ON THE SPECIALITY OF A CURVE

ROSARIO STRANO

Let $C \subset \mathbf{P}_k^r$, k algebraically closed field of characteristic 0, be a curve and let $e(C) = \{\max n \mid H^1(\mathcal{O}_C(n)) \neq 0\}$ its speciality. Let Γ be the generic hyperplane section and $\varepsilon = \{\max n \mid H^1(\mathcal{J}_{\Gamma}(n)) \neq 0\}$. We prove that, if Γ is generated in degree $\leq \varepsilon$, then $e(C) = \varepsilon - 1$. In the case r = 3 we discuss some relations between e(C) and the Hilbert function of Γ .

0. Introduction.

- Let $C \subset \mathbf{P}_k^3$, k algebraically closed field of characteristic 0, be a curve (i.e. a locally C.M., equidimensional subscheme of dimension 1) and let $\Gamma = C \cap H$ be the generic plane section. In [7], [8] we studied some relations between properties of C and of Γ . More precisely we proved the following result ([8] Teorema 4).
- **0.1.** Let $J = H^0_*(\mathscr{J}_{\Gamma}) \subset R = H^0_*(\mathscr{O}_H)$ be the homogeneous ideal of Γ in H and let t be an integer. Assume that, for $n \leq t+2$ is $\operatorname{Tor}_1^R(J,k)_n = 0$. Then the restriction map $H^0(\mathscr{J}_C(t)) \to H^0(\mathscr{J}_{\Gamma}(t))$ is surjective.

From this we deduced the following corollary ([8] Corollario 1.).

0.2. Assume that deg(C) > 4 and C does not lie on a quadric. If Γ is a complete intersection, then C is a complete intersection.

Entrato in Redazione il 23 giugno 1993.

1991 Mathematics Subject Classification: primary 14H50, secondary 14H45.

Work done with the financial support of the Ministry of Scientific Research.

This two results have been extended to the higher dimensional case (see [6]).

The proof of the above results is based on the study of $\operatorname{Ker} \varphi_{H^i}(n)$, where $\varphi_{H^i}(n) \colon H^1(\mathscr{J}_C(n-i)) \to H^1(\mathscr{J}_C(n))$ is the multiplication by H^i .

In the present paper we obtain a dual result, by studing the Coker $\varphi_{H^1}(n)$ and precisely we get the following.

0.3. Let $C \subset \mathbf{P}_k^r$, k algebraically closed field of characteristic 0, be a curve and let $\Gamma = C \cap H$ be the generic hyperplane section. Let $J = H_*^0(\mathcal{J}_{\Gamma}) \subset R = H_*^0(\mathcal{O}_H)$ be the homogeneous ideal of Γ in H and let t be an integer. Assume that, for $n \geq t+1$, is $\operatorname{Tor}_0^R(J,k)_n = 0$. Then the induced map $H^1(\mathcal{J}_{\Gamma}(t)) \to H^2(\mathcal{J}_C(t-1))$ is injective.

As a corollary we obtain the following.

0.4. Let $e(C) = \max\{n \mid H^1(\mathcal{O}_C(n)) \neq 0\}$ and $\varepsilon(\Gamma) = \max\{n \mid H^1(\mathcal{J}_{\Gamma}(n)) \neq 0\}$. Assume that J_{Γ} is generated in degree $\leq \varepsilon$. Then $e(C) = \varepsilon(\Gamma) - 1$.

We note that it is possible to give an alternate proof of 0.3, by linking C to a curve C' and using 0.1. In the same way 0.1 can be deduced from 0.3.

This work has been done within the group on "Space curves" of Europroj.

1. Preliminaries.

Let k be an algebraically closed field of characteristic $0, S = k[x_0, \ldots, x_r]$ and let $M = \bigoplus_{n \in \mathbb{Z}} M_n$ be a graded S-module. Define (see also [1], 0.1.7) a graded S-module M^* as follows: as a k-vector space it is $(M^*)_n = \operatorname{Hom}_k(M_n, k)$ and the S-module structure is defined by $s \cdot f(m) = f(sm)$ for $s \in S$, $m \in M$ and $f \in M^*$.

Proposition 1.1. Let S, M, M^* as before. Then we have:

- 1) If $f: M \to N$ is a graded S-module homomorphism of degree 0 then f induces a graded S-module homomorphism of degree 0, $f^*: N^* \to M^*$.
- 2) The map $M \mapsto M^*$ is a contravariant exact functor.
- 3) If M is a graded S-module of finite type, then $M^* \simeq \operatorname{Hom}_S(M, S^*)$.
- 4) If L is free of finite type, then $L^* \simeq L^{\vee} \otimes_S S^*$, where $L^{\vee} = \text{Hom }_S(L, S)$.
- 5) If L, L' are free of finite type and $f: L \to L'$, then $f^* = f^{\vee} \otimes_S S^*$. More generally for every M, $(f \otimes_S \operatorname{id}_M)^* = f^{\vee} \otimes_S \operatorname{id}_{M^*}$.

Proof. 1) It is straightforward to see that the dual f^* of f as k-vector spaces is a homogeneous, degree 0, graded S-module homomorphism.

2) Is trivial.

For 3) see [1], 0.1.10.

- 4) We reduce to the case M = S(a). In this case $M^* \simeq S^*(-a)$.
- 5) We can assume $f: S(a) \to S(b)$ and $f \in S$ homogeneous of degree b-a. Then $f^*: S^*(-b) \to S^*(-a)$ is given by $f^*(s^*) = f \cdot s^*$. \square

Lemma 1.2. Let S as before. Then we have:

1)
$$\operatorname{Tor}_{i}^{S}(S^{*}, k) = \begin{cases} 0 & \text{if } i \neq r+1 \\ k(-r-1) & \text{if } i = r+1 \end{cases}$$

2) For every graded S-module M it is

$$\operatorname{Tor}_{r+1}^{S}(M^*, k) = (M \otimes_{S} k)^*(-r-1).$$

Proof. 1) Let

$$(1) 0 \to S(-r-1) \stackrel{g}{\to} S(-r)^{r+1} \to \cdots \to S(-1) \stackrel{f}{\to} S \to k \to 0$$

be the free resolution of k given by the Koszul complex. Observe that this sequence is self-dual. In particular $g = f^{\vee}(-r-1)$.

If we apply * and shift by -r - 1 we obtain an exact sequence:

$$0 \to k^*(-r-1) \to S^*(-r-1) \xrightarrow{f^*(-r-1)} S^*(-r)^r \to \cdots \to S^* \to 0.$$

If we compare this exact sequence with the complex obtained from

$$(2) 0 \to S(-r-1) \to S(-r)^{r+1} \to \cdots \to S \to 0$$

by tensoring $\otimes_S S^*$ we obtain the result, by Proposition 1.1.5), since

$$g \otimes_S S^* = f^{\vee}(-r-1) \otimes_S S^* = f^*(-r-1).$$

2) As before start from the exact sequence (1), tensor $\otimes_S M$ and apply *. We obtain a sequence

$$0 \to (M \otimes_S k)^* \to M^* \to M^*(1)^{r+1} \to \cdots$$

which is exact in $(M \otimes_S k)^*$ and M^* . On the other hand if we start with the complex (2) and tensor $\otimes_S M^*$ we get the result.

Lemma 1.3. Let $J \subset S$ be an homogeneous ideal generated in degree ≥ 1 . Then we have:

1)
$$\operatorname{Tor}_{r+1}^{S}((S/J)^{*}, k) = k(-r-1).$$

2)
$$\operatorname{Tor}_{r+1}^{S}(J^{*}, k) = \operatorname{Tor}_{r}^{S}((S/J)^{*}, k).$$

Proof. 1) Follows from Lemma 1.2 since $(R/J) \otimes_S k = k$. 2) From the exact sequence

$$0 \to (S/J)^* \to S^* \to J^* \to 0$$

we have an exact sequence

$$0 \to \operatorname{Tor}_{r+1}^{S}((S/J)^{*}, k) \to \operatorname{Tor}_{r+1}^{S}(S^{*}, k) \to \\ \to \operatorname{Tor}_{r+1}^{S}(J^{*}, k) \to \operatorname{Tor}_{r}^{S}((S/J)^{*}, k) \to 0$$

and the result follows since, by 1), $\operatorname{Tor}_{r+1}^{S}((S/J)^*, k) = \operatorname{Tor}_{r+1}^{S}(S^*, k) = k(-r-1)$.

Now we recall two known results we need in section 2.

Lemma 1.4. Let $S = k[x_0, ..., x_r]$ and let M be a graded S-module of finite type. Let H be a generic linear form in S and denote by $\varphi_{H^t}(n)$ the map $M_{n-t} \to M_n$ given by multiplication by H^t . Assume that $m \in \text{Ker } \varphi_{H^t}(n)$. Then $mF \in \text{Im } \varphi_H(n)$ for every $F \in S_t$.

Proof. See [7], proof of Theorem 6; see also [6], Lemma 1.

Lemma 1.5. Let $R = k[x_1, ..., x_r]$ and let M be a graded R-module. Then the following are equivalent:

- 1) for every r-uple $m_1, \ldots, m_r \in M_n$ satisfying $m_i x_j = m_j x_i$ for $i, j = 1, \ldots, r$ there exists an $m \in M_{n-1}$ s.t. $m x_i = m_i$ for $i = 1, \ldots, r$.
- 2) $\operatorname{Tor}_{r-1}^{R}(M,k)_{n+r-1}=0$

Proof. The proof is an easy generalization of [3], Lemma p.141; see also [6], Lemma 2. □

2. The main result.

Let $C \subset \mathbf{P}^r$ be a curve (i.e. a 1-dimensional locally C.M. equidimensional subscheme) and let $\Gamma = C \cap H$ be its generic hyperplane section.

Let $S = k[x_0, ..., x_r]$, $R = k[x_1, ..., x_r]$ be the homogeneous coordinate rings of \mathbf{P}^r and H respectively and denote by \mathcal{J}_C , \mathcal{J}_Γ the ideal sheaves of C and Γ in $\mathcal{O}_{\mathbf{P}^r}$, \mathcal{O}_H respectively. Moreover let $M = H^1_*(\mathcal{J}_C)$ be the Hartshorne-Rao module of C.

Consider the graded S-modules K, Q given by the exact sequence

$$(3) 0 \to K \to M(-1) \to M \to Q \to 0$$

where $\varphi_H: M(-1) \to M$ is given by the multiplication by H. From the exact sequence

$$(4) 0 \to \mathcal{J}_C(-1) \to \mathcal{J}_C \to \mathcal{J}_\Gamma \to 0$$

we get a long exact sequence

$$(5) 0 \to H^0_*(\mathscr{J}_C)(-1) \to H^0_*(\mathscr{J}_C) \to H^0_*(\mathscr{J}_\Gamma) \to \\ \to M(-1) \to M \to H^1_*(\mathscr{J}_\Gamma) \to H^2_*(\mathscr{J}_C)(-1) \to \cdots$$

from this we see that Q is the kernel of the map $H^1_*(\mathscr{J}_{\Gamma}) \to H^2_*(\mathscr{J}_{C})(-1)$.

Theorem 2.1. Let C, Γ as before and let $J = H^0_*(\mathcal{J}_{\Gamma}) \subset R$ be the homogeneous ideal of Γ . Let $t \geq 0$ be an integer and assume that $(J \otimes_R k)_n = 0$ for $n \geq t+1$ i.e. J is generated in degree $\leq t$; then the map $H^1(\mathcal{J}_{\Gamma}(t)) \to H^2(\mathcal{J}_{C}(t-1))$ is injective.

Proof. With the above notations we have to prove that $Q_t = 0$. If we apply the functor * we obtain an exact sequence:

$$0 \to Q^* \to M^* \to M^*(1) \to K^* \to 0$$

and we prove that $(Q_t)^* = 0$.

Let $\alpha \in (Q_t)^* \subset H^1(\mathscr{J}_C(t))^*$, then $\alpha H = 0$ in $H^1(\mathscr{J}_C(t-1))^*$. By Lemma 1.3, if we denote by $\overline{\alpha}$ the image of α in $H^0(\mathscr{J}_{\Gamma}(t+1))^*$ we have $\overline{\alpha}x_i = 0$ for every $i = 1, \ldots, r$.

Now let $\beta \in H^0(\mathcal{O}_H(t+1))^*$ a preimage of $\overline{\alpha}$ in the map

$$\psi: (H^0_{\star}(\mathscr{O}_H))^* \to (H^0_{\star}(\mathscr{I}_{\Gamma}))^*$$

we have $\beta x_i \equiv 0 \mod I$ for i = 1, ..., r, where $I = \operatorname{Ker} \psi$. From the exact sequence $0 \to J \to R \to R/J \to 0$ we see that $I \simeq (R/J)^*$.

Let $F_i \in (R/J)^*$ of degree -t such that $\beta x_i = F_i$ in $(R_t)^*$ for $i = 1, \ldots, r$. We have $F_i x_j = F_j x_i$ for every $i, j = 1, \ldots, r$. By hypothesis we have $(J \otimes_R k)_{t+1} = 0$, hence by Lemma 1.5

$$\operatorname{Tor}_{r-1}^{R}((R/J)^{*}, k)_{-t+r-1} \simeq \operatorname{Tor}_{r}^{R}((J)^{*}, k)_{-t+r-1} \simeq$$

 $\simeq (J \otimes_{R} k)^{*}(-r)_{-t+r-1} = 0$

and by Lemma 1.4 there exists $F \in (R/J)^*$ of degree -t-1 such that $Fx_i = \beta x_i$ in R^* for $i = 1, \ldots, r$. We want to show that this implies $\overline{\alpha} = 0$: in fact since $t+1 \ge 1$ we deduce $\beta = F \in I = \text{Ker } \psi$, hence $\overline{\alpha} = \psi(F) = 0$.

Since $\overline{\alpha}=0$ from the exact sequence (4) we see that $\alpha=\gamma H$ with $\gamma\in H^1(\mathscr{J}_C(t+1))^*$ and $\gamma H^2=0$. We continue as above, with $\overline{\gamma}\in H^0(\mathscr{J}_\Gamma(t+2))^*$ and let δ be a preimage of $\overline{\gamma}$ in $H^0(\mathscr{O}_H(t+2))^*$. We have $\delta x_i x_j \equiv 0 \mod I$, for $i,j=1,\ldots,r$, hence there are elements $F_{ij}\in I$ of degree -t such that $F_{ij}=\delta x_i x_j$ in $(R_t)^*$. Since $(J\otimes_R k)_{t+1}=(J\otimes_R k)_{t+2}=0$ there exists $F\in I$ of degree -t-2 such that $\delta x_i x_j=Fx_i x_j$ for every $i,j=1,\ldots,r$. Since $t+2\geq q2$ this implies $F=\delta$ and hence $\overline{\gamma}=0$. Continuing in this way we get the result since $H^1(\mathscr{J}_C(n))=0$ for $n\gg 0$.

Let C be a curve and Γ its generic hyperplane section; we set

$$e(C) = \max\{n \mid H^2(\mathcal{J}_C(n)) \neq 0\}$$

and

$$\varepsilon(\Gamma) = \max\{n \mid H^1(\mathcal{J}_{\Gamma}(n)) \neq 0\}.$$

From the exact sequence (5) we see easily that $e(C) \le \varepsilon(\Gamma) - 1$.

Corollary 2.2. Let C be a curve and assume that Γ is generated in degree $\leq \varepsilon(\Gamma)$. Then $e(C) = \varepsilon(\Gamma) - 1$.

Proof. Follows from Theorem 2.1. \square

3. An application to curves in P^3 .

In this section we consider the case of a reduced and irreducible curve $C \subset \mathbf{P}^3$ and we give conditions on the Hilbert function of Γ in order to apply Theorem 2.1.

We recall that Γ verify the uniform position property (U.P.P.) and this implies that the Hilbert function of Γ is of decreasing type (see [2]). If we consider the difference function

$$\Delta H(\Gamma, n) = H(\Gamma, n) - H(\Gamma, n - 1) = h_n$$

it has the form

$$\{1, 2, \ldots, h_{a-1} = a, \ldots, a, h_b, h_{b+1}, \ldots\}$$

where $a > h_b > h_{b+1} > \dots$ We note that $\varepsilon(\Gamma) = \max\{n \mid h_n \neq 0\} - 1$. On the other hand the following lemma gives bounds on the minimal number of generators of Γ .

Lemma 3.1. Let $\Gamma \subset \mathbf{P}^2$ be a set of d points with the U.P.P.; denote by α_i the number of minimal generators of Γ in degree i, and let a, b be as before. Then we have

$$\alpha_a = -\Delta^3 H(\Gamma, a) \quad , \quad \alpha_b = -\Delta^3 H(\Gamma, b)$$

$$\max\{-\Delta^3 H(\Gamma, i), 0\} \le \alpha_i \le -\Delta^2 H(\Gamma, i) - 1 \quad \text{for} \quad i > b.$$

Proof. See [4], Prop.1.4. \square

Proposition 3.2. Let $C \subset \mathbf{P}^3$ be a reduced and irreducible curve not lying on a quadric surface. Assume that the Hilbert function of the generic plane section Γ of C satisfy $h_{\varepsilon} = 2$, $h_{\varepsilon+1} = 1$. Then $e(C) = \varepsilon - 1$.

Proof. Set $h_{\varepsilon-1}=c$. Two cases are possible:

- 1) $c \le 2$. If c = 1 then d = 4 and C lies on a quadric. If c = 2, then since $H(\Gamma, n)$ is of decreasing type we see that d is even and $\Delta(\Gamma, n)$ is of the form $\{1, 2, 2, \ldots, 2, 1\}$. By 0.1 we see that C lies on a quadric.
 - 2) c > 2. In this case we have:

$$\Delta^{2}H(\Gamma,\varepsilon) = 2 - c \quad , \quad \Delta^{2}H(\Gamma,\varepsilon+1) = -1,$$

$$\Delta^{2}H(\Gamma,\varepsilon+2) = -1 \quad , \quad \Delta^{2}H(\Gamma,\varepsilon+3) = 0$$

$$\Delta^{3}H(\Gamma,\varepsilon+1) = c - 3 \quad , \quad \Delta^{2}H(\Gamma,\varepsilon+2) = 0,$$

$$\Delta^{3}H(\Gamma,\varepsilon+3) = 1 \quad , \quad \Delta^{3}H(\Gamma,\varepsilon+4) = 0$$

from which it follows, by Lemma 3.1, that $\alpha_i = 0$ for $i > \varepsilon$.

Remark 3.3. Proposition 3.2 gives some conditions on the Hilbert function of Γ for curves with low speciality. For example consider an integral curve C of degree 18: Proposition 3.2 implies that for every integral curve C, not lying on a quartic surface, with $e(C) \leq 4$ the Hilbert function of Γ has the form $h_0 = 1$, $h_1 = 2$, $h_2 = 3$, $h_3 = 4$, $h_4 = 5$, $h_5 = 3$.

In particular one is lead to conjecture that for integral non special curves i.e. with e(C) < 1, (in particular smooth rational curves), the Hilbert function of the generic plane section is maximal. More precisely we can conjecture the following.

Conjecture 3.4. Let C be an integral non special curve of degree d and let $s = \min\{n \mid H^0(\mathscr{J}_C(n)) \neq 0\}$. Then the Hilbert function of the generic plane section of C is the following:

$$H(\Gamma, i) = \begin{cases} \min\{\binom{i+2}{2}, d\} & \text{for} & i \le s - 1\\ \min\{\binom{s+1}{2} + (i-s+1)s, d\} & \text{for} & i \ge s \end{cases}$$

We examine Conjecture 3.4 for low values of s: for s = 1, 2 it is trivial since the Hilbert function $H(\Gamma, n)$ has no choice.

s=3. Let a as above; it is a=3 for d>5 by Laudal's Lemma: in this case $H(\Gamma,n)$ has the above form unless Γ is a complete intersection (3,k) but, by 0.2, C itself is a complete intersection (3,k), hence e(C)=k-1>2. Hence for s=3 the conjecture is true.

s=4. It is a=4 for d>10. If $d\leq 10$ there is one open case when $\Delta H(\Gamma, n)$ has the form $\{1, 2, 3, 3, 1\}$. If d>10 we have four cases to examine:

- i) Γ is a complete intersection (4, k), but in this case C is a complete intersection (4, k), hence e(C) = k > 3.
- ii) $\Delta H(\Gamma, n)$ has the form $\{1, 2, 3, 4, \dots, 4, 2, 1\}$, but in this case, by Proposition 3.3, it is $e(C) = \varepsilon 1 \ge 3$.
- iii) $\Delta H(\Gamma, n)$ has the form $\{1, 2, 3, 4, \dots, 4, 3, 2\}$. In this case d = 4t + 3, t > 2 and we want to prove that C is is aritmetically Cohen-Macaulay, hence $e(C) = \varepsilon(\Gamma) 1 = t + 1$. Using Lemma 3.1 we see that J_{Γ} has a minimal free resolution:

$$0 \to R(-t-4)^2 \to R(-t-3) \oplus R(-t-1) \oplus R(-4) \xrightarrow{\cdot} J_{\Gamma} \to 0$$

hence, by 0.1, C is contained in a complete intersection (4, t + 1). Thus C is linked to a line.

iv) $\Delta H(\Gamma, n)$ has the form $\{1, 2, 3, 4, \dots, 4, 3, 1\}$ and this is an open case.

REFERENCES

- [1] M. Martin Deschamps D. Perrin, Sur la classification des courbes gauches, Astérisque, 184, 185 (1990).
- [2] J. Harris, The genus of space curves, Math. Ann., 249 (1980), pp. 191-204.
- [3] O.A. Laudal, A generalized trisecant lemma, Lecture Notes in Math., vol 687, Springer-Verlag, Berlin, 1978, pp. 112-149.
- [4] R. Maggioni A. Ragusa, Constructions of smooth curves of P³ with assigned Hilbert function and generators' degrees, Le Matematiche, 42 (1987), pp. 195-210.
- [5] Ch. Peskine L. Szpiro, *Liaison des varietés algébriques*, Inv. Math., 26 (1974), pp. 271-302.
- [6] R. Re, Sulle sezioni iperpiane di una varietà proiettiva, Le Matematiche, 42 (1987), pp. 211-218.
- [7] R. Strano, A characterization of complete intersection curves in P³, Proc. A.M.S., 104 (1988), pp. 711-715.
- [8] R. Strano, Sulle sezioni iperpiane delle curve, Rend. Sem. Mat. Fis. Milano, 57 (1987), pp. 125-134.

Dipartimento di Matematica, Università di Catania, Viale A. Doria 6, 95125 Catania (Italy)