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ERROR ESTIMATES FOR FINITE ELEMENT SOLUTION
FOR PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS

HASAN M. YMERI

In this paper we first study the stability of Ritz-Volterra projection and
its maximum norm estimates, and then we use these results to derive some
L error estimates for finite element methods for parabolic partial integro-
differential equations.

1. Introduction.

In the study of finite element methods for parabolic partial integro-
differential equations [1] [2], the following Ritz-Volterra projection has been
introduced: for u(z) € W%(Q), t € J = (0, T], its Ritz-Volterra projection

Vi(@) : C(T; WA Q) > C(T; Sp)

is defined by
t
(1.1) A(t; Vou —u, x) -i—/ B(t, t; Vyu(t) —u(r), x)dt =0
0

x € Sy, t € J, where A(t;-,-) and B(t, T;-, -) are the bilinear forms associated
with the positive symmetric definite elliptic operator A(¢) and an arbitrary second
order operator B(t, T), respectively, with smooth coefficients, @ C R? (d > 1)

Entrato in Redazione il 18 maggio 1992.



4 HASAN M. YMERI

is a bounded domain, and S, C Vi’é(Q), with a small parameter & > 0, are finite
dimensional subspaces. || - ||, = ([ - llo,p, Il - Il = || - llo,2 and || - ||, , denote the
norm on the Sobolev spaces W,(£2) for2 < p < o0.

Notice that when ¢ = 0, we have V},(0) = R}, the standard Ritz projection
associated with the operator A(0).

It has been proved in [1], [2] ‘that the Ritz-Volterra projection V), defined
by (1.1) exists and is unique, and it also enjoyes the following approximation
properties: fort e J,

(1.2) 1D} (Vuu(t) — w@)|| + A (| D} (Viu(t) — u@)ll12 <

j .
< Ch Y D[]l
1=0

for u € VoVé(Q) NW;,j=0,1,1 £r <k, provided that the approximation
space S, satisfies for some k > 2 the inequality

inf {llu = X1+ hllu = xlh2} < CHlulla, 15 <k
h :

where

Mu@Wlrp = Hu@lly,p +/0 ()|l pdr.

Here and in what follows we denote by C the generic constants independent of
u and A, if not stated otherwise.

Now we consider the finite element solution for the following parabolic
integro-differential equation

ut—I—A(t)u—i—/ Bit,n)u(r)dt=f in Qx/J,
0

(1.3) u=0 on 94 xJ,

u=v in  x {0},
and let u;, (¢) be its semi-discrete finite element analogue [1]. By using the Ritz-

Volterra projection V), defined by (1.1) the authors of [1] have shown for smooth
data u(0) = v that if ||u,(0) — v|| < Ch"||v||, 2, then

(1.4) lu(®) —un@®)| < CH {”U”r,Z +/0 Hut(f)llr,zdf} ,
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which is the same error as that for parabolic equations [11]. The estimates (1.4)
was obtained also by Thomee and Zhang in [10] by employing the standard Ritz
projection Ry [7]. A slightly weaker error estimate similar to (1.4) has been
shown in [1], [2]. We know from [1], [2] that it is easier and more convenient
to use the Ritz-Volterra projection Vj, than the Ritz projection R, in the study of
finite element methods for problem (1.3), and moreover, this new projection V,
has a variety of other applications.

Itis wellknown (see [7]) thatif S, are piecewise polynomial spaces imposed
on quasi-uniform triangulations of €2, the Ritz projection R}, satisfies the stability
estimate

(1.5) . IRpulli,p < Cllull,p, 2= p=<oco.

More importantly, this stability can be used to derive some optimal error estimates
for finite element approximations for elliptic [7] and parabolic equations.

In this paper we study the stability of our Ritz-Volterra projection V}. Due
to the complexity of the problem, the integral term and the corresponding loss
of ellipticity, we shall consider only a special case of (1.1). Namely, we assume

that Q C R?,
(1.6) A@®) ==V -a(,)V, B@t,t)=-V-b(,t,1)V

where a(x,t) > ay > 0 and b = b(x, t, T) are smooth functions, and V is the
gradient operator in R2. Thus, the Ritz-Volterra projection V, in (1.1) becomes

t
(a(-, HV(Vau(t) — u(t)) +/ b(-,t,7) - V(Vhu(r) — u(r)) dr, Vx) =0,
0
X € Sy, t 67, or for short,
t
(1.7) a(t,Voyu —u, x) +f bt,t;Voiu—u, x)dt =0
0

x €8y, t€J, where a(t; -, ) and b(t, T; -, -) are bilinear forms associated with
the above special operators in (1.6).
We shall show in Section 2 the following result for V), defined in (1.7).

(1.8) Viu@®ll1,p < Clllu@®lll1,p 2<p=oo.
Although (1.7) is a very simple case of (1.1) it still preserves the essential features
for the general Ritz-Volterra projection Vj,. That is, it is our conjecture that the
stability result (1.8) will hold for the general form (1.1). C

In Section 2 we state and prove our main theorems. In Section 3 we shall

employ the results obtained in Section 2 to derive some optimal error estimates
for finite element methods for parabolic integro-differential equations.
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2. Stability of Ritz-Volterra projection.

Let © be a bounded domain in R? with smooth boundary 2. For k > 2,
0<h=<1,let S¥ be one parameter family of finite-dimensional subspaces of
Wl 1(), consisting of piecewise polynomial functions of degree at most k — 1,
deﬁned on a quasi-uniform partition of €2. It is requlred that Sh possesses the
following approximation property: for all w € Wz(Q) N W"(Q)

2.1) méf(Hw xllp +hllw=xll,p) < CAllwllsp, p22, 1 <5<k
XeS;

Lemma 2.1. Let Py, : L*(Q) — S¥ be the L*-projection, then
(2.2) | Prwlls,p < C llwlls, ps s=0,1, 2<p=<o0.

Proof. See [6]. O

Let z € 2 and let 6} € S,’f be the discrete § -function at z such that

(2.3) 65 x)=x@, XESF.
Let G? be the smooth Green’s function at z that

~V-aVG* =8 in €

2.4
24 G* =0 on 6%2.

It is obvious that G* € ﬁ/%(ﬂ) N W2(2) exists and is unique, and it follows by
(2.3) that

(2.5) a(t;G*, w) = Pow(z),  weWhQ).
Let GZ € S¥ be the Ritz projection of G, i.e.,

(2.6) a(t;G* — G4, x) =0,  x €Sy

It is well known [9] that

o [1 k=2
10 if k>3°

2.7 |G* — G&|l1.1 < Ch(log(1/m)¥,

Define
Gz+Az — G*
9,G* = lim —_—
z Az—0, Az| L |Az|
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where L is an arbitrary fixed direction. We know from (2.4)—-(2.6) that
8,G* € W1(2) N WZ(L2) exists and is such that

(2.8) a(t;8,G%, w) = dw@), weWiQ),

(2.9) a(t;9,G* — 8,G3,x) =0, xSy

Let ¢ (x) = (Jx —z|> 4+ p?)~!, with p = yh and y large enough, be the weight.
We define the weighted norms for o € R,

. 1/2
1 fllge = (/ch‘“lflzdx) |

1/2
| fl1i,0 = (/Q (1 fI1* + lVfIz)dx> :
It follows from a direct computation that
/ ¢%(x)dx < Cla—1)"'p2@=D, o> 1.
Q

We now recall the following results concerning the estimates for Green’s function
G* and its Ritz projection G} [7].

Lemma 2.2. Under our assumptions on Sk, we have

(2.10) 18,G* — 8,G3 |1 4-1-= < Ch®, €€(0,1),
2.11) 18:G% — 8,Gillu1 + 1G% L1 + IG5 l11 + 1G4l < €
2.12) 18.G%l, <C,  1<q=<3/2

Proof. (2.10)—(2.11) can be found in [7]. For (2.12), let w satisfy
-V.aVw =g, xeQ, w=0 on 9N
and
”w”2,p =< Cp”ng, 1< p < OoQ.

Let p = 3, we see from (2.7), stability of P, and Sobolev imbedding theorem

that .
(3,G%, g) = a(t;9,G*, w) = 3, Pyw(z) <
< Cllwllieo < Cllwllas = Csllglls < Cligll,, 3 <p <00

Thus, (2.12) follows. O

We now state and show our main result in this section.
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Theorem 2.1. Assume that u € L'(J; V?/é(ﬂ)). Then the following stability
estimate for our Ritz-Volterra projection V), holds,

(2.13) IVau@ll,p < Clllu®lll,,, tel, 2<p=<oo.

Remark., When 7 = 0, (1.2) is just the stability estimate (1.5) obtained by
Ranacher and Scott [7] for Ritz projection R;.

Proof. It has been shown by a duality argument in [5] that
Hth_u”Lp Scpl”u'”l,p, 2SP < .

Thus, the case of 2 < p < 3 follows. _
For3 < p < 0o,let n = u(t) — V,u(t), then we see from the definition of

Vi, and Green’s functions that
t
0, Pun(z,t) = a(t;n, 3,G%) +/ b(t,t;n(r), 0,G*) dt —
0
t
— / b(t, t;n(r), 3,G*)dt = a(t;u, 3,G* — 9.G;) +
0
t t
—|—/ b(t, t;n(7), 8,G* — 9,G5) dt —/ b(t, t;n(r), 9,G%)dr =
0 0
! R
= a(t;u, 3,G* — 3,G%) —!—/ b(t, T,u(tr) — Pyu(r), 9,G* — 9,G%)dt +
0
t ! .
—{-/ b(t, T; Ppn(r), 0,G* — 9,G%) dt —--/ b(t, T;n(r), 9,G*)dtr =
0 0"

t
=I1+/ (I, + I3+ Iy) dt.
0

We see from Lemma 2.1 and Holder inequality [7] that for I,

(p—2)/2p I/p
@14 |L) sc( / ¢‘+€dx) ( / ¢1+€<|u1P+IVu|P>dx) -
Q Q

I/p
18,G* — 8,GEl. g1+ < Cth/P(/ & (lul? + qul”)a’x) .
Q



ERROR ESTIMATES FOR FINITE ELEMENT SOLUTION. .. 9

Similarly, we have
(2.15) |k < Chze/f’( f o' (Ju(r) — Pou(o)|? +
Q

1/p
+ [V(u(r) — Phu(f))l”)dx> :

1/p
(2.16) |I3] < Chze/”(f @' (| Pun(0)|? + IVPhn(r)I”)dx) :
Q

We can write I as
Iy = —b(t, T, u(r) — Puu(r), 9,G*) — b(t, T; Pyn(t), 9,G*) = —M1 — M,.

Thus, it follows from the structure of the two operators in (1.6) and by integration

by parts that
(a( t)Vl_(b( . )))Phn(r)], Vasz) —

— (a(., t)Phn(r)V(b(.’ L T)), VBZG")
a(" t)

[(b(z : T))Phn(z T)] (V-a(-,t)Phn(r)V<b("t’ r)),azc;z) <
a("t)
<

b
0 Ph[( flz(zt t;’))Phn(z, T)]l + Cl|Pun(D)]]1p 18, G, <

b(z, 1,
< azPh[(%Zét—?)Pm, r)]

where we have used (2.12) for 1 < g <3/2since p > 3 and p
Also, for the same reason we have

M| =

+ Cll Pan (D)1, ps

lyg =1

b b b
8zPh[(—§(z—ft—;—)-)(u(z, ) — Pou(z, r))]l + C llu(@)ll1,-

Thus, we obtain from (2.14)—(2.16)

M| <

1/p
0y = Cr7 (max [ @ dz) iy <1 Tl
xeQ2 Jo



10 HASAN M. YMERI

I2ll, < Cllu — Pyully,p < Cllull,p,
3ll, = CllPunlly,p,

and by estimates for M;’s, we have for I,
allp < CH Punlly,p + Cllully,p.

Notice that if ,
H(x) = N(x) + / K(x,7)dt,
0

then t
1=, < N1, +f 1K@, dz, 2<p<oo.
) 0

Thus, we see from the estimates for /;’s that
t
1Banlly < C @iy +C [ IPilipde, 35 p <o
0

Notice that the above inequality also holds for p = oo by using (2.7) [7]. Thus,
Gronwall’s lemma implies ’

1Punlls,p < Cllu@ll,p

and
(2.17) [Vatll,p < 1Punll1,p + 1Prully,p, < C Hlu@lll, p.
Hence, Theorem 2.1 follows. O

As a direct application of Theorem 2.1 we show the following result.

Corollary. For any function u e L'(J; Vi’})(Q) N W¥) we have

(2.18) (@) — Vau@®llh,p < CEYu@lllr,, 2<p < oo,
(2.19) Nu(®) — Vau@®ll, < Cob*lu@llk.,, 2<p<oo

Remark. (2.19) has been shown in [4] by a different method and (2.18) is an
improvement of the estimates obtained in [4].
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Proof. Let I, be the interpolant operator on S,’j. We apply Theorem 2.1 for
u — I,u and observe that V;, = id on S,’f to obtain

(2.20)  (IVau(®) — Lu@lly,p < Clllu@) = Li@®lll,p, 2<p < oo

Then, (2.18) follows from the approximation properties of the interpolant
operator [j.

. To prove (2.19), let p € [2,00), q = p/(p — 1) € (1,2], and w €
W1(2) N W} be such that

(2.21) Aw =g =sgnu — Vyu)lu — ViulP~! in Q,
and
(2.22) lwilz,gy < Cpliglly < Cpllu — thll,’,’_l-

Thus, by (2.21), (2.22) and Hélder inequality we have

(2.23)  lu = Vyullf = a(t;u — Vyu, w — Lw) +at;u — Vyu, [w) <
< Cllu—Vaullyp llw — Lawl g +at;u — Vau, Iw)

and by (1.8)
a(t,u — Vyu, w) = — f(;b(r, T, u(t) — Vyu(r), Lhw —w)dt —
— /Otb(t, T, u(t) — Vyu(r), wydt =
= — ‘/Ot b(t, tu(t) — th(tj, Lw—w)drt +
+ fot (u(t) — Vau(r), B(t, t)w) dt <
< C/Ot lu — Viully,pdt (lw — Lwllug + llwllag),

so that we see from (2.22)-(2.23) that
(2.24) e = Vil < Cph* @ lle.p + Cp /Ot lu — Vyullp de.

Hence, the proof is complete by Gronwall’s lemma. O

We now consider the case of p = 0o, the maximum norm estimates, and
show:
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Theorem 2.2. Under the assumption of Theorem 2.1, we have

(2.25) lu(t) = Vaue@®lls.co < Ch¥* (Tog(1/B) ™ 1111 k.00 -
_ . |1 if k=2
§ = O, 1, kT = {O lf k > 3

Proof. For s = 1, this is a special case of (2.18) with p = co. For s = 0, we
have as shown in Theorem 2.1,

t
Pin(z, 1) = alt;n, G* — GE) + / b(t, 73, G* — G&)dt —
0

t

t
—f b(t, t;u(t) — Pyu(r), G dr —/ b(t,T; Pon (1), G5 dt =
0 0
=Ji+ 4+ J3+ Js.

From (2.7) and Theorem 2.1 we obtain
k*
V1 + 2 < CllInlll1,e0 1G* = Gill1,1 < Ch*(log(1/h))" Nlu(®lllk,c0 »

and for J3 we see from the stability of P, that

It b ot
J3=f0, (a(-,t)V( C(Z(_ft;))(u(r)—Phu(t)),VGz)dt——

t b 1,
—/O (a(°, ) (u(r) — Phu(r))V( c(z(-f t;:)), VGZ) dt =

= ft Ph[(w) (u(z, v) — Phu(z, T))] dt +
0

a(z,t)
+ /(: (a(-, 1) (u(r) — Phu(r))V(bC(l’(’f’t)r)) VGZ) dt <

t t
< C/ = Patsllo.co d + c/ it = Pyullo.co d [IG¥11 <
0 0

t
< O [ fuloodr
0

Similarly, we have
. t

124 < C [ 1 Punloend
0
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Collecting the above estimates for J;’s we obtain

K+ !
1 Panllo.co < CH*(1og(1/))* u(®lkco + C / 1Panlloee d
0
Thus, Gronwall’s lemma implies

k*
(2.26) [ Panllo.co < CR*(log(1/m))" 1llu®)lllk,o0 -
Hence, Theorem 2.2 follows from the inequality

HVau — ullo,c0 < | Pn(Vaut — u)llo,c0 + || Prtt — ullo oo

and relation (2.26). 0

3. An application to parabolic integro-differential equations.

In this section we consider someL*™ error estimates for finite element
methods for the parabolic integro-differential equation (1.3). As before we
assume that the operators A(z) and B(¢, t) have the special forms (1.6).

Let u,(t) : J — Sﬁ be the finite element solution of problem (1.3) defined

by
t
(uh,t,x>+a(z;uh,x>+/ b(t, T un(2), X)dT = (f,x),  x €SE,
0
uh(O) = ’UhGS,Ii.

It has been shown in [4] that the finite element approximations of parabolic
integro-differential equations have weak L error estimates. That is, for any
& > 0 there exists a C(g, u) > 0 such that ’

(3.1) () — un(®)|lLo@y < C(e, u)hc¢

whichis not optimal. Here we shall show the following result assuming sufficient
regularity of the solution u at ¢ = 0.

Theorem 3.1. For k = 2, we assume that u € L'(J; V%/éo(ﬂ) NW2) u €
L2(J, W) and v, = V4(0)v = R, (0)v. Then we have

B2y lu@®) —ur®llo,o = Chz{ log(1/m)(I1llz,00 + M @®lll2,00) +

t 1/2
+(1og(1/h)/0 uutuggdr) }
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For k = 3, we assume that u € L'(J; W' () N W), u, € L2(J; W) and
v = V3 (0)v = R,(0)v, u, € L2(J; Wzk), we have

(3.3) @) — up(®)o,c0 < Chk{HUHk,oo + [l llk,00 +
! I
ey O]z + / nut,nk,zdr}.
0
Proof. As usual we write the error

e(t) = u(t) — up(t) = (u — Vi) + (Vi — up) = n +0.

Thus, we see from Theorem 2.2 that we need to estimate 6 only.
We first show the case of k = 2. Since v, = V,(0)v = Rj(0)v, then
6(0) = 0. It has been shown in [4] that

(3.4) 19112 = Ch (il + ( [l pae) ).

Thus, (3.2) follbws from the weak Sobolev inequality on S;f [8],
161l0,00 < Clog(1/h))"?|16]|1,2

and the triangle inequality.
Now for the case of k > 3, we see that 8 satisfies

a(t;0, x) + /Otb(t, 7,0(1), x) = —(er, x), X €S}
Letting x = G#%, it follows |
0(z,t) =a(t;0, G) = —(e;, G}) — /;tb(t, 1;60(7), G;)dt = K| + K>,
and as before by the Lemma 2.1 we write K, as

! b(-t, .
K, = —/O a(t; c(z(-, t;)e(r), Gh> dr +

+/t (a(.’t)e(r)v<b(-,t,f)>,VGi)d_L_S
‘ 0

a('a t)
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B " b(,t,7T) W 3 o b(,t,T) .
< /Oa(t, a0 o(z), G, G)d'c /Oa<t, 20 9(1),G>dr+

t ' b'st’
v I6lloes 47 167111 < = [ a<t' ( ”e(r),Gﬁ—GZ)df_
0 0

’ a('a t)
—-/ Ph[MQ(Za f)}'df +C [ 118llo,c0 dT I|G*ll11 <
0 a(Z, t) 0
< —/ Ph[we(z, r)] dt +
0 a(z,t)

t 1
+ cf 16111.00 d7 IIGE — Gll11 + cf 161]0.00 d
0 0

By the inverse assumption (quasi-uniformity), stability of P, (2.7) and Lemma

2.1, we obtain
t
K; < c/ 16110,00 d7
0

and
Ki < llelllIG} 1l < Cllexll .

Thus, we have
. t
181l0,00 < Cllel| +C/ 181l0,00 dT
0

and Gronwall’s lemma implies

t
1€1l0,00 =< C(Hetll +/ Hetlldr> :
. 0

However, we have from [4] that
ledl < linll + 16,1 < Ch"{f Meellles + lelllez +
t
ol + 14 O)lle.2 +f nunnk,zdr} .
0

Hence, we have

(3.5 fllo,eo = Chk{lllulllk,z+ s lllie,2 +

t
T lvlles + ||ut(0>nk,2+/ nunnk,zdr]
0



16

HASAN M. YMERI

so that (3.3) follows from (3.5), Theorem 2.2 and the triangle inequality. O
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