone and K* is the positive polar of

K.
We will show that, if (GCP) has a solution, in the particular case in which

K is a closed convex cone containing the origin of R” and the function ¢(y, x)
is convex (or invex in the differentiable case) with respect to y, Vx € K, then
a solution x* of (VI*) is a solution of the dual of the constrained extremum
problem:

min(F(y),y) st F(y)eK* yeK

when its extreme value is equal to zero; in this case the previous problem is
equivalent to (GCP). Since with the above convexity hypothesis (GCP) is also e-
quivalent to (VI), we obtain a duality relation between (VI) and (VI*) equivalent
to the saddle point condition expressed by (1.1).

Section 4 will be devoted to the analysis of the gap function approach for
the solution of a variational and quasi-variational inequality, pointing out some
connection with the minimax formulation for a (VI) considered in Section 2.

2. Variational inequalities and minimax theory.
Let us recall some not_ations that will be used in what follows: int M will
denote the interior of the set M € R”, if C is a cone

C*:={yeR" | (x,y) 20, VxeC]

will denote the positive polar of C, a > b iff a — b € C. Moreover we will say

(o
that the mapping F is pseudo-monotone on X if:
(FO),x=y) 20 implies (F(x),x—y 20 Vx,yeK.

In this Section we will point out some relationships between minimax the-
ory and variational inequalities. This will be useful since it will allow to show
some connections with duality that is deeply related to the minimax theory. Let
us recall the following result due to K. Fan [4] as reported in [1]:
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Theorem 2.1. Let E be a topological vector space, let K be a nonempty com-
pact setin E and let ¢ be a real-valued function on K x K. Suppose that

(@ ¢(,y) <0 Vyek;

(b) V fixed y € K, the map x — ¢(x, y) is quasiconcave on K ;

(c) for every fixed x € K, the map y — ¢(x,y) is lower semicontinuous on
K.

Then there exists a vector y* € K such that ¢(x, y*) <0 VxeKk.

An immediate corollary of the previous theorem is the well known result
on the existence of a solution of (VI) due to Hartman and Stampacchia [7]:

Corollary 2.1. Let F : R" — R” be continuous on the convex and compact set
K C R”. Then there exists y* € K such that

(F(39"), x —y*) =20 VxeKk.

Proof. Let¢(x,y) := (F(y), y—x); the hypothesis of Theorem 2.1 are fulfilled
and therefore the thesis follows.

Consider now the problem of finding x* € K such that
(VI¥) (F(y),y—x")=0 VyeKk.

It is known [9] that if F is a continuous pseudomonotone mapping then y* € K
solves (VI) if and only if x* = y* solves (VI*).

Still from Theorem 2.1 we obtain the following result:

Proposition 2.1. Let F : R* — R” be continuous on the convex and compact
set K CR"andVx €K, themap y — (F(y), y—x) quasi-convex on K. Then
both problems (V1) and (VI*) admit a solution.

Proof. Let ¢(x,y) := (F(y),y — x); (VI) admits a solution for the previous
corollary, moreover the function —¢ (x, y) satisfies the hypothesis of Theorem
2.1 and therefore there exists x* such that —¢(x*, y) < 0 from which thesis
follows.

The next proposition provides a minimax formulation for the problems (VI)
and (VI*): Y
Proposition 2.2. Let dx,y):=(F(y),y—x),
1) (V1) admits a solution if and only if
(2.1) inf supgp(x,y) =0

yeK xekK
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and the infimum is attained;
i) (VI*) admits a solution if and only if

sup inf ¢(x,y) =0
xeK yek

and the supremum is attaineci}
3i) y* € K and x* € K are the respective solutions of the problems (V1) and

(VI*) if and only if (x*, y*) is a saddle point for ¢ (x,y) on K x K.
Proof. 1) See [8].
ii) Let h(x) := inlf{(F(y), y — x). It is immediate that A(x) < 0Vx € K and
Y€
that x* € K is a solution for (VI*) if and only if A(x*) = 0 which is equivalent
to the fact that

0=nh(x") = max h(x) = max }2£ ¢(x,y).

3i) Since y* and x* are solutions of the problems (VI) and (VI*), it will neces-
sarily be (F(y*), y* — x*) = 0 because x* and y* € K and the two inequalities

given by (VI) and (VI*) must hold.
Therefore, from i) and ii), it follows that the point (x*, y*) is a saddle-point for

¢(x,y)on K x K.
Viceversa let (x*, y*) € K x K a saddle point for ¢ on K x K, thatis:

(FO™), y" = x) S(F(y"), y* =x%) =(F(»),y —x") Y, x)eK xK.
Evaluating the previous inequalities at the point (x*, y*) we obtain
(FO™,y*=x% =0

from which the thesis follows since the first inequality states that y* is a solution
for (VI), while the second that x* is a solution for (VI*).

3. Complementary problems and variational inequalities:duality connec-
tions.

Following the results of the last section we will give a dual interpretation
of the problem (VI*) with respect to a complementary problem.

First of all we will recall some properties concerning saddle points of the
lagrangean function associated to a constrained extremum problem of the fol-

lowing kind:
(P) min f(x) st xeX, g(x)ek
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where K C R™ is a closed convex cone, X CR"” and g : X — R™,

Let L(x,A) : X x K* - R, L(x,A) = f(x) — (X, g(x)), the lagrangean
function associated to (P).

Let us recall the following well-known results:

Proposition 3.1. If (x*, A*) is a saddle point for L(x, A) on X x K*, that is
L(x*,A) < L(x*,A*) <L(x,A*) VxeX, VAeK™,
then \* is a solution of the lagrangean dual of the problem (P) defined by:

(D) sup inf L(x, A).
rAeK* xeX

Proposition 3.2. Let L(x, A) be convex (or invex in the differentiable case) with
respect to x, VA € K* and let x’ € R" such that g(x’) €int K. Then
i) x* is a solution for (P) if and only if there exists A* € K* such that (x*, A*)
is a saddle point for L on X x K*.
ii) if (P) has a solution then (D) has the same optimal value of (P).

For a proof of the previous propositions see for example [5].
Consider the generalized complementary problem:

(GCP) find y € K such that F(y) € K* and (F(y),y) =0

where K C R” is a closed convex cone, containing the origin of R”, and K* is
the positive polar of XK.

It is known that [9], [3]:

Remark 3.1 ([6]). y* solves (GCP) if and only if y* solves (VI) with feasible
set K and F defined as for (GCP).

Proposition 3.3 ([3]). A vector y* € K solves (GCP) if and only if y* is a
solution of the problem:

(3.1) min(F(y),y) st FO)eK* yek

and (F(y*), y*) = 0.

The previous proposition allows us to express the complementary problem
(GCP) in terms of an optimization problem of which we can consider the la-
grangean dual. We will see that, if (GCP) has a solution, then the dual problem
of (3.1) is equivalent to the problem (VI*).
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Remark 3.2. We observe that the lagrangean function associated to (3.1) de-
finedby L : K x K — R (we recall that (K*)* = K since 0€ K) L(y,A) =
(F(y),y) — (A, F(y)) coincides with the function ¢ (x,y) := (F(y),y — x)
defined in Proposition 2.2.

Proposition 3.4. Suppose that the function L(y, X) := (F(y), y — A) is convex
with respect to y, YA € K, that there exists y' € K such that F(y') €int K* and
that the problem (GCP) has a solution.

Then (VI*) admits a solution and x* solves (VI*) if and only if A* = x* is
a solution of the lagrangean dual of (3.1).

Proof. Let y* € K a solution of (GCP) and, from Remark 3.1, of (VI). For
Proposition 3.3 y* is a solution of problem (3.1) and, for Proposition 3.2 i), this is
equivalent to the fact that there exists A’ € K such that (y*, A’) is a saddle point of
the lagrangean function associated to (3.1), thatis the function L : K x K — R
L(y,A) :=(F(y),y — A) (see Remark 3.2).

Applying Proposition 2.2 3i) we obtain that is equivalent to the fact that A" is a
solution for (VI*) and the proposition is proven.

The following scheme summarizes the relations considered in the last two

sections.
By means of a saddle point condition for the function (F(y), y — x) we have
introduced the problem (VI*):

VD) < Saddle point condition VT

In the hypothesis that K is a closed convex cone with 0 € K we have the
following equivalence (<=):

(VD) <= (GCP) <= (P)

|

Duality

(VI*) « > (P)

where (P) is problem (3.1) and (P*) its lagrangean dual; two problem are equi-
valent (<) if their solutions coincide.
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4. Variational inequalities and gap functions.
Consider the variational inequality (VI) with feasible set K := {x € X :
g(x) >0} where g : X -» R™, X € R” and C C R™ is a closed convex cone.
C
We observe that y* € K is a solution for (VI) iff the constrained extremum
problem:

P(y*) max(F (y), y* — x)

xeX

admits a solution such that p(y*) = 0, where
(4.1) p(y) = max(F(y),y = x).

Definition 4.1 ([9]). Given a variational inequality (VI), p : R* — R is a gap
function for (V1) iff:

) p(0) 20 Vyek;

ii) p(y) =0 ifand only if y is a solution for (VI).

Remark 4.1. From the previous definition it is immediate that (VI) is equivalent
to the problem of finding the global minimum of a gap function on the set XK.

Proposition 4.1. The function p defined by (4.1) is a gap function.

Proof. We have to prove i) and ii) of Definition 4.1.
i) is immediate since x* = y is a feasible point for P(y) Vye K.
ii) follows from i) of Proposition 2.2.

Remark 4.2. We observe that the gap function formulation of (VI), with gap
function defined by (4.1), is equivalent to the minimax formulation given by

(2.1).

The gap function given by (4.1), which was introduced by Auslender [2], is
the marginal function of the parametric problem P(y) by which we express, in an
equivalent form, the variational inequality (VI). Therefore it is possible to define
the gap function p(y) considering a problem Q(y) equivalent to P(y), where the
equivalence must be interpreted in the sense:that Q(y) and P(y) have the same
marginal functions.

To illustrate this scheme consider a function y : R” — R™ with the

following property:

y(2)>02z>0 Vzeg(X):={veR":v=g(x), xeX}.
C C .



302 GIANDOMENICO MASTROENI
It is immediate that the parametric problem

Q(y) m;ix(F(y), y—x) st yEk) _C>;O, xeX

is equivalent to the problem P(y),:since the respective feasible regions and ob-
jective functions coincide.

Remark 4.3. The advantage of considering problem Q(y) lies in the fact that the
function y (g(x)) may have better properties than g (x), for example the convex-
ity. In this way the construction of the gap function p(y) may be simplified.

The next proposition provides another equivalent formulation of the gap
function p(y) by means of the lagrangean dual of the problem Q(y):

Proposition 4.2. Assume that the function —y (g(x)) is convex and there exists
a point x* € X such that y(g(x*)) €int C. Then

(4.2) p(y) = min max [(F(y), y —x) + (, y ()]

Proof. In the hypothesis of the proposition Q(y) is a regular convex problem
Vy € K, therefore the lagrangean dual of Q(y), which is the problem expressed
by the right term of (4.2), has the same optimal value of Q(y) Vy € K.

Consider now the case of a quasi-variational inequality (QVI) defined in the
following way:

findye K(y)s. t. (F(y),x—y) >0 VxeK(y):={xeX:g,y) >0},

where g : X x X —- R™ and X C R”. ,
For a quasi-variational inequality the definition of the gap functions is

slightly modified. Let Y := {y €eX:ye K(y)}.

Definition 4.2 ([6]). Given a quasi-variational inequality (QVI), p: Y — Ris
a gap function for (QVI) if and only if:

) p(y) =0Vyeyr:
i1) p(y) =0 ifand only if y is a solution for (QVI).

As in the case of a variational inequality a gap function for (QVI) may be
obtained considering the marginal function of the parametric problem:

QP(y) mxax(F(y), y—x) st xeK(y):= {x eX:glx,y) _?_O};
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we observe that

(4.3) p(y) = (F(y),y —x)

max

xeK(y)
is a gap function for (QVI).

In the quasi-variational case, considering the lagrangean dual of QP(y), it

is possible to formulate a gap function for (QVI) non necessarily equal to p(y)

defined by (4.3).
Consider the optimal function W (y) of the lagrangean dual of QP(y),

W (y) := min max [(F(),y —x)+ (A, gx, )]
We have seen that, in the case of a simple variational inequality with regular
constraints, the optimal function of P(y) coincides with the one of its lagrangean
dual Vy € K. In the present case in general we have that p(y) # W(y). If we
ensure that p(y*) = W (y*) whenever p(y*) = 0 we can show that W(y) is a
gap function for QVI as stated in the following theorem.
Let S:={yeY | p(y)=0}.

Theorem 4.1. Let L(x;A,y) = (F(y),y — x) + (A, g(x, y)) be convex (or
invex in the differentiable case) with respect to x, VA € C*, Vy* € S, and assume
that, ¥ y* € S, there exists x’ € X such that g(x', y*) € int C. Then

g : mi L(x, A;
(y) : min max L(x, 4; y)

is a gap function for (QVI).

Proof. We have to prove that ¥ (y) fulfils i) and ii) of Definition 4.2. Since
W(y) is the optimal value of the lagrangean dual of QP(y), for the weak duality
' theorem, we have W(y) > p(y) > 0VyeY,thatisi).

_From‘ii) of Proposition 3.2 we obtain that ¥ (y) = 0 Vy € §; therefore ii) of
Definition 4.2 holds and the theorem is proven.
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