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ON THE POSSIBILITY OF APPLYING VARIATIONAL
INEQUALITIES TO COMPUTER NETWORKS

LETIZIA PELLEGRINI

The possibility of applying a Variational Inequality model to the study of
computer networks is analysed. With the intention of gaining for this subject
the attention it deserves, some ideas for the management, the design and the
reconfiguration of a computer network are examined. In particular it is shown
how the concepts of duality and potential for a Variational Inequality naturally
arise and are crucial in this analysis.

1. Introduction.

The number of national and worldwide telecommunications networks is
continuously expanding and, over the last two decades, they have moved from
being almost exclusively used for telephony to becoming a fully integrated ser-
vices digital network.

Therefore, computer networks management represents a crucial and actual
problem; this problem is of such wide and composite range that it is a nonsense
to propose a unique model to deal with it, while a partial modelling of particular
aspects can certainly improve the analysis of this problem.

One of the most important aspects in the network management concerns the
study of the equilibrium flows which has been examined in past time by means of
optimization models. These models catch reality only under very special circum-
stances, namely when all activities of the network are completely regulated by a
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central authority. Hence only few real networks are represented by an optimiza-
tion model. Recently, Variational Inequality models have shown to be adequate
to interpret the equilibrium flows in a network.

This note aims to propose a tentative formulation of a variational model
for the equilibrium flow problem in a computer network; it obviously does not
pretend to solve the problem, but’ merely attempts to call the attention of the
scholars to such an interesting and challenging topic.

2. Variational Inequality models for computer networks.

Let us describe some characteristics of computer networks in order to intro-
duce the variational model. In a computer network there are source nodes and
destination nodes: a source node is a point (device) through which information
enters the network, a destination node is a point (device) to which information
is delivered. |

Moreover, it is important to know the major classes of strategy of data trans-
mission in computer networks; they are: circuit switching, message switching,
packet switching, and broadcast [2], [5]. -

Circuit switching in the basic form consists of the setting up of a dedicated
channel between the source and destination nodes for the duration of their inter-
action, hence this strategy is not mathematically interesting as far as the equilib-
rium flows are concerned. The same is for broadcast systems, because they use
a single channel with all nodes on it able to see all traffic flowing.

Message-switched networks have no prearrangement or allocation of cir-
cuits and it is for this peculiarity that variational models are suitable for the man-
agement of this sort of computer networks. Messages are sent in a store and for-
ward fashion from the source node to the destination node via some intermediary
nodes. The messages traverse from one node to the other, and they are queued
up at each node before transmission.

Packet-switched networks provide a similar form of service; that is, they
take messages and send them in a store and forward fashion through the net-
work. The major variant is that the messages are broken up into segments called
packets; i.e., the message data is divided up into suitably dimensioned data pack-
ets, which enter the network through one of the nodes. They are then passed
from node to node until they reach the node which serves the destination termi-
nal. Packets forming part of the same message do not necessarily take the same
route through the network or utilize the same circuits. Like message switching,
packet-store buffers are required at each node to hold the packet when in transit.
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In the basic frame structure of a packet, common elements are a fixed num-
ber of bits to indicate the source node, a variable field for the information and
again a fixed number of bits for the destination.

The choice of path through the network for each packet is determined by
the traffic on the network at the time the packet enters the network.

Since the traffic will be constantly changing, packets which form part of
the same message may be routed through different nodes and circuits and may
experience different delays in the store-and-forward procedure. Additionally,
since the entire message is not sent as a whole, this scheme requires that we
have mechanisms to break up the messages and reassemble them properly at the
destination.

Letus suppose that a computer network be assigned in the form (N, A, T),
where N = {N1, N2, ..., Ny}, A={A1,Ay,..., Ax}and T = (T, Tr, ..., T}
are respectively the sets of nodes, links, and source-destination ordered pairs.
The nodes of the pair T; are connected by r; > 1 paths, whose set is denoted
by &; = {Py,..., P,}. Hence Py, ..., P, withm := ry + .-+ + r, are all
the considered paths. The flow F;, s = 1, ..., m, on every path is the number
of packets (and therefore of bits or bytes) passing through the path in a time
unit; then F := (F),..., F,) is the vector of flows on paths and C(F) =
(C1(F), ..., Cu(F)) the vector whose elements denote the transmission cost on
every path as a function of the flows on all paths.

The main criterion for the network efficiency is represented by the time that
a message employs to go from the source node to the destination node; hence
the cost on a path is expressed by a function of this time. Since the routing time
on every link is negligible with respect to the time spent at every node, the cost
results to be the sum of the waiting times at nodes.

In the case of a road network, the equilibrium flows have been initially
characterized by the so-called Wardrop principle [4], which can be transferred
to the present problem. It claims that a vector H € R} is an equilibrium pattern
iff VT; and VY P,, P; € &7; it results

Cs(H) > C4(H) = H; =0 (or, equivalently, H; > 0 = C;(H) < C,(H)).

For every pair T; let p;, j = 1,...£, be the transmission demand; such
demand generally depends on the flows and hence it is denoted by p;(H). If we

introduce a pairs-paths matrix ¢ = (@is), i = 1I,...,¢,s =1,...,m defined
by
. { 1 if P, e &
Y=o ifp ¢ B,
the so-called flow-conservation law can be written as ¢ F = p(H), where

p(H) := (01 (H), ..., pe(H)).
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Hence the set of feasible flows is K (H) := {F € R" : oF = p(H)} and in [4]
it is proved that H € K (H) is an equilibrium pattern iff

(1) (C(H),F-H)>0 VFeK(H).

This is a particular case of Quasi-Variational Inequality which collapses to
a Variational Inequality when the demand p, and hence K, does not depend on
H.

The variational model (1) does not take into account the capacities of links
or nodes and consequently a solution of (1) may be unrealistic. Suppose that in

the network there are upper bounds to the flows on links; let f = (f}, ..., f,) be
the vector of flows on links and d = (ds, ..., d,) the vector of upper bounds on
these flows. If we introduce the matrix A = (§;5),i =1,...,n,5s=1, ... ,m,
where
. 1 if A,' € P
’ {0 if A; ¢ Py,

the flows on links are expressed in terms of flows on paths by f = AF. Hence
the set of feasible flows becomes

Ky(H):={FeR":9F = p(H); 0<AF < d}.

Recently, generalized equilibrium principles are under investigation [6], [8] with
the aim to establish that H € K;(H) is an equilibrium pattern iff

(2) (C(H),F—H)>0 VFeK,H).

Let us observe that a solution of (1), even if unrealistic because of the pos-
sibly positive difference between the flows and the capacities, is an important
information; in fact, this positive quantity can be interpreted as demand in ex-
cess, while a solution of (2) spreads this surplus.

In computer networks, a high use of the system can produce traffic jam at the
nodes (and not necessarily at the links); hence a realistic model should associate
capacities also to the nodes. In this case, for any intermediate node N i»1let ¢c; be
its capacity and E; the set of indexes i such that A; is a link which enters the node
N;. The capacity constraint at node N; is ZE: Ji =< ¢;; hence it is expressed in

’ ) i€ j
terms of flows on paths by ) (AF); < cj, where (AF); is the i-th element of
iEEj
vector AF. In this case the set of feasible flows is modified too and new models
are highly required to study the equilibrium problem.
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3. Further applications of variational models to computer networks.

In the previous section variational models dealing with the management
of a computer network have been described. Other quite interesting problems
are represented by the design of a network or by its reconfiguration when the
network is no longer sufficient to fulfil the requests of the users. In this case it
is reasonable to suppose that source and destination nodes are assigned, because
they represent the users, while intermediate nodes and links have to be chosen.

A class of these problems, i.e. the design of electric, hydraulic or telecom-
munications networks, has been dealt with by Steiner-Weber models.

These models tackle the problem by constructing a minimal cost tree con-
necting the assigned nodes with the unknown extra nodes, added to the tree to re-
duce the cost; the cost is the weighted sum of the distances between nodes which
are connected among them. The trees are chosen in a class defined by a connec-
tion scheme that specifies which of the assigned nodes are connected with the
same additional node; these latter are expressed by their unknown coordinates
that are supposed to be continuous variables running in the Euclidean space.

Some of the features of this type of models are not comipletely satisfactory.
First of all, since the connection scheme is assigned, only particular types of so-
lution are obtained. Secondly, Steiner-Weber models take into account only the
distance between nodes to evaluate the network performance, while in computer
networks this aspect is not the most meaningful, as well as it is not realistic to
suppose that the coordinates of the unknown nodes are continuous variables.

A variational model could well overcome these difficulties. One of its ap-
plications consists in fixing both intermediate nodes at possible positions and
arcs linking these nodes. For any possible configuration of arcs and nodes, the
variational model gives a solution that is an equilibrium flow. Since we are in a
design or reconfiguration stage, the comparison between equilibrium flows rel-
ative to different configurations of the network is now fundamental. A suitable
criterion for the comparison could be a measure of the flow stability.

Let us consider model (1); as we already pointed out, one of its solutions
furnishes the demand in excess, because (1) does not take into account capacities.
Let H € R™ be a flow solution of (1) and d the vector of upper bounds to the
flows on links present in model (2); therefore

D= Zm:max (0. (AB), —d,)

s=1

is the sum of the demands in excess corresponding to the solution H and hence
to the given network. This real number can be used for the comparison between
different configurations of the network, in the sense that “the best” configuration
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is the one that corresponds to the minimum value of D. An analogous criterion
can be established when there are capacities on the nodes and a solution of (1)
is available.

In the case of networks with capacities, a criterion of comparison is not
immediately obtainable. What follows is a proposal arising from some recent
and not yet definitive results conceﬁling the concepts of potential and duality for
a Variational Inequality [1], [3].

When the flows in a network are analysed by means of a mathematical
model, the concept of duality arises and consequently that of potential. Roughly
speaking, the dual variable associated to a node or to a link represents the pres-
sure (i.e. the potential or the difference of potential) that the flow produces on
the node or on the link in presence of capacities. Hence, if a variable with this
meaning would be available in the variational model, it could be used to define
a criterion of comparison between flows that are solution of different networks
configurations; for example, by summing all the positive differences of potential.

In [1] an extension of the concept of potential is proposed for a particular
Variational Inequality model, in which the capacities are on the links and are ex-
pressed as upper bounds to the flows on links. First of all, it would be interesting
to extend the analysis to the variational formulation (2) in which the capacities
are on the flows on paths instead of links. |

Unfortunately, since (2) does not contain a particular constraint, i.e. the
conservation of flow at every node, the mere extension of the above analysis
to model (2) cannot provide the potential at nodes. This lack is particularly
serious as regards the application to computer networks, owing to the above
remarked importance of nodes in message and packet switching strategy, which
we described above.

As a conclusion we can underline that the study of duality theory for Vari-
ational Inequality models needs to be carried on, due to the crucial importance
that it has in equilibrium problems.
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