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THE CRF-METHOD FOR SEMICONDUCTORS’
INTRAVALLEY COLLISION KERNELS: II - The 3D case

CLAUDIO BARONE - SANTO MOTTA

If the collisions are redefined as a flux a kinetic conservation law can be
written in divergence form. This can be handled numerically, in the framework
of Finite Particle Approximation, using the CRF-method. In this paper we use
the CRF-method for the semiconductors’ intravalley collision kernels. We
extend the results obteined in'a previous paper to the case of a 3D momentum

space.

1. Introduction.

Semiconductors kinetic transport equation has been usually treated nume-
rically using the Monte Carlo methods [5], [6]. For a few years Deterministic
Particles Methods have been proposed as an alternative scheme for this class
of problems [3], [4], [10], [11], [13]. In this framework the CRF-method for
kinetic equations has been recently presented [2], [12]. The idea of the method
is to write a conservation law in divergence form. This can be done easily by
introducing a flux equivalent to the inhomogeneity. In a classical frame, the
reciprocal of the desired function multiplied by the flux gives a velocity field.
However, in the finite point approximation a reciprocal does not exist. Since the
velocity field can also be interpreted as the Radon-Nikodym derivative of the
flux, we use the latter for a numerical approximation. This gives a scheme where
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the numerical effort depends only on the desired accuracy and not directly on
the dimension of the phase space. In a previous paper [1] we have derived the
relevant quantities needed for the numerical scheme in a 2D momentum space
for the intravalley semiconductors kernels. In this paper we present the same
analysis in a 3D momentum space.

We assume that the energy-momentum relationship can be treated in the parabolic
approximation. Under this assumption the natural coordinate system for the
problem is the spherical one. Then one should use the CRF-method formulation
in generalized coordinates [2]. As shown in [1] one can use the existing simila-
rities between the semiconductors’ intravalley collision kernels to identify three
different model kernels. This will optlmlze the analytical work and reduce the
lmplementatlon effort.

2. Semiconductors’ intravalley model kernels.

In the semiclassical approach the collision term for semiconductors can be
expressed as the difference between the electrons scattered in and out of the state
k

O o) = /9 (SK, B fK)Y(A = fk)) = Sk, &) f k)1 = f(K))) ak’

where S(k, k) represents the probability per unit time of an electron transition
from a state k into an empty state &', induced by the lattice imperfections. The
(1 — f) coefficients accounts for the Pauli exclusion principle. In many case
these factors do not contributes since it is always assumed f < 1 [6].

The transition probability S(k, k') from the initial state k to the final state
k', having energies ¢ and &', due to a given interaction mechanisme, is given [6],
[14]

Vo

Qr )3

where Vj is the volume of the crystal, G(k', k) is the overlap integral and
|V (k — k")||? is the square of the matrix element of the interaction mechanism.
For electrons intravalley transition process G is equal to unity [6].

In the previous paper [1] we have pointed out that most of the relevant
intravalley interaction mechanism can be described — by suitably changing the
meaning and the values of the constants — through three model kernels

Sk, k') = NV~ K)IPG(k, K)8(s' — 6)

(2) Sk, k'y = AS(K"* — k* + ¢)
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3) Sk, k') = Sk — K24 ¢)

llk — ]2

S(k? — k%) .

/

@ S = G =T
Here we have used the parabolic approximation & = #k?/2m*. The constant ©
is obviously suitably defined.
All the other relevant kernels can then be derived from these [4] and one can
minimize both the analytical effort and the code writing.

As shownin section 2 of [1] the solution of the equation of motion reduces to
the computation of the vector field g. We are the involved in computing the r.h.s.
of the equation (15) of [1],i.e. the W’ Here we want to use spherical coordinates.
For this purpose let (§1, &, &), (ki, k2, k3) respectively the Cartesian and the
spherical coordinates, 2, = [a, f1] X [0, 7] x [0, 27], and denote by T the
coordinate transformation from {§} — {k} and by |T| = k12 sin k, its Jacobian.
The collision term for semiconductors can be expressed as the difference between
a gain term G and a lost term L. Then in the new coordinate system we have

O(f(ky, kz, k3)) = G(ky, ky, ks) — L(ky, ko, k3)

where G and L are given by

5) Gllrkanks) = [ S(us, ol Ko ko) o, i i) sine

Qy
©6) L(ky, ka, k3) = f(ky, k2, ks)C (k. kp, k)
with
(7 C(ky, ky, k3) = / Sk, ko, ks, 1, o, wa)pd sin o du
Q, -
where 1 = (11, o, #3). Then the W (y;) can be written in the form
(8) V() = =W + i (7).

To evaluate the W' (y;) for i = 1, 2, 3 we can proceed as in [1]:
1. We approximate the density function f (¢, k) by a discrete measure

Ft ki, k, ks) = f(t, ki, ko, k3) [T] =

1
=% 8(ky — ki,7) 8Cky — ko, ;) 8(ks — k3 j);
=1

2. Compute 5(k) and Z(k); _ _
3. Compute V' (y;), i = 1,2, 3, separately for G(k) and L (k).
After some algebra, variable transformations and appropriate use of the
Heaviside function H(-) we get the following results.
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1. MODEL KERNEL (2).

~ 1 &
©) Gl == Sk;, k)
j=1
(10) C(k) =2 Ak — o H [(k? — ¢ — D) (B2 — K} + 9)].
Then we compute the W components. Setting a; = kf, j — ¢ for the first

component we get

TA & |
(11) \If};w—TZ — VaDJaGHl(a; — a}) (v — ap)]

1 & ~
(12) Vi) =% > v~k YCUDH 1 — ki, ).
j=1

For the second component we get

A . N
(13) Wi = TP >V [~ e ~a)]
1 & ~
(14) Vi (v =5 D =k YCUDH (72 — o, ).
Jj=1

For the third component we get

2 N
(15) Wi (ys) = “75‘ Z H [(aj — o) (B - )]
1 & ~
(16) Vi) =5 D _(rs — ks YCENH (s = k3, ).
j=1

We note that in the elastic limit we get \11(1; (y)) =WV é (y1) as required.
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2. MODEL KERNEL (3).

~ 1 N~
(17) Gy =~ DSk k)
j=1

~ A
(18) Ck) = Zy/ki —9F () H [k} — 9 — D) (B} ~ &} + )]

where

(19) F(k) =

_ /72” sin k), dk)dk;, ‘
00 2k% — ¢ — 2ki,/k} — @ [sink, sink} cos(ks — k}) + cos k; cos k) |

Then we compute the W components. Setting a; = ki j — ¢ for the first

component we get

A N
(20) Wgr) =75 > 0 — VaJGF (@, k) H [ — ) (v —ap)]
j=1

1 & ~
(21) Vi) =5 2 0 =k NCEDH( — k)
j=1
where
(22) Fy(ki, k) =

B /'77/‘271' sink; dkydks
0Jo kI, +k{ —2ky k] [sinks,;sink; cos(ks ; — ks) + cos ks, ; cos ka |

For the second component we get

A , v2
(23) Wi == > JaH [(@ = e (B} - ap)] /O Fy(ka, k;) dky
j=1

1 & ~
(24) Vi) == > (2= ke NCUNH (2 ki)
j=1
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where

(25) Fy(ka, k) =

_ /27k2 sin k) dk}dks

o Jo ki;+a;~ 2k ;. /@ [sink,,; sinkj cos(ks ; — ks) + cos ka,j cos k) |

For the third component we get

A N 4!
(26) ‘I’%()@) = >N Z\/a_jH [(aj — o) (B? — aj)]/ﬂ Fs3(ks, k;) dks
j=1

1 ~
@27) Vim) = j};(yg — k3 )C(kp)H (y3 — ks )
where
(28) Fs(ks, k) =

_ /”/ks sin ky dkydk}
~JoJo K +a; —2ki,; /T [sink, ; sink; cos(ks ; — k) + cos Ky j cosks]

The calculation of the integral functions defined by equations (22), (25) and g
is presented in appendix A, while the r.h.s. integrals in (23) and (26) must be

computed numerically.
Furthermore we note that in the elastic limit we get \Il(l; (y) =V é (y1) asrequired.

3. MODEL KERNEL (4).

~ 1
(29) Gk) = ~ ; S(k;, k)
~ A
(30) Ck) = Sk F()H [k} — o) (] — kD]
where
(31) Fk) =
sin k) dk}dk}

T p2w
B -/o /o [2k} — 2k} (sin k, sin k} cos (ks — k}) + cos k, cos ky) + ,32]2
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Then we compute the ¥ components. For the first component we get

32 Wi = 2N2k1,<m—ku>F1(k1],k>H<y1 k1,5)

1 & ~
(33) Vi) =5 21—k CUDH (1 = k)
j=1
where
(34) Fy(k}, kp) =

/ /2” sin k, dk,dks
[or — 2ky, ;K| (sink, ; sinky cos(ks, ; — k3) + cosky, j cos kz)]

with o = k} ; + k{? 4 B2
For the second component we get

G5 \Iﬂm)—-——Zkl, f F2<k2,k>dk2
| — .
(36) Vi) =5 2 (n =k )CUDH (= ko )
j=1 o
where
(37) Fy(ka, kj) =

/ o f K sin k, dk,dks
) | 2
o Jo [2/‘12,]' — 2k} ;(sinky, j sinkj cos(ks j — k3) + cosky,; cos k) + ﬂ2]

For the third component we get

A N V3
38 w3 =— Y ki Fsy(ks, k) dk
(38) L(r3) QN;‘ 1,,/0 3(ks, k) dks
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N

1 ~
(39) Vi) == ) i~k )CUDH s — ks )
j=1
whcre
(40) Fs(ks, kj) =

. /”/k3 sinky dkydk}
= 2
0.Jo [Zkf’ i 2k} j(sinky, j sinky cos(ks ; — ki) + cosky ; cosky) + ,32]

The calculation of the integral functions defined by equations (34), (37) and
(40) is presented in appendix A, while the r.h.s. integrals in (35) and (38) must

be computed numerically.
This model kernel is already elastic. This Property is conserved by the CRF-

method as can be seen, with simple algebra, from (32) and (33).

3. Conclusions.

The numerical experiments performed using the CRF-method, performed
for a 2D model using the Polar Optical Scattering collision kernel, show that the
method can be used for numerical computations [2]. For this we have computed
the relevant quantities for the application of the method to intravalley model

kernels in a 3D momentum space.
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Appendix A.

In this appendix we compute the integral functions defined by equations

(22), (25), (28), (34), (37) and (28).
-We consider first the integral functions (22), (25), (28). These can be written

in the following equivalent ways

Fl(k’,kj)zf F1(ky, ko, k;) sink, dk,

0

(41) 2w

=f Fi (K, k3, k;) dks
0



(42)

(43)

where

(44)

(45)

(46)

(47)

(48)

49)

with
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ka

Fy(ky, kj) = / Fy(kj, k;) sink} dk)
0

2 _
=/ Fy(ka, k3, ki) dks
0

ks
FS(k3’kj):/ Fs(ks, k;) dks
0

= / -F—g(kz, k3, k]) sin k2 dk2
0

dks
a1 — bycos(ks ; — k3)

2
Fy(ky, ko, kj) =/
0

sink;
a; + by sinky + ¢ cosky

w
Fi(ky, k3, kj) =/ dky
0

dks
ay — bycos(ks j — ks)

_ 2
Fa(ky, kj) = /
0

sin k),
@ + by sink)) + ¢, cos k)

By (o, ks, ) = fo dK,

sinky dk
2

Pk}, k)dk =f - -
3(3 7)dks 0 a3+ bysinky + ¢3cosky

dk;,
a3 — bycos(ks ; — kj)

—_— k3
F3(ky, ks, kj) = f
0

ay = ki ; + ki — 2Ky jk} cosky, ; cos k
by = 2k, jk{ sinks,; sinky

&, = k2 + aj — 2k, ;/a; cos ks, ; cos k)
by = 2ky,j/a; sinks, j sink)

a3 = ki ; + a; — 2ky j/a; cos ky, j cos k
by = 2Ky j./a; sinky, j sink,

117
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and _
dy =k ; + Kk
31 = —2k1,jk£ sin kz,j COS(k3,j - k3)
2"1 = —2k1’jk/1 COS kz’j

ay =ki; +a

by = —2k; ;/a; sinky ; cos(ks ; — ks)
Cy = —2ky, j /a; cosky,

a3 =ki; +a .

by = —2k; ;/a@; sinky ; cos(ks ; — kj)
c3 = —2ky,j\/a; cosky ;.

We note that the integral functions defined by equations (44), (45), (46),
(47), (48) and (49) can be computed analytically (see appendix B and appendix A
of [1]), while the integrals on the r.h.s. of the equations (41), (42) and (43) must
be computed numerically. Moreover, as pointed out, there are two equivalent
ways to compute the integral functions Fj, F» and F3. The choice of the most
convenient way needs to be carefully evaluted.

We now consider the integral functions (34), (37), (40). These can also be
written in the forms (41), (42) and (43) respectively, where

. 2 dks
(50) Fi(ky, ko ki) = e )
0 [a1 — b COS(kg,j - k3)]
~ T Sinkz
51 Fik,, ks, k; =f S _ dk
1) 1Ky, k3 ) o [ai + bysinky + €1 cos ky]? ?
—_ 2 dks
(52) Fy(ky, kj) =/ = >
o [az —bycos(ks ;j — k3)]
~ k2 sin &’
(53) Fyky, k3 b) = | o2 dk,
o [ay + bysink; + ¢y cosks]
~ T sin ko
54 Bk, k)dk =f - _ dk
>4 3(ks. Ky )dks o [as + bysinky + ¢3cosky]? 2



(55)

with

and

Faka, k3, kj) =
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b dk}

ki + k7 + B? — 2k, ik cosky, ; cos ky

b1 = 2k1,jki sin kz,j sin k2

by = 2k} ; sinky,; sink;
as =2k ; + B* — 2k} ; cosky j cos k,

53 = 2k12’j sin kz’j sin k2

a =k}, + k7 + g

by = —2ky ;K| sink, ; cos(ks ; — ks)
c1 = —2k;, jk{ cosky,

Gy =2k} ; + B

by = -—Zkfj sinky, ; cos(ks j — k3)
Cy = —Zkf jCos ks, ;

a3 =2k}, + B*

by = —2k? , sinky, ; cos(ks ; — K})

53 = __Zkij CosS kzyj .

o [a3—bscos(ks; — k3)1?
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Also in this case the integral functions defined by equations (50), (51), (52),

(53), (54) and (55) can be computed analytically (see appendix B and appendix
A of [1]), while the integrals on the r.h.s. of the equations (41), (42) and (43)
must be computed numerically. Again the choice of the most convenient way to
perform the integration needs to be carefully evaluated.

Appendix B.

which we have used in the previous calculations.

(56)

We consider first the integral

I(x) = / sin x dx

a-+bsinx + ccosx

In this appendix we recall the results of two well known generalized integrals
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where a, b, ¢ are real constants with a> > b* + ¢? and a # c. The primitive
I(x) can be computed analytically. Let

2b
p:
a—c
" a+c
q:
a—c
X
! =tan— .
2
Then we get
4 t
57 I(x) = . dt .
7 *x) a—c,/(1+t2)(t2+pt+q)

The r.h.s. integral of the equation (57) can be split in the following way

t At + B Ct+ D
58 dt = -dt+/——-————dt
(58) /(1+t2)(t2+pt+q) ,/ 1+ ¢2 124 pt+gq

where A, B, C, D are the following constants

qg—1
A=— 2
pr+@—1)
p
B =
p*+ (g —1)?
C=-4A
D = —¢gB.

The integrals on the r.h.s. of the equation (58) can be easily calculated and we
have

At + B A 5
] 572 dt = —z—log(l—{—t ) + Barctant

Ct+D C
/-————dt=—~log(t2+pt+q)+

12+ pt+gq 2
pC 2 2t+p
(D= 25)—2 o 222
2 /\/4q — p? V4q — p?
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We note that, if 7 € [«, B8], we have

/ﬂ = dx=1(x") = I(@) +1(B) - I(x*
X = I(T — _
y a-+bsinx 4 ccosx o)+ 1(B) (™).

We now consider the integral

sin x
59 J(x) =
(59) ) ,/ (a + bsinx + ccos x)? dx

where a, b, c are real constants with a> > b*+c? and @ # c. Again the primitive
can be obtained in a closed form

1
60 J = — —
(60) O = e~ o@ Tt
— 8Pv4Q“P2 {larctany—l———y—}
2(a—c)(4qg — p») 12 20 +y5) 1
where
2b
p:
a-—c
a+c
q:
a—c
t——tanic-
2

y =2t + py/4q — p>.

Also in this case, if 7 € [«, 8], we have

P sin x Jr = T ; ; .
,/a (a + bsinx + ccos x)? x=J@")=J)+J(B) —J@™).



122

(1]

[2]

(3]

[4]

[5]
[6]
[7]
[8]
[9]

[10]

[11]

[12]

[13]

[14]

CLAUDIO BARONE - SANTO MOTTA

REFERENCES

C. Barone - S. Motta, The CRF-method for Semiconductors’ Intravalley Collision
Kernels : I - The 2D case, Le Matematiche, 47 (1992), pp. 163-175.

R. Burkhard - S. Motta - J. Wick, The CRF-method in general coordinates,
preprint, 1992. .

P. Degond - F. Guyot-Delaurens - F.J. Mustieles - E. Nier, Simulation Particulaire
du trasport bidimensionnel d’electrons parallele a interface d’une heterojonc-
tion, rapport interne n.189, Ecole Polytechnique, Palaiseau, 1989.

P. Degond - EJ. Mustieles, Le Logicien SPADES-1 Version 2, Documentation Sci-
entifique, Centre de Mathematiques Appliquees, Ecole Polytechnique, Palaiseau,
1990. ‘ ,

R.W. Hockney - J.W. Eastwood, Computer simulation Using Particles, Adam
Hilger, Bristol, 1988. ‘

C. Jacoboni - P. Lugli, The MonteCarlo Method for Semiconductor Device simu-
lation, SpringerVerlag, Berlin, 1989.

L.D. Landau - EM. Lifshitz, Quantum Mechanics, Pergamon Press, 1964.

A. Messiah, Mecanique Quantique, Dunod, Paris, 1965.

P.M. Morse - H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, New-
York, 1953. :

S. Motta - G. Russo - H. Moock - J. Wick, A Number-theoretical Convergence
Proof of a Point Approximation of a Space Homogeneous Transport Equation, Le
Matematiche, 41 (1986), pp. 161-178.

S. Motta - G. Russo - H. Moock - J. Wick, Point Approximation of a Space
Homogeneous Transport Equation, Numer. Math., 56 (1990), pp. 763-774.

S. Motta - J. Wick, A New Numerical Method for Kinetic Equations in Several
Dimensions, Computing, 46 (1991), pp. 223-232.

B. Niclot - P. Degond - F. Poupaud, Deterministic Particle Simulation of the
Boltzmann transport equation of semiconductors, J. Comp. Phys., 78 (1988),
pp. 313-349.

L. Reggiani (Ed.), Hot-Electron Transport in Semiconductors, Springer Verlag,
Berlin, 1985.

Dipartimento di Matematica,
Universitd di Catania,

Viale A. Doria 6,

95125 Catania (Italy)



