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A DUALITY THEOREM BY MEANS
OF RIEMANN STIELTJES INTEGRAL

OTTAVIO CALIGARIS - PIETRO OLIVA

Duality between the space of continuous functions and the space
of bounded variations functions can be easily characterized by means of
Riemann-Stieltjes integrals when we consider real valued functions defined,
e.g., on [0,1]; here we give a self-contained exposition of Riemann-Stieltjes
integration theory for functions which assumes values in infinite dimensional
vector spaces and we show as the duality between the space of continuous
functions and the space of bounded variation functions can be represented by
means of such a theory.

Introduction.

Duality theory between the space of all V-valued absolutely continuous
functions &7 (V) and the space of absolutely continuous functions with essentially
bounded derivative is a powerful tool in calculus of variations. Many interesting
results can be proved, by means of duality, about integral functionals of general
type: let us quote relaxation theorems and necessary and sufficient conditions for
a minimum above the other ones. However in some situations more complicated
duality pairings are needed; typical examples are the duality between the dual and
the bidual space of <7 (V) or the duality between € (V), the space of continuous
functions, and the space #v(V*) of bounded variations functions.

The first one can be completely characterized by means of well known results
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due to Hewitt-Yosida [2] extended by Levin [6], [7], about the dual space of
L>(V), the space of essentially bounded functions, even when functions are
infinite dimensional valued, which is the case of our present interest. The second
one is usually characterized by means of measure theoretic tools and involves
non-trivial arguments. 7

Here we try to present a self-contained elementary Riemann-Stieltjes
integration theory for functions which take values in an infinite dimensional
reflexive separable Banach space V; we prove some results, e.g. integration
by parts, by means of this theory and we obtain an integral representation of
the duality between € (V) and ZBv(V*).To this end we give an extension of
the classical proof of the same result relative to finite dimensional case [4].
This setting appears to be very useful for obtaining necessary and sufficient
conditions for the minimum of an integral functional of calculus of variations.
As an application we expect to be able in future to derive necessary and sufficient
conditions for the minimum of integral functionals in a very direct way.

We are grateful to the anonymous referee who pointed out some inaccura-

cies.

Notations and hypotheses.

In this section we state some notations and we enunciate the hypotheses
which are assumed troughout all of this work. V is a reflexive separable Banach
space whose dual space is indicated as V*. We use || - || and (-, -) to indicate
the norm and the duality pairing between V and V*; we shall also use the same
symbols to indicate norm and duality pairing regardless to the spaces involved.

Let us now introduce some functional spaces:

A (V) is the space of all strongly measurable functions

x:[0,1]1 =V

where [0, 1] is equipped with the Lebesgue o -algebra;
L?(V) is the space of all x € .# (V) such that

1 s
xllr vy = (/(; llx(t)llpdt) < +00;

L (V) is the space of all x € .# (V) which are essentially bounded in [0, 1]
with

|[x]lLooqvy = inf{sup{llx(#)]] : £ €[0, 1]\ A} : A C [0, 1], meas A = 0} ;
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ABd (V) is the space of all bounded functions x : [0, 1] — V normed with
L*®(V)-norm,;
% (V) is the space of all continuous functions

x:[0,1] >V

with the norm ||x||¢ vy = max{|[x ()| : £ € [0, 1]};
Zv(V) is the space of all bounded variations functions

x:[0,1] >V
normed by total variation, i.e.

xllory = RO + Var (x, 0, 1) = [lx(O)] +

-HW{ZNﬂm—MmMMO=m<n<Q<m<%=1%

i=l1
PBvo(V) is the subspace of Zv(V) defined by the condition x(0) = 0 with

the same norm;
&7 (V) is the space of all absolutely continuous functions

x:[0,1] - V.
&7 (V) can be normed by various standard equivaIent norms:

XMl vy = X O + X | Lrewy
x|z ovy = Wxllewy + Xl Lievy
xllerevy = xllievy + 11Xl L1ewy

We also need some relations between the spaces we introduced, which can be
easily found in literature [1], [3].
First of all let us recall that

(LP(V))* = LI(V*)

where p and g are conjugate exponents i.e. 1/p + 1/g = 1 while (L*(V))*
can be characterized by means of a result by Hewitt- Yosida [2] when V is finite
dimensional and by Levin’s [6], [7] results when V is an infinite dimensional
space. It can be proved [6], [7] that every z € (L*°(V))* can be decomposed as
z = (z4, z;) where z, € L'(V*) and z; is a singular functional in the sense that
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for every measurable subset S C [0, 1] we can find a sequence of measurable
sets A, such that

Y +OO
S = U An s An C An+1 v Lslagna = 0

n=1

for every measurable subset A C [0, 1]. Functions of bounded variations satisfy
several useful properties which we need for the sequel [1].
— Every function of bounded variation is a bounded, strongly measurable,

function.
— Every function of bounded variation has right and left limit at every interior

point and right or left limit at extrema.
— Every function of bounded variation is continuous except at the points of a

countable subset in [0, 1].
— Every function of bounded variation is weakly differentiable for almost all

t € [0, 1], moreover it results

1
| @ = Var .01,
0
The space o7 (V) C Zv(V) can be characterized as
A V) =VaL\(V).

Indeed every absolutely continuous function x € 7 (V) has strong derivative x
at almost all pointin [0, 1], [1], it results x € L' (V) and the fundamental theorem

of calculus holds, so that
t
x(t) = x(0) +/ x(s)ds.
0
Moreover we have

(Z(V)* = Ve L) =Ve L2V

and we shall often denote this space as &7 ®(V*).
It is also worth to notice that

(V) = (V* @ L®(V*)* = V@ (L®(VH))* = V@ (LO)*V)

where (L (V*))* is the precedingly quoted space.
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Riemann-Stieltjes integration in Banach spaces.

Now we want to define a Riemann-Stieltjes integral for vector valued
integrands with respect to vector valued integrators. Similar types of integrals can
be found in [3] and [1]. We shall follow classical patterns in theory of integration

which can be found e.g. in [4].
Let us state now some more notations.

Definition 1.1. We call partition of [0, 1] every finite set P of points in [0, 1]
ie.
P={t,-:i=0,l,...,n}.

We always suppose to name points in P in such a way that
O=fh<ti<h<..<t,=1

P shall indicate the set of all partitions of [0, 11, in & we can define a partial
order by subset inclusion: we shall say that a partition P is more refined than a
partition Q when P O Q. To every P € & we also associate a mesh of points

M={g:i=1,...,n)

in such a way that
lic] =T = 4.

Definition 1.2. Let x : [0,1] = V, y: [0, 1] —» V*, let P € & and let M be a
mesh of points relative to P. Let us define

n

RS(x,y, P, M) =) (x(z), y(t:) — y(ti-1))-

i=1

We say that RS(x, y, P, M) is a Riemann-Stieltjes sum for the function x with
respect to the function y, the partition P and the mesh M. We say that x is
Riemann-Stieltjes integrable with respect to y, or simply RS-integrable, when
we can find I € R suchthatVe e Ry 3P, € & such that

|IRS(x,y, P,M) —I| < ¢

for all partition P € &2, P more refined than P, and for every mesh of points in
P. In this case we define
1
I = f (x,dy).
0
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Using definitions 1.1 and 1.2 we can prove that

~ when x1, x, are both integrable with respect to y, then ax; + Bxy is also
integrable with respect to y for any o, B € R and it results

1 1 1.
| npran) =a [ a4 [

— When x is integrable with respect to y1, y,, then x is also integrable with

respect to ay; + By, and it results
1

1 1
/O (x, d(@y; + By)) = /O oy + [ G,y

Theorem 1.3. When x € €(V) and y € Bv(V*) then x is RS-integrable with
respect to y. Moreover it results

1 .
I/O <x"dy)' < lIxll#w) Var(y, 0, 1).

Proof. Let P, € & defined as follows Pn ={i27":i=0,1,.. .', 2"}, P, is
a sequence of partitions which is completely ordered by inclusion i.e. P, is
more refined than P, ; let us moreover define a mesh of points in P, as

M,={i27":i=0,1,...,2" — 1}.

Letuscall p, = RS(x, y, P,, M,,); by uniform continuity of x on [0, 1] forevery
¢ € R we can find 8, such that when |t/ —¢"| < §, it results ||x(t') — x(+")|| < &
so, if we choose m > n sufficiently large so that 27" < §, it results

lom — pn] < & Var(y, 0, 1).
We can define I = lim p,, and we have
11| < l[xll¢cv)Var(y, 0, 1).

Now, if we choose a partition P, refined enough and we take n sufficiently large
we can assert that, for every partition P ﬁner than Pa and for every mesh of
pomts M in P, wehave * = - '
IRS(x, y, P, M) = 1| < |RSCx, y, P, M) = po+ po—I| <
<lon =I1+|RS(x,y, P, M) —p,l <e. O

Theorem 1.4. Let x : [0,1] — V and let y :[0,1] — V* then x is RS-
integrable with respect to y if and only if y is RS-integrable with respect to x
and it results

1 1 )
fo (x, dy) + /0 (y, dx) = (x(1), y(1)) — (x(0), (0)).
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Proof. Clearly it is sufficient to prove only one implication. Therefore let us
assume that x is integrable with respect to y. We have: Ve > 03 P, € & such
that when P € &2, P more refined than P,

1
RS(x,y, P, M) —/ (x,dy)l <eg, VM.
0

Now let us choose Q € &, O more refined than P,
Q:{t()a'°-’tn}

and let M = {1y, ..., T,} amesh of points in Q; obviously t,_; <1, <t; and

we have
n

RS(y,x, O, M) =) (y(m), [x(t:) — x(ti-1)]).

i=1
Let us consider P; € & defined as
, Pr=0QUM={t), 11,t1, T2, ..., Tn, tn}
and a mesh of points M obtained choosing #,_; in every interval [t;_;, 7;] and
t; in every interval [z;, #;]. ‘

It results
n

RS(x,y, Py, My) =y (x(ti-1), y(m) — y(t-1)]) +

i=1

+ Y (x(@), y®) — y(@)) =
i=1

= (@), [x(ti1) — x(®)]) +
i=1

+ 3 (@), Y1) — (x (@i, y(t-)]) =
i=1

= (x(1), y(1)) — (x(0), y(0)) — RS(y, x, @, M).
Therefore we have

1
RS(y,x, O, M) — [(x(1), y(1)) — {x(0), y(0)) —/O (x,dy)]‘ =

1
= |RS(x, y, Py, My) — f (x, dy)} <e
0
as soon as we recall that Py is more refined than Q which, in turn is more refined

than P;. ] _
Now we can prove a representation theorem for continuous linear functional

on € (V).
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Theorem 1.5. Every continuous linear functional F € (4(V))* can be repre-
sented as

]
F(x) = /0 (x, dy)

where y € Bvy(V*) and we take the integral in the sense of Riemann-Stieltjes.

Moreover
I|F|| = Var(y, 0, 1).

So we can assert that

(T (V)" = ZBue(V*).

Proof. First of all let us remark that, for every y € vy (V*), the correspondence

1
x > / (x, dy)
0

defines a continuous linear functional on % V).
On the contrary let us take F € (Z(V))* and let us show that we can find
y € Bvy(V*) such that

1
F(x)=/0 (x,dy).

By Hahn-Banach theorem (see [5] e.g.) wecanextend F to the space Zd (V)
of all bounded functions, preserving its norm and we can define, for anyt €0, 1]
and forany v eV

D(t, v) = Fx,g V)

as soon as we recall that X0,V € BdV)(x 0.1] being the characteristic function
of the interval [0, £]).

Now, by linearity of F we can easily verify that ®(z,:) is linear and
moreover it results, when ¢ > 0, '

(1, 0)] = F (x| <
< IFlllx g o llzacn = IFI o]l

So, for £ € [0, 1] we can find y(¢) € V* such that

D, v) = (y(@), v).
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Let us show that y € Zvo(V*). First of all we have
(y(0),v) =@0,v) =0 VveV

and y(0) = 0; moreover we can prove that Var(y, 0, 1) < ||F|.
Let {t, 11,12, ..., t,} € & we can find v; € V* such that ||v;|| = 1 and

1y @) — yEI = (yEi+1) — y (@), v;)

so that

D ) =yl =) (y@) =y, v) =
i=1 i=1

= (@@, v) = (-1, v) = Z(F(x[o,,i]vn ~ F(xp, V)=
i=1 i=l

n n
= Z F(X[Z‘i—l,ti]vi) = F<Zx[ti—1,t1]vi) = IFll
i=1 i==1
as soon as we observe that || X Vi Il = |lv;]l = 1. So we can deduce that

Var(y, 0, 1) < ||F]|.
Now, let x € (V) let ¢ € R and let us choose a partition P € & such that
x@) —x@E)l <e

forevery t”,t' € [t;, t;+1] and forevery i =0,1,...,n — 1.
Let '

n
o) = }_?X[,i_mx(ti_l)
==
it results o € Zd(V) and moreover ||x — o||¢ ) < &, whence
|F(x) — F(o)| < ¢l|F|l.

We also have

F(o) = (Zx[, i 1)) ZF(X[, o)) =

= 3 000 = Y-, 2.
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So F(o) is a RS-sum for x with respect to y and, since x is RS-integrable with
respect to y we can deduce that

1
] i —re)| <

as soon as partition P is choosen refined enough. We finally obtain

1 - 1
7@ = [ iy = [P - Fo4F@) - [ ran)] <
0
< e(1 +1IFI)

for every € € R, whence

1
F(x):/0 (x,dy).

By definition of RS-integrability it results

1
| [ .| = Var, 0, Dibeliecy
0
so that ||F|| < Var(y, 0, 1) and since Var(y,0,1) < ||F|| equality [|F||] =
Var(y, 0, 1) holds. O '

Theorem 1.6. Let x € €(V), y € o (V*) then x is integrable with respect to y,
Yy is integrable with respect to x and it results

1 1
/ (x, dy) = / (x, y)dr.
0 0

Proof. Let P € & defined by
P={:i=0,1,...,n}

and let us choose a mesh of points M = {t; : i =0,1...,n—1}in P. We have

n

RS(x,y, P, M) = ) (x(ti1), y(t) = y(ti-1)) =
i=1

= >ttt [ 50dsh =Y [ et 50ds) =
i=1 Li—t i=1 vii-1

n 1 1 n -
=3 gt 5©rds = [ 3 g, 500 ds =
i=1 i=1

1
- / (0 (s), ¥(s)) ds
0
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as soon as we define
n
o0 =) x,  x-D).
i=1

Now if we choose P € Z fine enough, we can assert that

lRS(x,y, P, M) —/01<x,dy)) <

moreover,

jé%aymS—AQnyuﬂslA%o—xyuﬂs

< llo = xllzoewy 17l 1cvy < €.

Therefore

[ an = [ ey <

1 1
< ’/ (x,dy) — RS(x, y, P, M) + RS(x, y, P, M)—/ (x,j:)dt’g
0 0
1 : 1
<| [ o) = RSCe . P00 [R5Ce 2 00) — [ 51 <
0 0

1 1 1
5(/0 (x,dy) — RS(x, y, P,M)]+]/O (a,y>dt—f0 (x,y)dtI§28

1 » 1
fm@hfmww
0 0

and
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