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CONVERGENCE PROPERTIES OF A PROJECTION
METHOD FOR AFFINE VARIATIONAL
INEQUALITY PROBLEMS

LUCA ZANNI

This paper is concerned with the convergence properties of projection
method proposed by S. Dafermos (1980) for solving asymmetric variational
inequality problem A € X', (C(h), f — h) = 0, Vf € X, where (-, )
denotes the inner product in R”, J¢ is a nonempty closed convex subset
of R” and C : X — R” is a continuously differentiable and strongly
monotone function. The convergence rate of this iterative method is linear and
depends on the asymmetry level of C and on the spectral condition number

K %C— fH of the symmetric part of the Jacobian matrix %—C (H1. In
f s f

particular, if K ([-?,% ( f)]s> ~ 1V f € X doesn’t hold, it has been proved

that a rapid convergence of the method can not be guaranteed with the para-
meters’ choices suggested by S. Dafermos. When C is an affine function, we
propose a criterion to select a parameter of the method. If the asymmetry level
of C is sufficiently low, this criterion ensures a rapid convergence even if it is
not K ([E (f )] ) ~ 1. The behaviour of the method in correspondence to

this parameter’s choice is also analysed expenmentally on a class of randomly
generated test problems.

Work supported by M.U.R.S.T. 40% project Analisi Numerica e Matematica Com-
putazionale.
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1. Introduction.

We consider the variational inequality
(1.1) hel, (C(h), f—h) =0, VieX,

where (-, -) denotes the inner product in R”, J¢" is a nonempty closed convex
subset of R” and C : ¢ — R” is a continuous function.

This inequality has many applications, especially in the study of equilibrium
problems arising in economics, operations research and transportation sciences.
If the set JZ” is compact, the variational inequality has at least one solution,
which is unique if C is strictly monotone [19]. In the case where the set ¢ is
not bounded, one can impose particular conditions on the function C in order to
establish the existence of a solution.

For a survey on theory, algorithms and applications of variational inequalities,
refer to [10].

The various methods proposed for solving (1.1) can be gathered in three
main classes: (i) methods that follow an iterative approach based on solving a
sequence of simpler problems, (ii) methods that solve an optimization problem
equivalent to the variational inequality and (iii) direct methods.

The first class includes for example Newton, symmetrized Newton and lin-
earized Jacobi methods that are locally convergent under certain conditions, and
projection methods that result globally convergent. The rates of convergence
of these methods are typically linear, except for Newton method that converges
quadratically [2],[31,[4],[17].

The methods that follow the optimization approach generate a sequence by min-
imizing an appropriate nonnegative function (gap function) that is zero if and
only if its argument is a solution of (1.1) [9],[13],[14],[151,[21],[22],[24]. A
line search strategy allows these descent algorithms to converge globally from
any starting point. In particular, in [15] and [21] Newton method is modified
to obtain a globally convergent algorithm that, under suitable assumptions, has
quadratic convergence rate. Recently, it has been studied [24] a very general gap
function by means of which it is possible to obtain an extended descent algorithm
that includes, as special cases, the methods proposed in [9],[21],[22].

For what concerns the relationships between the methods of these two classes, it
has been observed [9],[22],[24] that the above iterative al gorithms can be viewed
as various realizations of particular descent methods, although they do not resort
to minimization of any gap function.

When the convex set £ is defined by linear inequality constraints, the direct
methods [5],[12],[16] determine the solution of (1.1) by searching for it over lin-
ear manifolds obtained with appropriate combinations of the constraints. This
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procedure implies the solution of a (generally nonlinear) system of equations at
each step and, in the worst case, when there are many steps, it might not supply
the solution in a short time. However, the steps of these methods can be executed
simultaneously and this feature makes the methods very suited for implementa-
tion on a multiprocessor system. In a subsequent paper we will describe a paral-
lel implementation on distributed memory systems of direct methods suggested
in [12] and [16].

In this work we present a study on the convergence properties of projection
method proposed in [3].
Projection method is one of the most popular methods for variational inequality
problems and a good knowledge of its convergence properties can also be helpful
to understand the behaviour of descent methods based on the use of a projective
gap function [9],[21],[24]. When C is continuously differentiable and strongly
monotone with modulus & > 0 on J¢;

12 (CUDH=C(UHD f = za(fl = A=Y, VF, e,

given f0 € ', the projection method generates a sequence {f}, f' € 2, in
which the iterate f'*! is obtained by solving the variational inequality

(1.3) e, (C (Y, =t =0, VieX,

where C/(f) is defined by

(1.4) CH(f) = pC(UH+G(f - £,

with G symmetric positive definite matrix and p > 0. In [3] it is proved that if

the parameter p is such that

2x
(1.5) ' O<p<7,

where v is the maximum over ¢ of the maximum eigenvalue of the symmetric
t s

positive definite matrix [ ‘?,—?—] G-! [ %] ,then forany f0 e ¥ the sequence { f*}

is convergent to the solution of (1.1) and there exists a constant A € ]0, 1[ such

that for all i, )
(1.6) ILF* = hllg < AlLFF = hllg,
where || fllg = (f, Gf)} VfeR" ().

(*) In this study the Euclidean vector norm and the matrix norm induced by Euclidean
vector norm are denoted by || - ||.

(1T




362 LUCA ZANNI

For what concerns the convergence rate of the sequence {f'}, in [23] it is
shown that, independently of the matrix G and the parameter p € 10, %[, the
constant A satisfies the following inequality:

3C: -2\ 2
(1.7) Az(l—(K([Ef—(f)]s)) ) ., Y fex,

where[% (f)]s is the symmetric part of the matrix [% (f)] and K ([%% (f)]s)
is the spectral condition number of [%% (f )] )
s
Thus, except for K ([%}%( f )] ) ~ 1V f e, the constant A does not assume
5 .

the values that would guarantee a rapid convergence of the sequence {f*} to the
solution h € J¢.
Moreover, in [7] the constant A is related to the asymmetry level of the function
C and it is proved that A — 1 when the asymmetry level increases.

In Section 2, in the case C is an affine function, we study the convergence
properties of the method when it is applied to solve the equivalent variational

inequality [2]

(1.8) xes, (AC(A’x),y —x) >0, Vye ¥,
where A is an n x n nonsingular matrix and

(1.9) S =A"H={yeR" | y=A""f, fexX}.

If A is chosen in an appropriate way, we prove that the method generates a se-
quence {y*}, y* € % which converges faster than the sequence {f’} in J¢". This
result is used to introduce a criterion to select the parameter p that, when the
asymmetry level of C is sufficiently low, allows the method to generate a se-

quence {f'} in J# quickly convergent to & € ¢ even if K ([%fg(f)]s> ~ 1

doesn’t hold.

In Section 3, we compare the numerical results obtained by applying the projec-
tion method with the value of p proposed in [3] and with the value suggested in
Section 2. We consider the example illustrated in [3] and some randomly gener-
ated test problems.
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2. On the convergence properties of Dafermos’ projection method.
We consider the case when C : £ — R” is an affine function,

C(f) = Jf +b,

where J is a nonsymmetric positive definite n x n matrix and b is an n-vector.
Since J is positive definite the function C is strongly monotone and the varia-

tional inequality
2.1 heX, (Jh+b, f —h) =0, Vfeld,

has a unique solution.
Let J; be the symmetric part of J, J;, = %(J + J*), and consider the
Cholesky decomposition of J;, J; = LL*, where L is a lower triangular matrix

with positive diagonal entries.
If f and /4 are two vectors of R" we have

(Jh+b, f —h)y =((LL"Y(J(L™'LYr +b), f —h)
=(L"YJL(L'R) + L', L' f — L'h).

Thus, Problem (2.1) is equivalent to

(22) he X, (L~'JL™"(L'h)y+ L™, L' f — L'h) > 0, YfeX.
Let

(2.3) FS=L'H={yeR" /y=L"f, fex},

(2.4) B=L"'"JL™" (B positive definite matrix), c=L"1p,

(2.5) x=L'h,

then h € ¢ is a solution of (2.1) if and only if x € .% is a solution of the
following variational inequality

(2.6) xeS,  (Bx+c,y—x) >0, Vyes.

Now, we suppose to solve (2.6) by the projection method proposed in [3].
We observe that :
By = S(B+ BY=L"'JL" =1,
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1 1
B, =5 (B - BY=L"'J,L, I, = S = I,
IBll = IIBs|l = 1.
By choosing the method’s parameters G and o as suggested in [3] we have:

minimum eigenvalue of By 1

2.7) G=B,=1I, p = = = .
’ maximum eigenvalue of B*'G-'B || BJ?

Given a vector y° € &, the method generates a sequence {y*}, y*¥ € %, which
is convergent to the solution x € . of (2.6) and such that

2.8) Iy* = xll < l_kxny‘.-—y"n,
where

. 1 \? -
(2.9) A:(l— ||B||2) , O<i<l.

In order to establish whether the constant A assumes values close to zero we
consider the following result.

Theorem 2.1. Let J be a nonsymmetric positive definite matrix and J; be its
symmetric part. Let J; = LL’ be the Cholesky decomposition of J; and B =
L7YJL™". It results

IBIl < 1+ K(J)ds,,,

where

| 17 = J|
(2.10) djj, = ——1
7 Al

Proof. Tt results

Q.11) Bl = L7 VLT + LTV L = [T+ L7VLTY <
< T4+ IL7VLL™ < T+ L2 )

and, since |[L~")|> = |J;7!|| = K (J;)/I1Js|l, we have

(2.12) IBll = 1+ KU Gll/Nsll =1+ KU = LI/l O
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The number d; ;, can be viewed as a measure of the relative distance of J
from its symmetric part; i.e., a measure of the asymmetry level of the function
C.

Using Theorem 2.1 and (2.9) we have

(2.13) X< (1 ~ ! 2) ,
(1+K(J)ds,,)

From the bound (2.13) and Figure 2.1 in which is illustrated the graph of the
function

1

1 2
F(K(Js)d.],],) = (1 - )2> ’

(1+ K (Jy)dy .

we conclude that the constant A assumes values close to zero if the product
K (Js)d;,;, is sufficiently small.
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Fig. 2.1. Graph of the function F K (Js)dy: J j \/ 1-—- 1 + K (Js)dJ,J;)—Z

Thus, when J is sufficiently close to its symmetric part, the sequence {y*} ob-
tained by applying the method proposed in [3] to the transformed Problem (2.6)
is quickly convergent even if it is not K (J;) ~ 1.
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Let’s now con31der the sequence { ¥}, f* € &, which corresponds to the
sequence {y*}, y* € .#,

(2.14) ff=L"y  k=01,2,.

We proceed to show that { ¥} can be obtained by applying projection method to
(2.1) with an appropriate choice of parameters G and p.

Theorem 2.2. The sequence {f*}, f* € ¢, defined in (2.14), can be generated
by applying projection method to (2.1) with starting point f O = [~ y and

parameters
1

G = Js, o 1B

5=

where B is the matrix defined in (2.4).

Proof. We proceed by induction. We proof that f! = L~'y! is the vector
generated at the first step of the method; i.e., it is the solution of the following
variational inequality:

(215)  fed, (Lf+pU +b)—If%g~f)20, VgeXx.
Given g € £ we show that |
(2.16) (LYY + (T fFO4+b) — I f0 5 — L™yl > 0.
Since J; = LL* and f0 = L'y it results
(S (LY +pI O+ b) — 1, fO, 5 — L'y =
=(LL'(L™'y") + (JL™'y* +b) — LL*(L™*y"), g — L™*y")
=(Ly' +ALIL™Y + L) — %), 5 — L™'y1)
=(y'+sLVILTYO + L) - 30, Lig —yYy
=(y' + 5(By’ +¢) — y°, L'g — y1).
Sety = L'g, y €., we obtain |
(2.17) (LYY + 5T O+ b) = 1, /%2 — L~y =
= (' +5(BY +¢) -y, 7 -y

On the other hand, it follows from the definition of the sequence {y*} that the
vector y! is the solution of the variational inequality

yes, (Gy'+p(BY +0) -Gy, y—y) =0, Vyes,
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and, since G=1I , we have
' +5(BY +¢) =y, 5~y = 0.

Thus, the inequality (2.16) follows from (2.17).

Now let us suppose that fi = L~ y' 1is the vector generated at the stepi,
fori = 2,3,...,k; with an analogous technique it is possible to prove that
frtl = y"Jrl is the (k + 1)-th vector generated by applying the method to

.1 with f0=L"°, G = J, andp—p_",;" O

The next Theorem establishes the convergence of the sequence { f *} to the
solution of (2.1) and will be useful in the subsequent discussions.

Theorem 2.3. Let B be defined as in (2.4). Given an arbitrary vector f ber,
projection method applied to (2.1) with parameters G = J; and ,o 0 = T 31"2

generates a sequence { f k} f Fk e o, such that

Tk
(2.18) TR

_]_ ~ -~
ikwmm—ﬂm

where h € J£ is the solution of (2.1) and

i 1 )? : 5
2.19 A={1- =\!- '
(2.19) ( ||B||2) ( (1+ K(Js)dJ,J,)2>

Proof. Since h € ¢ is the solution of (2.1) the vector x=Lh is the solution
of (2.6). From Theorem 2.2 it results f* = L~*y* where [y}, y* € #, is the
sequence _generated by applying projection method to (2.6) with starting point
y% = L f° and parameters G and § as in (2.7). By (2.8) we have

I F¥ = hll =L~y = L~'x|| = IL™' (¥ = x)||
}:k
<IL™"y* m<uw ~w YO

~

A ~
=IIL"II1 ~HL(f1 f°)||<IIL’IHIL"II ~IIf1 |

- Ak
—mm ~uf1f°u———1__~

.
Il

where A is defined in 2.9). (I
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Remark 2.1. The choice of parameter p examined in Theorem 2.3 is introduced
when projection method [3] is applied to the Problem (2.6). This problem is ob-
tained by preconditioning the original Problem (2.1) through the Cholesky de-
composition of J;. It is interesting to observe that analogous results can be ob-

1 1
tained by using the decomposition,% Jy = JiJ¢, instead of Cholesky decompo-
sition, to transform Problem (2.1). In this case, if we select G = J, the value
of p is
-1 1
p=IJ 2 Tr 7|

and it is easy to show that it satisfies the convergence condition obtained by
considering projection method as a special case of the iterative scheme described
in [4].

Now we may compare the convergence rate of { f*} with the convergence
rate of the sequence { f*} obtained by applying to (2.1) the projection method
with G and p as suggested in [3] (G = J;, p = =)

For the sequence { f¥} we have

| v
(2.20) M =kl = 71" = £l
with
(2.21) A > (1 - : )%

' = K(J)?)

and, taking into account that G = J,, it results
k

1—x

(2.22) Ir*=n) < KUz = £

Thus, since the inequalities (2.19) and (2.21) imply

by comparing (2.18) and (2.22) we may conclude that, when d; ; < %%%‘1, .

from the view point of the convergence rate it is better to select p = || B||~2 than
o

p = v .
Moreover, from (2.19) it follows that, if J is sufficiently close to its symmetric
part, the choices G = J; and p = ||B||~? also guarantee a rapid convergence

when it is not K (J;) ~ 1.
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The above analysis shows that the convergence rate of projection method
is strictly dependent on the value of parameter p. In particular, we remark that
when p is chosen as suggested in [3] the estimate (1.7) holds but, as proved in
Theorem 2.3, there are problems in which a different and appropriate choice of
parameter o ensures more promising estimates.

3. Numerical results.

We apply projection method to some problem of type (2.1).
We fix f0 € ¢, G = J; and compare the number of iterations required by the
method to approximate the solution in correspondence to the following choices

of parameter p:

3.1) __ o minimum eigenvalue of J;
' P = T maximum eigenvalue of J'G-1J ’
(3.2) p=7p= B=L"'JL™, LL =/J,.

B2

The following criterion is used to stop the iterative process:

LA+ — £
LA+

where f' and f**! are two successive iterates.

The algorithm is implemented in FORTRAN and all the experiments are per-
formed on HP 9000-730 in double precision (eps & 2.22 x 10716),

The matrix L and the quantities «, v, || B|| are computed by using LINPACK
library [6]. At each step, the variational inequality Problem (1.3) is reduced to
a convex quadratic programming problem that is solved by using the subroutine
VEO7AD described in [11].

(3.3) < 1078,

3.1. Dafermos’ example g

This problem is taken from [3]. Let J¢ be the following convex subset of

R>:

H={f=Uf....05 fi=0,i=1...,5;
fi+ o+ f3=210; fu+ fs =120}
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and let C be the affine function from ¢ into R given by

C(f)=Jf +b,
where o o I
10 0 0 5 07 , 1000 7
0O 15 0 0 5 950
J=10 0 20 0 O and b= | 3000
2 0 0 20 O 1000
L0 1 0 0 25 | 1300

The variational inequality
he X, (Jf-j—b_,f —h) =20, VfeX,
admits the unique solution
= (120, 90, 0, 70, 50)°.
The results obtained by applying the method with
£° = (70, 70, 70, 60, 60)’, G. = J,

and the values of p considered in (3.1) and (3.2) are shown in Table 3.1.

Parameter p p=2=0.3406975p = W ~ 0.9881579

Number of iterations 28 T

f1] 120.000154680595 | 119.999999392942

J2| 89.9998453194047 [ 90.0000006070576

Solution f3 0 0
Ja] 69.9999219948576 | 70.0000020844423

S5 50.0000780051424 | 49.9999979155577

Table 3.1
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In this example we have K(J;) ~ 2.9, EIJ,J, ~ 0.077, |B|| & 1.006 and by
(2.21) and (2.19) it results A > 0.93 and A & 0.109. Therefore, the parameters’
choice suggested in Theorem 2.3 allows to generate a sequence which is quickly

convergent to the solution h € ¢'.
From the view point of convergence rate the result obtained with p = ﬁlp is

like that obtained in [8] by updating o in each iteration.

3.2. Test problems

We construct test problems of the form
34) heX, (Jh+b,f—h)=0, VfeX,

where J is a nonsymmetric positive definite n x n matrix, b € R* and ¢ is

given by :
H ={feR"/Aif=r, Af =g}

where A; isanm xn matrix (im < n),r e R™, A isa p x n matrix and g € R?,
We proceed as follows.
i) Construction of ¥
We assume that the following data are given: -
a) the dimension n of the problem,
b) the solution & € R",
c) the number m of equality constraints, m < n,
d) the number p of inequality constraints,
e) the number nva of inequality constraints that become active in the
solution, nva < n —m.
Then we randomly generate the matrices A; and A, [18],[20] and, given

the decomposition
A21 } nva
Ay =
? [Azz]} p=na

we determine r, g = [gl ] i """ and a feasible point f9eR” such that
2 p—nva

Alh:f, Alf():r, A2f0>g,, A21h==g1, A22h > 82

ii) Construction of J and b
We suppose that the following data are given:
a) the maximum eigenvalue of the symmetric part of J, t(J;), and its
spectral condition number K (J;),
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b) the maximum singular value of the skew-symmetric part of J, o (J,),
its spectral condition number K (J,), and the number /, ! < n, of the
zero singular values of J, (if » is even (odd) then [ is even (odd)).

We obtain J as
A =d+

where J; and J, are generated as follows.
Let V be a random orthogonal # x n matrix [18], [20] and Z be the diagonal

n x n matrix of the eigenvalues of J;;

Z = diag(z;, 22, - . -, 20),
t(Js)
K(J)’

1=

Zn = t(JS),

!

1 \=
ZJ=ZJ+1(K_(:,—)) J=n—-1,...,2

~ J; is given by

Js=VZV:,

In order to obtain the matrix J, [1] we generate a random orthogonal n x n
matrix U, and the following n x n matrix:

(< )
—uz O
. 0
0
- ' (—u«k 0)4
in which
k=n-1)/2,
o (Ja)
= ’ = Ja,
1 X(L) i = o (J,)

RNt
C = L _ =k—-1,...,2.
Hi = Ky (K(Ja)) g
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The matrix J, is given by

J. =URU’.
Finally, the vector b € R” is obtained by using the Kuhn-Tucker conditions.
Since Ajth = r, Ayjzh = girand Aph > g,wesetu; = 1,i =
1,..., (m + nva), and consider
Ui

b=—-Jh+[A] A}l
Um-+nva
The numerical experiments are conducted by fixing the convex ¢ and consid-

ering the matrices J that correspond to several choices of K (J;) and o (J,).
We assume

n=30, m=15p=30, nva=10, (=0, h=(1,...,1),

K(Je) =10, |Jisll=1()) =10, K(J) = 1.1,10,30,50,

and, for each value of K (J;),
Il =0(J;) =0.1,0.5,0.9,1.3,1.7, 2.1, 2.5.

For all test problems we apply projection method with starting point f°, G = J,
and the values (3.1) and (3.2) for p.
The average number of iterations (we generate 15 test functions for each value

ofdy = H) required by the method in correspondence to the two values of

p is shown 1n Figure 3.1, 3.2, 3.3, 3.4.
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dy,J,
Fig. 3.1. K(J;) = L1.
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Fig. 3.2. K(J,) = 10
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