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ON GENERAL NONLINEAR COMPLEMENTARITY
PROBLEMS AND QUASI-EQUILIBRIA

M. ASLAM NOOR - WERNER OETTLI

In this note we compare different approaches for establishing solvability
of nonlinear complementarity problems, quasi-variational inequalities, and
quasi-equilibrium problems.

1. Introduction and problem setting.

The classical case of a complementarity problem consists in finding ¥ € H
such that

(1) uek, T@eKk* u,Tm)=0.

Here H is areal Hilbert space, T : H — H is a given mapping, K C H is a
closed convex cone, and K* := {z€ H | (x,z) = 0 Vx € K} is the polar cone
of K. In most applications, H = R" and K = K* = R’,. This problem has been
studied by many authors, and we refer to the references for further information.

In this paper we are mainly interested in the so-called quasi-complementa-
rity problem of finding 7 € H such that  °

(2) ueC, Sw ek, TwyekK*, (Sm), Tw)) =0.

Here C C H is aconvex set, and S : H — H is another mapping. The
set C is sometimes introduced artificially to compactify a given problem. Note
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that problem (2) is symmetric with respect to S, K on one hand and T, K* on
the other hand, since K** = K. It seems therefore appropriate to call (2)
the symmetric nonlinear complementarity problem (for linear complementarity

problems, symmetry has a different meaning).
In fact, whenever possible we formulate the results for a still more general

quasi-complementarity problem, néimely to find ¥, x € X and y € X* such that
3) ueC, xeKNSw), yeK*NTmw), x,y)=0.

Here X is areal topological vector space, X* its topological dual (endowed with
the weak* topology), C C X isagivenset, S : C3 X and T : C3 X* are
multivalued mappings (*), K C X is a closed convex cone, and

={yeX*|(x,y)20 VxeK]}

its polar cone. If § = Id (the identity mapping), then (3) leads back to a
multivalued variant of (1). We consider problem (3) as the pilot problem within

this framework.
Problem (1) is a special case of a variational inequality problem In the

latter one has to find ¥ € X, y € X* such that

4 ueC,yeTw), (u—u,y)>0 VueC.

If X is a cone, then one has for arbitrary u € K the equivalence

(5) (Yek* @5 =0)<= (u—u,5 =0 Yuek).

So Problem (1) is equivalent withw € K, (u — %, TW)) >0 VYueK,andis
therefore a special case of (4). The general quasi-complementarity problem (3)

on the other hand is more properly related to what is called a quasi-variational
inequality problem. In the latter one has to determine & € X, y € X* such that

6) ueC,uckKwm), yeT@m), (u—u,y) >0 YueK®@).
Here CC X, K :C3 X, T : C3 X*. With K(u) = C, (6) leads back to (4).

If we set K(u) := u — S(u) + K in (6), then for every solution &, y of (6) there
exists X such that #, x, y is a solution of (3); this follows easily by means of (5)

(1) For multivalued mappings we follow the terminology of Berge [4], except that upper
semicontinuity of a mapping 7'(-) does not imply the compactness of T (x).
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(see also the proof of Theorem 4 below). Conversely, if S(-) is single-valued and
u,y solves (3), then &, y is also a solution of (6) under this choice of K ).

Problems (4) and (6) can be further generalized to equilibrium problems and
quasi-equilibrium problems, respectively. In the quasi-equilibrium problem one
has to find @ € X, y € Y such that

(7) ueC, uek@), yeT@), f(v,y) = f(®,y) YveK®@).

Here Y is another topological vector space, C ¢ X, K : C3 X , T :C3Y,
f:CxY — R If K(u) = C, then we call (7) an equilibrium problem. 1t is
clear that (4) is an equilibrium problem, and (6) is a quasi-equilibrium problem.
Quasi-equilibria constitute also an extension of Nash equilibria, which are of
fundamental importance in the theory of noncooperative games.

Under additional assumptions Problem (7) can be represented more con-
cisely. Namely, let ¥ : C x C — R be defined through

Y, v) = sup (f(v,y)— fu,y)).

YET (u)

Then it is obvious, if &, ¥ solves (7), that % is a solution of
(8) ueC,uekKm), y(u,v) >0 VYveK®@m).

Conversely, if u solves (8), and if we assume that K (w) is convex, T (u) is
convex, compact, # @, f(v, y) — f (4, y) is convex in v, and concave and upper
semicontinuous in y, then there exists ¥ € T (&) such that 7, y solves (7). This
is non-trivial (except when T is single-valued), and requires tools from convex
analysis; see [5], Lemma 1.

In Section 2 we derive solvability results for (7),(6),(3) from a topological
fixed point theorem. In Section 3 we treat the case when T is monotone; here our
tool is convex separation in R”. In Section 4 we treat problem (6) with T single-
valued and monotone by means of projection mappings and Banach’s fixed point

theorem.

2. Existence results.

In this section we obtain results about the existence of solutions of varia-
tional inequalities using a topological fixed point theorem. Let us work within
the setting of two real, locally convex, separated topological vector spaces X and
Y, and let us first investigate the case of a symmetric quasi-equilibrium, in the

sense of (9) below.
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Theorem 1. For C ¢ X, D Cc Y, S : Cx D3C, T : C x D3 D,
f:CxD—>R, g:C x D —> R let the following assumptions hold:

(i) C and D are nonempty, compact and convex,

(i) S and T are upper semicontinuous with nonempty, compact, convex values;
(ii1) f and g are lower semicontinuous; f(-,y) and g(x, ) are quasi-convex;
(iv) the functions

F(x,y) :=min{f (&, y) | § € S(x, »},
G(x,y) :=min{g(x,n) | neT(x, y)}

are upper semicontinuous on C x D,
Then there exists (x,y) € C x D such that

xeSx,y), f(&x,3) = f(X,7) VxeSK,Y),

%)
YeT(X,y), g(x,y) 2¢g*y) VyeT(X,73).

Proof. Define multivalued mappings A:C x D= C,B:C x D3 D by

Ax,y) :={5eSkx,y) | f&,y)=F(x,y)},
B(x,y):={neT(x,y)|gkx,n =G, y}

Then A(x, y) is nonempty, compact and convex for all (x, y) € C x D. Since §
and F are upper semicontinuous and f is lower semicontinuous, the mapping A
is upper semicontinuous; this follows from a close examination of the proof of
Berge’s maximum theorem [4], p. 123. The mapping B has the same properties,
and we conclude that the mapping ¢ : C x D3 C x D, defined by ¢ (x, y) :=
(A x B)(x,y), is upper semicontinuous and has nonempty, compact, convex
values. Thus ¢ satisfies the requirements of Ky Fan’s theorem [13], p. 109,
which implies that there exists a fixed point (X, y) € ¢ (x, y).
Then (X, y) satisfies (9). (]

Remark 1. Let us briefly discuss assumption (iv). The upper semicontinuity of
F and G is ensured whenever S and T are l.s.c. and f and g are u.s.c.. This
follows from Théoréme 1 in [4], p. 122. If f =0 and g =0, then F and G are
trivially u.s.c.; Theorem 1 becomes then a pure fixed point result for the mapping
(S x T)(x,y). If S(x,y) = C and f is u.s.c. in the second argument, then
F is independent of x and u.s.c. in y, being the infimum of a family of u.s.c.
functions.
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In somewhat less general form Theorem 1 is well-known in Game Theory;
compare [2], p. 282.
Theorem2. For CC X, DCY,S:C3C, T:C3D, f:CxD — Rlet
the following assumptions hold:

(1) C and D are nonempty, compact and convex;
(i) T is upper semicontinuous with nonempty, compact, convex values;
(1ii) S is continuous with nonempty, compact, convex values;
(iv) f(, ) is quasiconvex in the first argument, and continuous jointly in both

arguments.
Then there exists (X, y) € C x D such that
(10) XeS®), JeTR®), fx,5) = f(X,¥) VxeSX).

Proof. The conclusion of the theorem is an immediate consequence of Theorem
1, where g = 0, together with Remark 1. U

By making use of an additional coercivity condition it is possible to weaken
the compactness assumption concerning S(x). The function f, however, must
then be convex in the first argument. Let us recall before that, given two subsets
A and B of some topological vector space with A convex and A C B, the core
of A relative to B, denoted by coreg A, consists of all elements a € A such that

(a,blNA#P forall beB\A.
We note the following: If a € coreg A and r(-) is convex, then
v@) =y(x) VxeA
implies
Vv(a) <y(x) VxeB.
Indeed, if & € B and ¥ (b) < ¥ (a), then from convexity of ¥, ¥ (x) < ¥ (a)

for all x € (a, b], and therefore also ¥ (x) < v (a) for some x € (a, b]N A # @,
a contradiction with the premissa.

Theorem 3. ForCC X, DCY, T:C3D,S:C3X,f:CxD — R,
S (x) := S(x) N C let the following assumptions hold:

(1) C and D are nonempty, compact and convex;

(i) T is upper semicontinuous, and has nonempty, compact, convex values;
(iii) S is continuous, and has nonempty, conipact, convex values;
(iv) f is convexin the first argument, and continuous jointly in both arguments;
(v) forall x € C with x € S(x) and all y € T (x) there exists £ € core S(x)S (x)

such that f(§,y) < f(x,y).

Then (10) has a solution.
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Proof. By Theorem 2, where we replace S(-) by E(.), we obtain the existence
of x € S(x), y € T (X) such that

FEP < fx) VreS®.
Now (v) provides € € S () such tﬁat
FE Y =fEY),

hence

fEY) < fx,5) VxeS@.

But since & € core S@® E(f) and f is convex in the first argument, this inequality
even holds true for all x € S(X), which implies

fFEY = fxy) VxeS®). O

Note that assumption (v) is trivially satisfied for all x € C with x € COres(x) S (x),
since we may then choose & := x independent of y.

Let us now consider the general quasi-complementarity problem, which
comes out from (11) below when K is a cone. We assume in the remainder of this
section that X is a barrelled (e.g. Banach) space, and that X* bears the weak*

topology.

Theorem 4. ForK C X,C C X,§S:C3X, T :C3X* K@ :
u—Su)+K, K (u) := K(u) N C let the following assumptions hold:

(1) C is nonempty, compact and convex;
(i1) T is upper semicontinuous and has nonempty, convex, compact values;
(iii) K is continuous and has nonempty, convex, compact values;
@iv) for all u € C withu € K (u) and for all y € T(u) there exists v €
coreK(u)K(u) such that (v —u, y) <0.

Then there exist u,X € X and y € X* such that

(1)  %eC,¥eKNS@, eT®@), (x—%5) >0 VxeKk.

Proof. Due to the fact that T is upper semicontinuous and C is compact, T'(C)
is also compact [4], p. 116; hence cl conv T (C) is nonempty, convex and — since
X is barrelled and X* bears the weak* topology — again compact. So, setting
Y := X*, D :=clconvT(C), we have found a set D as required in Theorem 3.
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From Theorem 3, where S(-) is replaced by K(-), we obtain & € X, y e X*
satisfying

ueC, uekw), yeTWm), u—u,y)>0 VYueK®).

In view of the definition of K (1) there exists X € S(%), such that

It follows that x € K N S(#) and (x —X,y) >0 Vx € K. Altogether we have
obtained a solution of (11). O

In particular, if S is the identity mapping and C C K, we have K (1) = K,
and K (u) = C. Thus we obtain the following

Corollary 1. Let the following assumptions hold:
(i) K C X is convex;
(i) T : K3 X* is upper semicontinuous and has nonempty, convex, compact

values;
(iii) there exists C C K convex, compact, nonempty such that for all u €

C \ corex C there exists v € corex C satisfying sup (v —u, y) <0.
Y€T (u)

Then there existu € C, y € T (u) such that (v —u,y) >0 Vvek.

Note that assumption (iii) is trivially fulfilled if K is compact. Indeed, we
simply set C := K and note that K \ corex K = 0.

Let us mention that Theorem 4 and Corollary 1 remain valid if X is a
normed space and X* bears the norm topology; X* is then complete, and so the
compactness of T(C) implies again the compactness of cl conv T (C).

3. The monotone case.

Working with monotone mappings makes it possible to weaken the con-
tinuity assumptions concerning T'. Moreover in this case we can use separa-
tion results instead of fixed point results. Recall that a multivalued mapping
T : X3 X*is called monotone iff 5

(12) (X1 —x2,61 — &) =0 V(x1,&1), (x2,&) €graphT.

In the proof of the next theorem we shall use the following lemma named after
, Fan-Glicksberg-Hoffman.
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Lemma. IfI" is a convex setand f; : T — R (i = 1,...,n) are convex
Junctions such that max; f;(x) > 0Vx €T, then there exist real numbers u; > 0

(G=1,...,n)with ) ,u; =1suchthat ), u; fi(x) >0 VxeT.

The lemma is an immediate consequence of the separation theorem for
convex sets in R”, for if max; f;(x) > 0 on I', then 0 € R” is not an interior
point of the convexset D := {z € R" | xel, z; > filx) (i = 1,...,n)},
hence can be weakly separated from D by a linear functional (u, -) with u # 0
[31].

Theorem 5. 'Let X, Y be real topological vector spaces. For C C K C X,
T:C3Y, f:K xC xY — R let the following assumptions hold:

(1) K is convex; C is compact, convex, nonempty;

(ii) T is upper semicontinuous on [x,x) for all x,x € C; T has compact,
convex, nonempty values; '

(i) forallxeC,xe€C, yeY,

f(, X, y) is convex and lower semicontinuous,
f(x,Xx, ") is concave,
f(x,-, ) is upper semicontinuous on [X, x] x Y;

(iv) f(x,x,y) = Oforall (x,y) € graphT; f and T are jointly monotone
in the sense that f(x2,x1, y1) + f(x1,x2,¥2) <0 V(x1,y1), (X2, ) €
graphT';

(v) forallxe C andall y € T (x) there exists § € coreg C suchthat f(§,x,y)<
0.

Then there exists X € C, y € T(X) such that f(x,x,y) >0forallx€ K.

Proof. Let (x;,y;) € graphT (i = 1,...,n) be chosen arbitrarily. The
lower semicontinuous function max; f(-, x;, y;) assumes its minimum on the

compact set ¥ := conv{xy,...,X,} in some point £ € X, say. Let m :=
max; f(§,x;, ;). Then max; f(x,x;,y;) > mVx € . By the lemma of
Fan-Glicksberg-Hoffman follows the existence of u; > 0 (i = 1,...,n) with

Diuio=land Y uif(x,xi,y) >m V¥xeX. LetX := Y, u;x;. Then
X € T, and therefore

m < Zuif(f, Xiy ¥i) < Zzuiujf(xj,xi, yi) =
i J

i

1
== ) wiu; (f(x, %, yi) + fxi, x5, ) <0.
24

From max; f(&, x;, y;) = m < 0 follows then

fEx,y)<0 (i=1,...,n).
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Let S(x,y):=1{6§€C | f(§,x,y) <0}, (x,y) €graph T. We have just proved
that any finite collection of the closed sets S(x, y) has nonempty intersection.
Since C is compact, the entire family has nonempty intersection. So there exists
x € C satisfying
fx,x,y) <0VY(x,y)egraphT.

Let x € C be arbitrary and set x(¢) := ¥ +¢t(x —X) where 0 <t < 1. We
have just proved that f(x, x(¢),y) < O forall y € T(x(¢)). Therefore for all
y €T (x(t)) we have

0= f(x(®), x(0), ) < 1 (&, x(1), ) + (L = ) fF %), y) < tf (x, x(2), y).

Hence f(x,x(t),y) = Oforall y € T(x(z)), provided ¢+ > 0. This means that
the function ¢(¢) = max{f(x,x(), y)ly € T(x(®))} (0 < t < 1) satisfies
@) = O0for0 < ¢ < 1. Since T is u.s.c. on [x,x] and f(x,-,-) is u.s.c.
on [x, x] x Y it follows from Berge’s maximum theorem [4] that ¢ is u.s.c. on
[0, 1]. Therefore we obtain ¢(0) > 0, i.e., max{f(x, X, y)|ly € T(X)} > 0. So
forevery x € C there exists y € T (x) such that f(x, X, y) > 0. Assume now, for
contradiction, that the family of closed sets F(x,¢) :={yeT(X) | f(x,X,y) >
—¢}, where x € C and ¢ > 0, has empty intersection on T (x¥). Then, since
T (X) is compact, there exist x;,...,x, € Cand g; > 0,..., ¢, > 0 such that
(V= F(xi, &) = @. With € := min; ¢ this implies that min; f(x;, ¥, y) <
—& Yy € T(x). By the lemma of Fan-Glicksberg-Hoffman we obtain u; > 0
(i =1,...,n)with ) ,u; = lsuchthat ), u; f(x;,X,y) < —€Vy € T(%).
LetX := >, u;x;. Then X € C and f(X,X,y) < —¢ forall y € T(X), in
contradiction to what has already been proved. Hence the family of sets F(x, €)
has nonempty intersection. This means the existence of y € T (X) such that

f(x,%,5) >0 VxeC.

By assumption there exists then § € corexC with f(£,%,y) = O, hence
f¢,%,y) < f(x,x,y¥) Vx € C. Since & € corexC, and f(-,X,V) is convex,
the latter inequality holds even true for all x € K. Hence we have

fx,x,y)>0 VxeKk. O

Remark 2. We note that under the assumptions of Theorem 5 for every ¥ € C
the following statements are equivalent:

@ EFeT®)(VxeC) f(5,E ) > 0;
b  (VxeC)(¥yeT®) f(F,x,y) <0,

Indeed, the implication (b)==>(a) has been shown in the proof of Theorem 5,
and the implication (a)==>(b) follows from the joint monotonicity of f and T.
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From now on let X be locally convex and separated.

Theorem 6. ForC C K C X, T:C3 Y,S:C3 K, f: KxCxY —

R, S (x) = S(x) N C let assumptions (i)-(iv) of Theorem 5 hold. Assume

Sfurthermore that:

%) S is upper semicontinuous and has compact, convex, nonempty values;

(vi) the function H(u,x) = sup{f(x,x,y)|x € S(w),y € T(x)} is lower
semicontinuous on C x C; -

(vii) forall x € C withx € E(x) and all y € T (x) there exists § € coreg(y)S(x)
such that f(&,x,y) <0.

Then there exists (u,y) € C x Y such that

ueS@m), yeT@), f(x,u,y) >0 VxeS@.

Proof. Forevery u € C there exists X € C, y € T (x) such that
(13) xeSw), f(x,%,5) >0 VxeSw).

This follows from Theorem 5, where we replace K and C by E(u). Let Q() :
C 3 C denote the mapping which assigns to each u € C the set of all ¥ € C such
that (13) is satisfied with some y € T(x). Then Q(u) # @ for all u € C. By
Remark 2, Q(u) has the equivalent representation

Ow) ={xeSw) | f(x, %) ¥) <0 VYxeSw), VyeTx))
From this follows that Q(u) is compact and convex, and
Q) = {xeSm) | Hu,%) < 0}.

Since § (+) isupper semicontinuous and H is lower semicontinuous, we conclude
that Q(.) is upper semicontinuous. Hence Q has a fixed point ¥ € Q ().

Thenu u € §(u), and from (13) there exists y € T (&) such that f(x,u,y) > 0
for all x € S(u) Assumptlon (vii) permits to extend the latter inequality to all
xeSk). O

Remark 3. If S(u) = C, then assumption (vi) is automatically satisfied:
H (u,X) is then independent of u and is lower semicontinuous in X, since it is
the supremum of a family of functions which are lower semicontinuous in X.
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We choose now Y := X*, and we assume that X* bears the weak* topology.
Then the function (-, -) : X xX* — R is continuous in each argument separately,
and jointly continuous in both arguments on L x X*, where L C X is an arbitrary
line. So we may choose f (&, x, y) := (€ —x, y) in Theorem 6, and the requested
continuity assumptions on f are satisfied. Moreover, if T is monotone, then f
and T are jointly monotone in the sense of Theorem 5. Recallthat 7 : C 3 X* is
said to be weakly hemicontinuous iff, for every line segment L C C, T is upper
semicontinuous from L into X*, when X* is endowed with the weak* topology.
Then the next result follows from Theorem 6 in the same way as Theorem 4

followed from Theorem 3.

Theorem 7. For K ¢ X, C C X, S : C3X, T : C3X* K(u) :=
u—Su)+ K, K(u):= K@) NC let the following assumptions hold:

(1) C is compact, convex, nonempty; _

(ii) T is monotone, weakly hemicontinuous, and has compact, convex, non-

empty values;

(iii) K isupper semicontinuous and has compact, convex, nonempty values; the
Junction H(u,x) := sup{(x — x,y) | x € K(u), y € T(x)} is lower
semicontinuous on C x C; _

(iv) for all u € C withu € K(u) and for all y € T(u) there exists v €
corek ) K (u) such that (v —u, y) < 0.

Then there existu,x € X and y € X* such that

ueC, xekKNSm), yeT), (x—%,y) >0 Vxek.

For comparison with Corollary 1 we note the following special case of both
Theorem 5 and Theorem 7.

Corollary 2. Let the following assumptions hold:

(1) K C X is convex;
(i) T : K3 X* is monotone, weakly hemicontinuous, and has compact, con-
vex, nonempty values;
(iii) there exists C C K compact, convex, nonempty such that for all u €
C \ coreg C there exists v € coreg C satisfying sup (v—u,y) <0.
yeT (u)

Then there existu € C, y € T (u) such that (v —u,y) >0 VYveKk.

Remark 4. Set Y (u,v) := sup (v —u,y). Then ¥ (u,u) = 0 Yue€ K,
yeT (u)
and ¥ (u, +) is convex and lower semicontinuous. If X is a reflexive Banach
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space provided with the weak topology (which preserves the requested continu-
ity properties of (-, -)) and K is closed, then each of the following conditions (a)—
(e) (voidly satisfied if X is bounded) is sufficient for assumption (iii) in Corol-
lary 2.
(a) There exzsts ae€eKand R > O such that y(u,a) < 0 for all u € K with
lu —all =

Indeed, 1f we set C ;= {u € K | |lu — a|| < R}, then C is weakly compact,
and a € corex C. Moreover u € C\corexC == |lu—a| = R => ¥ (u,a) <0.
We can choose v := a independent of u to obtain ¥ (x,a) < O forall u €
C \ coregC.
(b) There exists a € K such that Y (u,a) - —oo if lu —a|| - +o0, uek.

Indeed, (b) implies (a).
(c) There exists a € K such that (Y (u, a) + 1//(a u))/llu —al] - —oolif
lu —all > +o00, uek.

Indeed, ¢ := min{yr(a,u) | u € K, ||u —a| < 1} is finite, and from
convexity of ¥ (a, -) and Y (a,a) = O follows ¥ (a,u) > «a|lu — a| for all
u € K with |lu — all > 1. Hence, for ||u — a| = +00,

Y, a)/llu—al < W@, a)+ ¥ uw)/llu—al —a > —oo,

and therefore ¥ (4, a) — —o0o. So (c) implies (b).
(d) There exists a € K and y > 0 such that o := in£ Yv(a,u) > —oo and
ue

Y u,a)+v(a,uw)/llu—all < —y forallueK with lu —all > 1.
Indeed, (d) implies (b), since for ||u — a|| - +o0,

Y, a) < —ylu—al —a — —oo.

(e) There exists a € K such that Y (a, u) - +oo if |u — al| - +o00, uek.

Indeed, the monotonicity of 7'(-) implies that ¥ (4, a) +v¥ (a, u) < 0 for all
u € K, and therefore ¥ (4, a) < 1/f(a u) - —oo if ||u — a]| - +o00. Hence
(e) implies (b).

If K is a cone (as in the complementarity problem), then the condition
infyex ¥ (a, u) > —oo occurring in (d) above is equivalent with K*NT (a) # 0.
If K is a cone and X = R”, then the condition v (a, u) — +00 occurring in (&)
is fulfilled if (int K*) N T (a) # 0.

Condition (b) is satisfied in particular if there exists a € K, b € X* and
o > 0 such that

(14) u—a,y—>b)>alu—al®> forall (u, y) €graphT.
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In fact, (14) implies that

Y (u,a) = sup {a—u,y) < (u—a, —b)—alu—a|® < |bll|lu—al—alu—al?
Y€T (u)

and thus (b) is fulfilled.
For the following result we assume that X = H = X* is a Hilbert space.

Theorem 8. Let K C H be nonempty, closed and convex, let T : K 3 H be
weakly hemicontinuous with nonempty, convex, compact values, and assume that

(x1 — %2, y1 — y2) = p(llx1 — x2[) - lIx1 — %2> VY (xi, y;) € graph T

(i = 1,2), where p(s) > 0 for s > 0 and p(-) is non-increasing.
Then there exist x € K (unique)andy € T (X) suchthat (x—X,y) >0 VxeK.

Proof. Let u € H be arbitrary, and set ¥, (x) := T(x) +x — u. Then
(X1 — X2, m — M) = X — x> V(x,n)egraph vy, (i =1,2).

Hence ¥, () is monotone and satisfies (14). So from Corollary 2 for any u € H
there exists a solution to

.x—u EK, ﬁu EWu(:fu)’ (x _-x_u’ﬁu) = 0 VxeKk.
X, is easily seen to be unique. Let x : H — K be the mapping which assigns
toeachue€ Hthisx, € K. Foru; e H (i = 1,2) setX; := x(u;), with the
corresponding elements 7; € ¥, (x;), where 5, =y, +x; — u;, y; € T(X;).
Then fori = 1, 2 we have
(x—xi,m;) =20 VxeKk,

in particular (x, — X1, 7;) = 0 and (X; — X2, 77,) = 0. Addition yields

0< (&1 —X2,7, —7y)
= (X1 — X2, Y, = ¥} + (X1 — X2, X2 = X1) + (X1 — X2, U1 — Uy)
< [-pUIx1 =%20) - Ix1 — X2/l = X1 — X2l + g — u2l]] - X1 — X2l

With ¢ (-) := 1/(1 + p(-)) it follows that g(-) < 1 and

X1 = X2l < qUx1 —x20D) - llur — w2l < llur — uzll.
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Since g(-) is non-decreasing, we obtain altogether
X 1) = x @)l = 1% = %2ll < q(lur — uzll) - lluy — uzll,
where g(s) < 1 fors > 0. Hence, according to [6], x has a unique fixed point

u = x(u). This implies that ¥ € K" and that there exists n € Yz(u) = T (u) such
that (x —u,7) >0 VxeKk. ]

If X is a cone, then the previous two results give conditions for the existence
of a solution to the multivalued complementarity problem

(15) XeK, yeK*NTX), (x,y) =0.
In fact these results can even be applied to the quasi-complementarity problem
(16) ueC, xekKNsSw), yeK*NTw), (x,y) =0,

where S and T are defined on C. We assume that S(C) O K, and we define
I': K= X* through T := TS~!. Then (16) is equivalent with

XeK, yeK*NI'®), (%,7) =0,

i.e., with the multivalued complementarity problem (15). So we obtain condi-
tions on 7S~! which ensure the existence of a solution to (16). In this setting
Theorem 8 should be compared with [20], Theorem 2.

4. Projection methods.

Let now H = H* be a Hilbert space. Given a nonempty closed convex

subset A C H we shall use the projection mapping P4(-) : H — A which
assigns to each x € H the nearest point in A. The following characterization is

well known [37], p. 239: Forany x € H,
a7 y=Pa(x) = (yedand (§ —y,y—x) > 0VEcA).

Let K : H= H be a multifunction with nonempty closed convex values, and
let T : H — H be a given mapping. We are looking for a solution of the
quasivariational inequality

(18) ueK@), (x~u,T@) >0 VxeK@m).
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Since the validity of (18) is not affected by multiplication of 7" with a positive
scalar, and in view of (17), u is a solution of (18) if, and only if,

U= Pgg@—1-TWm) forsome 71 >0.
Hence (18) is equivalent to finding a fixed point, for some t > 0, of the mapping
(19) b () == Pgay(u—1-T(w)): H—> H.

Theorem 9. Let the following assumptions hold:
(1) There exist o > 0, B > O such that

u—v, TWw)—TW) >alu—-v||*> Yu,veH,
IT@w) —TW) < Bllu—vl Yu,veH,

(i1) there exists k > 0 such that

| Pk @y (z) — Pry(2)Il < kllu —v|| Yu, v,z € H;

(i) & ++/1—a2/8% < 1.

Then Problem (18) has a unique solution.

Proof. It follows from (i) that /B < 1, and moreover
le =T @w) = 0 = e T DI < llu = v)P(1 = 207 + BZ2P).
With the aid of (ii) we obtain then, since the projection mapping is nonexpansive,

that

|Pr(u) — P (Wl = | Pxuwy(u — T (w)) — Pxey(u — tT (u)) +
+ Pxy( —tT(U)) — Pgpy(v —tT(v))|| <
<k-llu—vl+llu-tTW)—@v—-tTW)| <

< llu—vll-(k-{-\/l —2ar+ﬂ2r2).

Choosing in particular 7 := /8% we obtain -
|&zw) = D)l < llu = vl - (k + VT = aZ/?).

Hence by (iii) $7 is a contraction mapping and has a unique fixed point &, which
at the same time is the unique solution of (18). O
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If K(u) = K is independent of u, then we may choose & = 0 in assump-
tion (ii), and consequently assumption (iii) is satisfied. It follows that in this case
problem (18) has a unique solution under assumption (i) alone, without further
restrictions on «, 8. If T is linear-affine, this is a classical result due to Stam- -

pacchia [7], p. 82.

It should be seen, however, that Corollary 2 gives the same existence result
under considerably weaker assumptions. Thus the assumptions of Theorem 9
should be mainly seen as conditions which ensure that (18) can be solved con-

structively by means of successive approximations u"+! := &z (u").

Let us now specialize Theorem 9 to the case
(20) | Kwu)y:=u—-—Su)+K,
where K C H is a closed convex cone, and S : H — H. Let
K*:={yeH|(x,y)>0 VxeK}
denote the polar cone of K, which implies that for any x € K,
(21) (—x,y)20 VEeK &= (yeK*and (x,y) =0).
Under (20) Problem (18) can be rewritten as
SwyeK, u—-Sw), Tm))>0 VYuek,
hence by (21) is the same as the complementarity problem
(22) SwyekK, Tw)eK*, (S@),Tw)) =0.
Theorem 9 gives therefore conditions for the existence of a unique solution to

(22). Assumption (ii) is satisfied in this case when u — S(u) is Lipschitz con-
tinuous with Lipschitz constant k. This follows from the well-known fact that

| Payk (z) — P ()l < llall.
Let us set for abbreviation

gw) :=u—-Sw),h,(u):=u—1-T(u).
The function &, (1), given by (19), can thenvbe rewritten as

(23) :(u) = g(u) + Px (h:(u) — g(w)).
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Since forall z € H, Px(z) = z + Pg+(—z) [37], p. 256, we obtain from (23) the
“dual” representation

(24) Dy () = he(u) + Pg+(g() — hy(u)).

We note that from (23) together with (17) and (21) it follows that v = b, (u) if,
and only if,

v—gwekK, v—h,(u)eK*, (v—g),v—~h, () =0.

Thus for u given, &, (u) itself is the solution of a quasi-complementarity prob-
lem.
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