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OPTIMIZATION PROBLEMS WITH SIDE CONSTRAINTS
AND GENERALIZED EQUILIBRIUM PRINCIPLES

ANTONINO MAUGERI

In this paper we show how the “Wardrop Equilibrium Principle” must be
modified when capacities for the paths of a network are introduced. Moreover
we show that the equilibrium condition can be still expressed in terms of a

Variational inequality.

1. Introduction.

Variational inequalities describe equilibria in network flow problems in the
general setting of non standard and asymmetric cost functions.

Recently it was remarked by F. Giannessi [2] and P. Ferrari [1] that the mod-
els usually considered do not take into account the “capacity” of the paths of
network and, consequently, the same “Wardrop Equilibrium principle” is unre-
alistic.

Then it seems to be very reasonable to introduce capacities (i.e. a particular
kind of side constraints) for the paths and to carry out researches to find

i) How the “Wardrop Equilibrium principle” must be modified
ii) and if the modified principle can be still expressed in terms of Variational
Inequalities.

Moreover T. Larsson and M. Patriksson [3] present a standard side con-
strained traffic equilibrium problem that leads to an optimization formulation
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and has optimality conditions that correspond to a generalization of Wardrop
Equilibrium Principle.

T. Larsson and M. Patriksson also observe that, under the additional hy-
pothesis that flow relationships modelled trough the introduction of asymmet-
ric travel cost functions are better represented by a set of side constraints, the
asymmetric model is equivalent to a symmetric one with a travel cost function
containing unknown multipliers.

The approach above is appreciable, but its effectiveness must be verified.

The aim of this paper is to show how the “Wardrop Equilibrium Principle”
must be modified when capacities afe introduced in the asymmetric equilibrium
model and that it can be equivalently expressed in terms of Variational Inequal-
ities.

Moreover we provide a comparison of the results obtained in the general
case and those obtained in the standard one, and, as a consequence, an appropri-
ate meaning of Lagrange multipliers will arise.

2. Generalized user’s equilibrium principle.

Let us consider a traffic network (N, L, W) where (see A. Maugeri [4] for
more details):

L = (P, P5,..., Py) isthe set of nodes,

N ={aj,ay,...,a,} isthe setof links,

W = {wy, wa, ..., we} is the set of Origin Destination pairs

and let us denote by:

R, r =1,..., m the paths connecting the O/D pairs
Z; = {R,: R, connects the O/D pair w;}
¢
Z =) %
o=l
F'=(F, F,, ..., F,) the path-flow vector
(the apex denotes the transposition);
C'(F) = (Ci(F), Cy(F), ..., Cn(F)) the path-cost vector;
o' = (p1, p2, ..., pe) the vector travel demand between the O/D pairs w s
1 if R, €%;
$jr = :
0 otherwise
(g is the pair-path incidence matrix);
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A = {5,,-} i=1,..n

r==1,..,m

0 otherwise

(A is the link-flow incidence matrix);

f =1, f2r ..., fn) link-flow vector;

c(f) = (c1(f), ca(f), ..., ca(f)) the link-cost vector;
itresults: f = AF, c(F) = A'c(AF).

Let us assume that there exist m positive numbers I',, r = 1,2, ..., m, that
represent the capacities on path-flow: o

5 2{1 if a; €R,

(2.1) F<I', r=12,...,m.

If we denote by y;,i = 1,2,...,n, the capacities, of the links a;, i =
1,2,...,n, then it results:
(2.2) AT < y.

Now setting

K:{FeR"’:OsF,sI“,, r=1,2,....m

m
downF=p, j=12...¢
r=1

and assuming that

(2.3) Y oepTrzp j=1,2,...,¢

r=1
we may give the following

Generalized user’s equilibrium principle. A vector H € K will be an equi-
librium vector (from the user’s point of view) when for every %; and for every
R,, Ry € Z; if it results

C,(H)>Cs(H) and H; <T,

then
H =0
and if .
C,(H)>Cs(H) and H; =T,
then

H, > 0.
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Remark 2.1. Let H be an equilibrium vector according with the principle above.

Let us set:
Aj={r:1<r=<m, vr=1} j=1,...,¢

Bj={reA;:H, >0} j=1,...,¢
D; =A; \ B;.
and let us denote '
C/(H) =maxC,(H).
rij

It is easy to show that:

Ifre Bjand C"(H) < C/(H), then H, =T,.
Remark 2.2. Let H be an equilibrium solution and let us set:
(2.4) Li(H)=C/(H)—-C.(H) reB;
and

C.(H)+Li(H)=C/(H) if reB,

2.5 C.(H) =
(2 ) {c,(H) if reD;.

Then it is easy to show that the “Generalized Equilibrium Principle” can be
expressed in the following way: '
H € X is an equilibrium vector if VZ;, Y R,, R; € Z; if it results

(2.6) C.(H) > C,(H)

then
H. =0.

Proof. Let H be an equilibrium solution and let us assume that the inequality
C,(H) > C(H)

holds. Then both the indexes r, s can not belong to B;; moreover it is also
impossible that it results » € Bj, s € D; because, in this situation, H; must be
greater than zero. Conversely if r € D; and s € B; the estimate above becomes

C,(H) > C/(H)

and
H, =0.

Now let us show
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Theorem 2.1. H € K is an equilibrium solution if and only if
2.7) C(H)(F—-H)>0 VFeKk.

Proof. Let H be an equilibrium solution and let us observe that

£

CH)F—H)=) > C.(H)F,~H)=

Jj=1 reA;
£
=> [ > C(H)(F, = H)+ Y C.(H)(F, - H»} =
Jj=1 LreB; rebD;
b/
=> { Y C(H)F,—H)+ Y C/(H)F—H)+ Y c,(H)F,} >
Jj=1 reB; reB; reD;
Lr(H)>0 Ly (H)=0

> Z{ Y. (C/H) - LiE) (F, = H)+ Y CI(H)F - H)+

j=l rij l‘EBj
Ll o L an=o
£
+ Z C’(H)Fr] = ZC’(H) Z(F, — H,) —
reD; Jj=1 reAj

£

£
=D LIt Y (F—-H)=-) Li(H) ) (F,~T,) 20,
Jj=1 rgB,- Jj=1 reB;

Ll an=o

having taken into account the result of Remark 2.1.
Conversely let H a solution to (2.7) and suppose that there exist w; € W,
R,, R; € R; such that

C,(H)>Cs(H) and H; <T.

Let us show that H, = 0. To this and let us suppose H, > 0 and let us consider
the vector F, the components of which are such that

Hy if h#r,s
Fy=1{ H —[I"; — H] if r=h and H, >T, — H
Iy if h =s.

Then F € K and we have the contradiction:
C(H)(F—-H)=C,(H)(H — (I's — Hy;) — H,) + Cs(H)(Ts — Hy) =
= (CS(H) - Cr(H))(Fs — H;) < 0.
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Analogously if 0 < H, < I's — H; it is enough to consider the vector F the
components of which are:

Hy if h#rs
Fh= 0\‘ if h=r
H +H  ifh=s

and to repeat the same calculation.

3. A comparison with a standard model with side constraints.

T. Larsson and M. Patriksson consider the standard model, i.e. a model with
separable travel link cost functions (we use our notations):

(3.1) ci=c(fi) i=1,...,n

and recalls that a solution to Wardrop conditions can be found by solving the
convex network optimization problem

n_ o f
(3.2) minT_(f)“zefZ/ ¢i(s) ds
i=1 Y0
subject to:
(3.3) dviFr=p j=1,...,¢
r=1
(3.4) F,>0 r=1,....m
(3.5) fi=) &F i=1,..,n.

To capture supplementary traffic flow relationship they introduce side con-
straints:

(3.6) g(f) <0 ke%

where
g :RL >R ke¥

are convex and continuously differentiable functions and € consists of the index
set of the links, nodes, paths or O/D pairs, or any combination of subsets of them
and he shows the following
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Theorem 3.1. Let C/, j = 1,...,4, and B, k € €, the Lagrange multipliers
for the constraints (3.3) and (3.6), respectively. If (h, H) is a solution to the
problem (3.1) - (3.6) then

(3.7) H>0=CH)=C j=1,...,¢
(3.8) H=0=C,(H)>C/ j=1,...,¢
where
~ 9
(3.9) C.(H) = C, (H)+Za,, 3 @ 8k(f)
i=1 ke€ a‘f’

From this result, the authors deduce that the optimality conditions of the
problem (3.1)-(3.6) give rise to a Wardrop equilibrium principle in terms of gen-

eralized path travel costs.
The proof is obtained by considering the stationary point conditions for the La—

grangean function

nof
LA =) [ a@ds+ 3 prarr -

—ZAF Z( Z‘a,,F)u,, Zl(gwﬂ,_pj)a

where A,, u; are the Lagrange multipliers for the constraints (3.4) and (3.5)

respectively.
In the case of simple upper bounds on the link flows

fi—=vi<0 i=1,...,n

(3.9) reduces to
(3.10) C.(H) = C.(H) + )_ 8. B;.
i=1

From a comparison with (2.5) we obtain (the optimal multipliers are not neces-
sary unique):

ZS,-kﬂ; =L,(H) for reB;
i=1

n
Y 8,8 =0 for reD
i=1
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and it is possible to obtain an interpretation of the optimal Lagrange multipliers.

In fact .
Z Six Bi
i=1

can be considered as the optimal Lagrange multipliers with respect to the path
and, then, we may conclude that they represent an Additional equilibrium cost

on saturated paths.
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