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INVESTIGATION ON SHOCK WAVES STABILITY
IN RELATIVISTIC GAS DYNAMICS

ALEXANDER M. BLOKHIN - EVGENIY V. MISHCHENKO

This paper is devoted to investigation of the linearized mixed problem
of shock waves stability in relativistic gas dynamics. The problem of sym-
metrization of relativistic gas dynamics equations is also discusssed.

The main result is derivation of a priory estimation without the loss of
smoothness for the linearized mixed problem.

Introduction.

Investigation on the shock waves stability was of great interest in the last
years. Here we should note the papers of A.M. Anile and G. Russo [1]-[3] on
this subject. To study the shock waves stability the authors of the present paper
use an “equation” approach. This means investigation of the well-posedness
of the corresponding mixed problem on shock waves stability in relativistic gas
dynamics. The most complete description of this approach is given in monograph
[4] (relative to the study of shock waves stability in classical gas dynamics and
in superfluid).

The main results of this paper are the following: the symmetrization of
relativistic gas dynamics equations given in section 1 (being obtained by the
authors in a previous paper, this symmetrization has not become widely known
to occidental scientists) and so-called a priori estimation without the loss of
smoothness for the linearized mixed problem of shock wave stability given in
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section 3. It is known (see, e.g., monograph [4]) that existence of such a priori
estimation for the linear mixed problem allows to prove (with the help of certain
technique) a local theorem of existence and uniqueness of the classical solution
to relativistic gas dynamics equations behind a curvilinear shock wave.

The results obtained are new, and, in our opinion, they should attract the
attention of occidental mathematicians to such problems.

1. Symmetrization of relativistic gas dynamics equations.

First, we will discuss the question of the symmetrization of relativistic gas
dynamics equations taking as the foundation an approach, given in monograph
[4], chapter II. Following the notations and‘terminology, offered in the paper
of AM. Anile and G. Russo [2], we write out the system of relativistic gas
dynamics equations (to obtain the equations of relativistic gas dynamics, see,
e.g., [5], chapter XV):

0
—(g——) + div (pu) = 0,
d(ohTw) | - oT .
1-1 - 0 ’ = 1’ 2’ 3!
(1.1) ——— k}; J
d(phI'? —
(b P) + div (phl'u) = 0.

ot

Here p is the rest frame density,

1
Vi-wEooo
v = (v, v2, v3)* s the velocity vector-column, |v|? = (v, v),
u= (‘ul, u, ut)* =Tv, T2 =1+ [ul?,
T, ul, u?, u3) s the four—veloc1ty,
I, = phu'u* + PBjks
h=1+e + pV, V__;, ey = eo(p, s);
D, eo, s are the rest frame pressure, internal energy, entropy;
(x!, x2,x3,1) are inertial coordinates (we restrict ourselves to the case of special

relativity).
As in the case of classical gas dynamics, the following thermodynam1cal

1dentity holds:

I' =

(1.2) Tds =dey+ pdV,
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where T is the temperature. With a state equation

ey = ep(p, §)

and in view of (1.2) we can consider system (1.1) as a system to derive the
components of the unknown variables vector:

()

We note also that in the model offered the light speed is taken to be unity,
and x!, x2, x> are the Cartesian coordinates.
By the use of the additional entropy conservation law

d(pl's)
at

+ div (psu) =0

we can symmetrize (1.1). We remind briefly (see [4], chapter II) that to
symmetrize system (1.1) we are to choose functions

L=LQ, MY =MPQ, k=123
and new dependent variables

Q = (91,92, 93, 94, g5)%,

such that system (1.1) can be written in the form

&)
d(Lyj) o(M,;") R
—7 = (), =1,3,
o1 +k}; r /
or
Q 0Q
1.3 AV = AR = —
(1.3) > +Z — =0,

where AQ = (L,,), A® =M ékgl) j, 1 =1,5 are symmetric matrices, and

(1.4) AQ >0 (orA® <0).
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Itisclearthatif condition (1.4) holds, then system (1.3) is symmetric t-hyperbolic
(by Friedrichs) (in the case A < 0, we should multiply system (1.3) by —1).

We will not discuss in details the question on how to choose g;, j =
1,5, L, M® k = 1,2, 3. We write out immediately the concrete expressions
for them:

H h
=§ - =,
q1 T
uk
(1.5) Gk = ——, k=1,2,3,
T
T
QS—'T,
r uk '
L=~p—, M®=—p=— k=123.
Pr P

Taking into account (1.5), we have:
dQ = JdU, dU = J~14Q,
dL, = 194U,
dMP = 1P4U, k=1,2,3,

where Ly = (L1, ..., Lgs)*, M® = M$, ..., My, J, 1, 0 =0,3 are
some matrices. We don’t give the concrete forms of these matrices. Then

0) y—1
A = (Lyjq) = 1977,
)=I1®J71 k=1,2,3, j,l=1,5

Following [6], we write out the matrices A®, « =0, 3:

k __ (k)
AT = (quqz

A® =pT@P), 1,j=T5 a=03

where

0 k 0) k
a%l) =-Imyg, afl) = a%l)v , k=1,2,3,

af(s)) = 1+F2m1 s af? :I‘mluk, k=1,2, 3,
a = G+ T2m)Th , a® = 1 + Pmphut, k=1,2,3,

&y = hu'lmy(u®)? - 1], al? = hu'uluPm,,
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al = hl[myw?)? — 11

0 0
a§ z)+1 =Tmu’, al(Jr)1 s = hu! (T%my + 1),

1(_?_)1 I+1 = Fh[mZ(ul)z ~-1],1=1,2,3;

k k
af 1)+1 = (uu'm; — 8y) , al(+)1,5 = hT (mau*u! — &),

a1 =k mauh? — 1= 28,1, k1 =1, 2, 3;

A1+
r(g_)l or1 =Thu"u"my, ar(i_)l,wl = hu® (mau"u' — §;,),
(3) hur(m o, 3 - 8 — 1 2 —_ .
r+10-+1_ U U 30‘)’ r=1, ’ 0—r+1,3,
m = (eO)SS L my = 1+ pT(eO)ps - h(eO)ss ,
A A
_ 4 @T—hpen)
c? heA ’
A = cPep)ss — p(e0)%, 5 = (p*(e0) )

= (eo)s, p=—(eo)v (see(1.2)).

and let the condition

—A® 5

be fulfilled. That implies the fulfilment of the following inequalities:

(1.6)

mg > 0,
hmo — W2 (momah + m2) > 0,
') [my — hmo — 2my + D2 (momah + m?)] —
—T?hmo(3 + Mmy) — (1 + m1F2)2 > 0.

Itis easy to show that, as in classical dynamics, inequalities (1.6) are fulfilled

if the state equation ey = ey(p, s) satisfies the inequalities (see [7], chapter IV)

(eo)v <0, (e0)s >0,

(eo)vv >0, (eo)vv(en)ss — (o)}, > O
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We linearize system (1.3) with respect to the constant solution of this system:
(P
U=U= § 5 ﬁ:(ﬁlsOaO)*’
u
where p = const, § = const, &' = const > 0, and

1
= —(e)v(p,5), % = V(e (p,§), V = =.

Finally we obtain the following system with constant coefficients:

~0 06Q) | X~y 9(5Q)
(1.7) A® == +ZIA = =0,

where AY = A"‘(Q) Q Q(U) (see (1.5)),x =0, 3;

8Q = (8qy, ..., 8g5)*,
3q;, j = 1, 5 are small perturbations of components of the vector Q.

Since . R R
8Q =JSU, J =J(U),

then system (1.7) can be rewritten as follows:

Qo
c
Mw
2)
Qo
&
Il
O

(1.7) — +
k=1

(we denote the vector §U by U again). Here

a10a200
_ 0 9! 0 0 0
Ai=|as 0 a 0 0},
0O 0 0 9 o0
0 0 0 0 ¢!
0 0 0 b O 0 0 0 0 by
0 00 0 O 0 000 O
Ay=| 0 0 0 by, O , A;=] 0 0 0 0 b |,
7 00 00 0 0000
0 00 0 0 E 0000
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011 —¢é2) phé} 1
a1= s 2= =], a3= ADNA A~
A A PhTA
2 oY)
C C
A=1-@(le)?, &2=5, b =25,
h T'A
Ala2 ~1
v°c . u
by=——=> T?=14+@@H%, D' = —.
2 2 m) =

For the sake of convenience we rewrite system (1.7’) in the form:

. vlcz 2 1 | 5 3
) J—
Lp—FzA%'lP FZA{ =&+ &u” + &u }-—O,
Lu' + D' T?Lp + & p =0,
(1.8) Lu*+&p =0,
Lu’ + &p =0,
Ls =0,

where L = 14+ 0§, v =2, & = aak’ k = 1,2, 3. Besides, in system (1.8)

the pressure p is related to the value phF It is easy to see that system (1.8) is

an analog of the system of acoustic equations in classical gas dynamics.
And similarly to this case (see [4], chapter III), the function p satisfies the wave

equation:

ple? ;1
19 L’p-2=:t AL"E“’?‘ﬁ =P+ Ep+Ep L =0.

Remark 1.1. Let i1 < &,. Introducing new operators 7', &/ instead of 7, £ by

the rule:
T=pot , & = pi§] + pat’,

_ TR _ Ip1=E 2 1\2
where po =T'8, p1 = po, pp=v'l 3 , B = c —(P)*, we present equation
(1.9) in the form

(1.9 (T — E)* & —Ep =0.
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Remark 1.2. The matrix A; has the following eigen-values:

-+ &

A

1

Aa3z=1V , Ags5s=

)

and if 9, > &, then A; > 0, j =1, 5;if §! < &, then A 234 > 0, As < 0.
Remark 1.3. Provided that the inequalities obtained above
(eo)v(=—p) <0, (e)s(=T) > 0,

(eo)vv (= p*c*) > 0,
(eo)vv (€0)ss — (€0)y; > O,

are fulfilled, system (1.1) can be rewritten as a symmetric ¢-hyperbolic (by
Friedrichs) system. The last inequality means convexity of the state equation

ey = eg(p, 5).

It was shown in [7], chapter IV that the well-posedness of Cauchy problem for
the equations system which describes the propagation of sound in usual heat-
conducting gas is a consequence of the convexity of its state equation. We have
an analogous situation in relativistic gas dynamics.

2. Formulation of the problem on shock waves stability in relativistic gas
dynamics.

First, we write out the conditions which should hold on a shock wave in
relativistic gas dynamics. We consider a discontinuity with an equation:

f, x', 2,33 = £, x%, 5% —x' =0,

From common reasons (see [8], § 4) we conclude that in the case of relativistic
hydrodynamics the following values have to be continuous on the discontinuity

front;
[j1=0, j=pI'(vy — Dy),

(2.1) [hunj+ pl =0, [huy,jl=0,
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[T + pDy] = 0.

Here
Uy = (V, N) 3 utl'z = (u’ TI,Z))

N= ﬁl?lv f is the normal to the discontinuity surface,

s_( . Of df i It
Vf_( L 8x2’3x3> b

af * [ of "
TI:(@’I’()) ; T2=(8—x3,0,1) >
(t1,2,N) = 0.

By [F] we, as usual, denote [F] = F* — F~, where Ft, F~ are the values of
a variable F on the right side (f — —0) and on the left side (f = +0) of a
discontinuity surface. Below we will write F instead of F*, and F,, instead of
F~. Besides, by (F) we denote the following expression:

Ft+ F~ F + Fy
— (OI‘ )
2 2

Taking into account the continuity of the variable j, we obtain from (2.1)

[i1=0, j2[hV]+ (1 — D3)[p] =0,

2.1 . .
jlhuz ,1 =0, jIAT']+ Dy[p] = 0.

In the case of shock wave (j # 0) we have the following representation of
conditions (2.1):

1 |
[j1=0, [huy]+ =[p] =0,

(2.1//) D J

[AD] + ——J%V-[p] =0, [hu,] =0

It follows from the last equality that the vectors u; and (uy), are collinear, i.e.,
the equation

(2.2) [%u.*]1 =0

is true. Here u, is the tangential to the surface of the strong discontinuity
component of the vector u.
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Now we will obtain a relativistic equation of the shock adiabat — analog of
the Hugoniot adiabat from classical gas dynamics (see [8], § 5). Multiplying the
expression

Dy
[AT"] + —}.—[P] =0

by 2(hT"), we have:

[h21?] + 2[p]<hV——BN——> =0.
VN — DN

Since
= +1=ud+u>+1,

then, by (2.2),
- [h*T2] = [h2u3] + [A?],

and, consequently,

(2.3) (1] + [R2u3] + 2[p]<—h—V—DiV-—> =0,
VN — Dy

Multiplying the condition
1
[hun]+ ;[P] =0

by 2(huy), we have

) /’lVl)N .
(2.4) [Aouy] + 2[p]<———————UN — DN> = 0.

From (2.3) and (2.4) we finally derive the desired equation of the shock adiabat
(the Taub adiabat):

(2.5) [h*] = 2[p)(hV).

Note that any equation from (2.1”) could be replaced by the Taub adiabat (2.5).
Accounting the equality (see (1.2))

p = p2(e0),(p, $) = —(eo)v(p, ),
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we obtain another representation of (2.5):
(2.5") P =HV; P, Vo).

We linearize system (1.1) and condltlons (2.1) with respect to the following
piece-wise basic solution. When x! < 0:

P = Poo = CONSt, § = §o, = const,

1

vl =9l = const >0, v2=13=0,

1
o0
p = ﬁoo = const, P = —(eo)v(ﬁoo, S00)s

= V (eO)VV(:Ooo’ S00) Voo = 1/:000a

2
)

o

A2 _
Csoo -

H };oo - 1 + eO(IaOO’ 3‘\00) + ﬁOOVOO’

=
o

= 1
2 =
* T =0L)?

when x! > 0:
p=p= const, s =5 = const,

—
>
—

v- = v const > 0, v2:v3=0,
p=p= const, p=—(eo)v(p,$),
,h=14eg(p,§) + pV
A. 1 .
TS

and when x! = 0 conditions (2.1) hold on the discontinuity surface (we assume
that the discontinuity front does not move and it is described by the equation

——O)

and any relation here could be replaced by the Taub adiabat (2.5 )

= H(f/\: pAOOa Voo)
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We require the fulfilment of the necessary conditions:
P> Poos B> Poos §> Seo,
(€0)vv (Poos Sc0) > 0, (e0)vv (P, 5) > 0,
(€0) vv (oo, S00) (€055 (Poos Soo) — (eO)%q(laoo, Se0) > 0,
A A A A 2 A A
(eo)vv (P, §)(eo)ss (0, §) — (e0)y,(p, §) > 0,
Dy > Csoo» V1 <& (Eyoo, 65 < 1D).

Accounting that (see Remark 1.2)
A1 A
Voo > Csoos

we obtain the following formulation of the problem on stability of relativistic
shock waves: in the domain x! > 0, (x2, x3) € R2, t > 0 we seek the solution
to linear system (1.8), satisfying the initial data on ¢t = 0 and the following

boundary conditions on x! = 0:

A
Fr=pup, ul—l—dp:O, uz———szzO,
7}

(2.6) Y
u—ZFa=0, s = vp.
7

Here x! = F(¢, x2, x®) is a small displacement of the discontinuity front,

A ™ a-—p2
p=-—=x7—,d= =" ,
I'[H1] Dl a
a1 rTR21451
D . gy A
A= —=< (dvl—-f‘\z), v=———-;\—!u , a = &ay,
V12 Tvlcia
Al Al AA
D e , 8 PN
ay=2— [ ](1+(0))\/i('? )),c1=1—-v1v010.
1 T¢2p

We note again that boundary conditions (2.6) come from jump conditions
(2.1). And since 7., > &0, small perturbations of the variables sought are
assumed to be equal to zero to the left of the discontinuity x! = 0 (i.e.,
the perturbations do not propagate upstream of the flow). The procedure of

linearization of relations (2.1) is detailed in [2] (see also [4], [5]).
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As in classical gas dynamics (see [4], chapter III), mixed problem (1.8),
(2.6) can be reduced to the mixed problem for wave equation (1.9) (or (1.9"))
with the boundary condition of the following form on x! = 0:

A

} C
2.7 m(t')?p +n(E)p — f)—if’%‘fp =0,

&\’ &\ &
n=—<:—1) A, m:(%) A+ —3—d.
r'B T'B piT2

At the end of this section we will study the question of construction of the
Hadamard example for mixed problem (1 9), (2.7) (and, consequently, for initial
problem (1.8), (2.6)). For problem (1.9), (2.7) we will seek exponential solutions
of the form:

where

C 1
(2.8) p = poexp il — z&,—\—wt + Ix! 4 e kx? ,
I2A Al

where p°, w, [, k are some constants. Substituting (2.8) into (1.9), we obtain the
algebraic expression:
Al A2

1 —¢)~
_V__(A—CA_)F2(< 1,

s

(2.9) (0~ M =1+k M=

all solutions of which are described by the parametrization:

‘ 241 21
w— Ml =kETL i F ,
~ 2z 27
1.e., ,
~1 k
l=ki= o= —{(1+MP+1- M)
27 27

It is known that if problem (1.9), (2.7) has solution of the form (2.8) with
(2.10) Imw >0, Im/ >0, Imk =0,

then problem (1.9), (2.7) (and, consequently, initial problem (1.8), (2.6)) is ill-
posed (see [4]). Let z = pe'?. Then condition (2.10) can be rewritten in the

form
Im/ = £5sin@(p + %) > 0,
(2.10)

Imew = -§-sin¢{/3(1 + M) — 1*71‘4} > 0.
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Introducing the variable

instead of z, from (2.10") we come to
(2.10") x| > 1

(if x is a real number, then x < —1).
Substituting (2.8) into boundary condition (2.7), we finally have the

quadratic equation for x:

C(2.11) @d+Dx*+2xd+20) +d—-1=0,
wheré
s & &BE . Dl
2.12 d=2 — 20 A= =22,
(2.12) 51 Plg T'2p2
and n
m=~(k+d) n=——A.

Having studied the roots of equation (2.11), we can divide the plane d, A into
domains:

1) thedomamI
a)A<O d<——1 |x1]<1 X < —1;
b)k>0 d>——1 d+k>0 x| <1, x, < —1;
c))»>0 d>—1 d+A<O x1>1 X < —1;
d)O<A<—,d<—1,4A(A+d)+1>0,x1,2<—1;
)A>0,d<—1,4G+d)+1<0,
|x12] > 1 (x1 are complex);

2) the domam II
A< 0,d+Ax> 0, |x12] <1 (x5 are either complex or real);

3) the domain T
a)k<0 d>——1 d+k<0 [x1] < 1,x > 1;
b)k>0 d<——1 d+k>0 lx1] <1, xp > 1,
DA>1,d+i<0,d<-1,480+DH+1>0, x> 1.
Consequently, the domain I is the domain of the ill-posedness for problem
(1.9), (2.7) (see (2.10")); the domains II, III are the domains, where solution
(2.8) does not grow in time. In the next section we will show that the domain II
is the domain of the well-posedness for mixed problem (1.8), (2.6).
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Remark 2.1. On the plane d, A we draw the line

& T2B% .
& Lhag

13! 12 E18!
v VoV

>

(2.13) d=

corresponding to the gas dynamics case.

Since _
As FZEZCI
— >0,

>0
Al Al )\1 b
D vy

then line (2.13) intersects the domain II.
The conditions ~
A <0 , d +A>0
result in requirements on the state equation ey = ¢, (p, s) which are additional

to the ones given in section 1. These requirements coincide totally with condi-
tionsgiven in [2].

Remark 2.2. Asfaras the domainIIlis concerned, we have a situation analogous
to the one which takes place in usual gas dynamics (see [4], chapter III). We can
show that there exists a problem, close to initial problem (1.9), (2.7), which is
ill-posed. The latter means that in this case the question of shock waves stability
can be solved only for the quasilinear formulation of the problem, i.e., we must
consider initial quasilinear system (1.1) and relations (2.1).

3. Well-posedness of mixed problem for linear system of relativistic gas
dynamics equations.

For the further consideration we give a symmetric representation of system
(1.7). It can be easily obtained fror}\l (1.7). It suffices to multiply (1.7) from the
left by J* and to recall that §Q = J§U. Thus, we have

o ,;
(3.1) AU, + Z AU =0,
k=1

Here
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68
—— A A]A
= OV =0 1
A=| 0 Tps O . A= 0 ?THps o |,
b0 X 1 0 Apd!
A= A3,
I, is the unit matrix of order 2; in the matrices A, = (a;ij), A3 = (bi;),
i,j = 1,...,5, a4 = as;1 = b;s = bs; = 1, and the other elements of
these matrices are equal to zero.
Excluding the function F(¢, x!, x2, x3) from the boundary conditions, we

present (2.6) in the form:

ul+dp=0, utz—-)»px2=0,

3.2)
uf’—kpxs =0, s =vp, uig = iz.
It is apparent that on x! = 0 the following condition holds:

(3.3) Eu* + &u® = (BT + Bé1)p,

where

I'2p! s

d T2A ~1 T4(HH2A
131=< -1-—= >, ﬁ2=m<l+_'5z—'

As a consequence from formulae (3.2), (3.3), we obtain:

(3.4) &5 + EDu* = (Bit + Bb1)Eap,
| &+ EH = (BiT + BE1)ED.

Let us consider the following problem, named Problem 1: we seek the
solution to system (3.1) which satisfies condition (3.2) on x! = 0 and the initial

data
U@x!, x2, x3,0) = Ug(x!, 2, x%)
in the domain

Q) = {0 ] 1'—23}
)-—{ <x1 <1, 2<x,<2,z—, .
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Let us introduce some notations and definitions. Let « and Q2(7) be

domains,

wC{x; 20, —co<x <00, i=23,0<t<o0};

(1) = w N {t = 10},

Let Ax = A% > 0, Axx, k = 1,2, 3, be expansions of the matrices A, Ay,
correspondingly, and Uy be an expansion of the vector U, satisfying an expanded

system:

0<1<T <o0.

{AxT + A1x&1 + ApxEr + Asx&}Uyx = 0.

We define J(tp) as

Let us prove the following assertion (the proof is based on the technique,

suggested in [4]).

Assertion. Let conditions m > 0,n > 0 hold. Then for Problem 1 there exist
constants N, T, a domain w, matrices Ay = Ay >0, Ayx,k=1,2,3 and a

J () = /Q  @xUy Ty
T

vector Uy such that for any 19, 0 < 19 < T, the inequality is fulfilled:

Proof. First, we note that if p satisfies equation (1.9’), then the vector Y =

J(tr0) < J(0)exp(NT).

(t'p, &1 p, &2p, &3 p)* satisfies a symmetric system:

1 —m;
—m 1
E= —[y 0
—I3 0
I 0
o -
RZ— -1 mi
0 0

—12 -—l3 m
0 0 -1
1 0 » @= 0
0 1 0

-1 0 I3

mi 0 _ 0
I, I  RBa=1
Iy —I, -1

(Et' 4+ Q& + Ry&r + R38)Y =0,

-1 0 0
mi 12 l3
12 —m; 0
13 0 —mi
0 0 -1
-—l3 0 ni
0 - L}’

my L I

where my, [, I3 are some constants, and E > 0if 1 > m? 4 I3 + 12,
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We rewrite boundary conditions (2.7) in the form:
(t' —at))Lp =0,

where

—~~

L =a;1 + aé].

The constants a, a;, a, are derived from the system:

|

ag=m,aam =—n,am—a =y =

<>

Solving this system we obtain that the number a 1s either real or complex,
dependmg on the sign of the expression y2 — 4mn.
Let y2 — 4mn > 0, then

2 U 4 —~~
y + AY; V mn , YX — '(T/Y*, le*’ sz*, S?,Y*, LY*)*
1

2m

a =
The vector Yy satisfies a system:
(3.5) . {ExT + Ox& + Roxbs + Rix&}Yx =0,

where Ex, Ox, Ryx, Rax are block-diagonal matrices of order 20,

ol 0 0 0 0
0 oE 0 0 0

Exy = 0 o o3 E 0 0o 1,
0 0 0 oyE O
0 0 0 0 o5E
Ey >0,ifo; > 0,i =1,...,5. The matrices Qx, Ryx, Rax aredeterminedby
@, Ry, Rz in a similar way. We choose oy, my;, by, I3, i = 1,...,5 (my;, by, I3

are elements of the blocks, corresponding to different o;) such that the condition
—(QxYx, Yx)|xi—0 > 0

is fulfilled.
We choose
12i=l3i=0a i:l,...,S;

2a
my=my =0, m15=-1-—+—a—2,, —1 <mpp <0,
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) n m
0<mpiz <minil, —1t , 0y = —oy,
ma n

o5 is an arbitrary positive number; the constants oy, 03, 04 are chosen to satisfy

2mn _ —no4 —noj
03,04 < ——MmM 1505, Oy < ImMin s ]
a mami; mamiy

By this choice,
X
—(Qx¥x, Yx)lwo = Y {(L&Ep)hkyi + (7' p) Py +
i=2
2
+ E &Pk + @Eip) k) + CEHP? (=) +
+ ((ED*p)*(—oamyy),

where k;;,i =1,...,4, j = 2, 3, are some positive constants. Thus,

(QxYx, Yx)lxi=0 > 0.

If y2—4dmn < 0, then a is a complex number, and fp is a complex
function. Let us turn back to system (3.5). Pr0v1ded that mys = 0, ly; = 13; =0,
i=1,...,5, we obtain:

—(QxYx, Yx)|sizo = |LE p|%ky; +

3
+ Y {ILEpIPki; + (T'&p) ko + (E(819) ks + (626 p) kas} +
=2

+ ('€ p)?ks + ((€))* p) ks + (7€) p) (E))* p)ks.

If
2Rea

1+ lal?’

o1 = %%, 03, 04 are arbitrary positive numbers,

myp=mp3=0, mjs= -1 <mpy <0,

max (o3, 03)

aioy a;os
OsMi5 >

oMy > min
, Reaz ’ Reaz

—aiReay

then k7 = 0, ks, k¢ > 0,k;; > 0,i =1,...,4, j = 2,3,, and, consequently,
—(OxYx,Yx)lyi0 > 0.
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Now we begin to construct the expanded system:
(3.6) {AxT + A1x§1 + Asxéy + Asx&}Ux = 0,

® yTH * * * *
Uy =(U ,Ut, xz, x3’Utt’ txz, tx3’U2x2’U2x3’ x3x3’YX)

L ®A 0 0
Av=| 0  sUsoa) 0 ,
0 0 & - TR0y
L ® A 0 0
Ay = 0 e(lg @ Ay) 0 ,
&
0 0 £ Ox
Iy ® A; 0 0
AiX=< 0 e(ls ® A;) 0>, [ =2,3,
0 0 Rix

where I, ® A = diag (4, ..., A).
e e
n

Remark 3.1. System (3.6) is the symmetric t-hyperbolic (by Friedrichs) system.

Remark 3.2. We note that on x; = 0 the components of the vector Uy meet, in
particular, conditions (3.2), (2.7).

Remark 3.3. Preparatory to the estimating, we note that all the derivatives of U,
canbe estimated with the help of the initial system because A is not degenerated,

and
U, = —ATHAU, + AU, + A3U,s).

Let w be a domain, restricted by the hyperplanes t = 0,7 = T, x! = 0 and
by a surface S, such that

3
/ - / {(AxUx, U + ) (4ixUx, T)E }ds = 0,
i=1

where (%, €, £, &) is the unit normal to the surface Sp.
To construct the surface S, we use the idea from [9]. We find the largest
root * of the equation det (fAy + £ A;x) = 0 and the largest roots t* of the
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equations det (TAy + EiA,- x)=0,i = 2, 3. Substituting the concrete matrices
Ax, Aix,i =1,2,3, we obtain: for &, > 0

AAl
~ — GV
E :

1’}1
for £20,i = 2,3, i
- &

@ - O

Draw the hyperplanes

A

t &= t _
xI =1 1—=6d1" xi—1/2 "
!

xi+1/2

through the faces of the unit cube €2(0). An arbitrary number

—(&2 - (HH',

= (2 - @OHH2, =23,

1
a@ - OHH2  0<a < 5

can be taken as T'. The surface Sy, is constructed. It is apparent that S, possesses

the desired property.
Let us obtain the integral estimation promised above.

1 - -
5 / : f/ {(AXUXt, Uy) + Z(AiXUXxf, UX)}dCU =
i=1
— / - f / {(AXUX,_ﬁx), + (A1xUyx, Ux)y + (AaxUyx, Ux)? +

+ (AsxUyx, Uy)ps } dow = J(T) — J (0) — / [ /(AI'XUX, Uy)dsS +
— 3 — —~
+ [ [{axtx T+ > (4ixUx, Uo)d | ds =0,

By the properties of the surface Sj, we have:

T
J(T) - J(0) — f ( (AIXUX,ﬁX)dedx3> dt < 0.
0 o(t)
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We consider the form (A x Uy, ﬁX):

—(A1xUx, Ux)|yim0 = —(A1U, U)|,1 — (AU, U)o

3 .
=Y (AU, Uplsimg + V5
i=2

3
V= e (41U, Un) + (AU, Uy +
i=2

3
+ Z(AIszx", szxi) + (AIUx3x3, Ux3x3)}|x‘=0 -

A~

Cs =
— == Yx, Yx)l.1-0.
T3 (OxYx, Yx) =0
Using the form of the matrix A, boundary condition (3.2), we obtain that
V = —e(ey(p? + pt2x2 + pfxs + pfzxz + pfzxs + pfgxa) +

+ o ((U52,2)" + Ul0)? + Wk 0)? + (1 2)% + ) + (U,2)2)),

«; are some constants, depending on the coefficients of the matrix A;.To estimate
the quadratic form of the variables u. ;. we use the fact (see [10]) that:

3 s <comt [ it

< const / (Bi + Bok)Eap)? dS,

where S is a part of the plane x! =0, S C . The inequality is continued with
the help of boundary condition (3.4). Since

—0xYx, Yx)lgi—o > 0,

for Yy which satisfies system (3.5) we have:

T
10 -10= [ [ {00+ @u, v+
o(t)
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3
+ Z(Alle, Uxf)} dx*dx’dt.
i=2

Applying the Sobolev’s embedding theorem:

T
J(T) — J(0) < N/ J (@) dt,
0

N > 0 is a constant, we finally have

(3.7)

J(T) <J@©)exp(NT).

The existence of the estimation (3.7) allows to assert that Problem 1 has

the unique solution U (see [9]), and U € WE(Q(1)), if Uy € W2(£2(0)). Thus,
Problem 1 is well-posed for m,n > 0, i.e., the domain II is a domain of the
well-posedness for mixed problem (1.8), (2.6).

(1]
[2]
(3]
(4]

(5]
[6]

[7]
(8]

[9]
[10]

REFERENCES

AM. Anile - G. Russo, Corrugation stability for plane relativistic shock waves,
Phys. Fluid, 29 n. 9 (1986), pp. 2847-2852.

AM. Anile - G. Russo, Linear stability for plane relativistic shock waves, Phys.
Fluids, 30 n. 4 (1987), pp. 1045-1051.

AM. Anile - G. Russo, Stability properties of relativistic shock waves: Basic
results, Phys. Fluids, 30 n. 8 (1987), pp. 2406-2413.

A M. Blokhin, Energy integrals and their applications to problems of gas dynam-
ics, Novosibirsk, Nauka, 1986.

L.D. Landau - E.M. Lifshitz, Hydrodynamics, Moscow, Nauka, 1986.

AM. Blokhin - E.V. Mishchenko, Symmetrization of relativistic gas dynamics
equations, Continuum dynamics, Novosibirsk, 88 (1988), pp. 13-22.

S.K. Godunov, Fragments from continuum mechanics, Moscow, Nauka, 1978.
L.V. Ovsyannikov, Lectures on foundations of gas dynamics, Moscow, Nauka,
1981.

S.K. Godunov, Equations of mathematical physics, Moscow, Nauka, 1979.

O.A. Ladyzhenskaya, Mathematical problems of viscous noncompressible fluid,
Moscow, Nauka, 1970.

Institute of Mathematics,
Universitetsky pr 4,
630090 Novosibirsk (Russia)



