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ON THE SPECIALITY OF A CURVE

ROSARIO STRANO

Let C C P}, k algebraically closed field of characteristic 0, be a curve
and let e(C) = {maxn | H{(Oc(n)) # 0} its speciality. Let I be the generic
hyperplane section and ¢ = {maxn | H!( /p (n)) # 0}. We prove that, if I"
is generated in degree < ¢, then e¢(C) = & — 1. In the case r = 3 we discuss
some relations between e(C) and the Hilbert function of I".

0. Introduction.

Let C C P3, k algebraically closed field of characteristic 0, be acurve (i.e.a
locally C.M., equidimensional subscheme of dimension 1) andletI" = CN H be
the generic plane section. In [7], [8] we studied some relations between properties
of C and of I". More precisely we proved the following result ([8] Teorema 4).

0.1. Let J = H,,?(/r') CR= Hf(ﬁ’H)‘be the homogeneous ideal of " in H
and let t be an integer. Assume that, forn <t + 2 is Tor f(J s K)n = 0. Then the
restriction map H°( Fc)—~> H 0¢ Fr(t)) is surjective.

From this we deduced the following corollary ([8] Corollario 1.).

0.2. Assume that deg (C) > 4 and C does not lie on a quadric. If T is a complete
intersection, then C is a complete intersection.
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This two results have been extended to the higher dimensional case (see
[6D). -
The proof of the above results is based on the study of Ker ¢yi (n), where
ogi(n): H'(_Zc(n —i)) — H'(_Zc(n)) is the multiplication by H'.

In the present paper we obtain a dual result, by studing the Coker @i (1)
and precisely we get the following.

0.3. Let C C P}, k algebraically closed field of characteristic 0, be a curve
and let T' = C N H be the generic hyperplane section. Let J] = H2(_#1) C
R = HY(O%) be the homogeneous ideal of T in H and let t be an integer.
Assume that, for n > t + 1, is Tor(‘f(J, k), = 0. Then the induced map

H'(_Zr(t)) = H*(_Zc(t — 1)) is injective.
As a corollary we obtain the fOlldWing.

0.4. Let e(C) = max{n | H{(Oc(n)) # 0} and ¢(I') = max{n | Hl(/p(n)) %
0}. Assume that Jr is generated in degree < ¢. Then e(C) = ¢(I') — 1.

We note that it is possible to give an alternate proof of 0.3, by linking C to
a curve C’ and using 0.1. In the same way 0.1 can be deduced from 0.3.
This work has been done within the group on ”Space curves” of Europroj.

1. Preliminaries.

Let k be an algebraically closed field of characteristic 0, S = k[xg, ..., x,]
andlet M = @,z M, be a graded S-module. Define (see also [1],0.1.7) a graded
S-module M* as follows: as a k-vector space it is (M*), = Hom (M, k) and
the S-module structure is defined by s - f(m) = f(sm) fors € S, m € M and
feM*, ~ .

Proposition 1.1. Let S, M, M* as before. Then we have:
1) If f : M — N is a graded S-module homomorphism of degree O then f

induces a graded S-module homomorphism of degree 0, f*: N* — M*.

2) The map M +— M* is a contravariant exact functor.

3) If M is a graded S-module of finite type, then M* ~ Hom (M, $*).

4) If L is free of finite type, then L* ~ LY ®g S*, where LY = Hom (L, S).
5) If L, L' arefree of finite type and f : L — L', then f* = Y @5 S*. More

generally for every M, (f Qsid y)* = fV Qg id p.

Proof. 1) Itis straightforward to see that the dual f* of f as k-vector spaces is
a homogeneous, degree 0, graded S-module homomorphism.

2) Is trivial. '

For 3) see [1], 0.1.10.
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4) We reduce to the case M = S(a). In this case M* >~ §*(—a).

5) We can assume f : S(a) — S(b) and f € S homogeneous of degree b — a.
Then f*: S*(—b) = S*(—a) is given by f*(s*) = f - s*. O

Lemma 1.2. Let S as before. Then we have:

seen |0 if i#rl
b Tori(S’k)_{k(—r—l) if i=r+1
2) For every graded S-module M it is

Tory,;(M*, k) = (M ®s k)*(—r — 1).

Proof. 1) Let
(1) 0= S(—r—1D5S=ry"> ... >8-D>5s>k—>0
be the free resolution of k given by the Koszul complex. Observe that this

sequence is self-dual. In particular g = fV(—r — 1).
If we apply * and shift by —r — 1 we obtain an exact sequence:

0— k*(=r—1) — S*(—r—1) ey S*(—=r) = .. > §* = 0.

If we compare this exact sequence with the complex obtained from

2) 0—>S(—r—1j—>5(—r)’+1—>...—+S—->0

by tensoring ®s.S* we obtain the result, by Proposition 1.1.5), since
§®s 8 = fV(-r—1)®s 8 = f(-r —1).

2) As before start from the exact sequence (1), tensor ® sM and apply *. We
obtain a sequence '

0—> (MQsk) - M*— M*Q)"! - ...

which is exact in (M ®g k)* and M* . On the other hand if we start with the
complex (2) and tensor @sM* we get the result. O
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Lemma 1.3. Let J C S be an homogeneous ideal generated in degree > 1 .
Then we have:

1) Tor2, (((S/J)*, k) = k(—r — 1).

2) Tory, (J* k) = Tor 5((S/)*, k).

Proof. 1) Follows from Lemma 1.2 since (R/J)®@sk =k.
2) From the exact sequence

0= S/ > S*>J" >0
we have an exact sequence

0 — Tor}, ,((S/J)* k) — Tor’, (8* k) —
= Tor}'y (J*, k) = Tor S((S/7)*, k) > 0

and the result follows since, by D), Torr 1 ((S/D), k) = Torr (8% k) =
k(—r —1). O

Now we recall two known results we need in section 2.

Lemma 1.4. Let S = k[xy, ..., x,] and let M be a graded S-module of finite
type. Let H be a generic linear form in S and denote by @pi(n) the map
M, — M, given by multiplication by H'. Assume that m € Ker gy (n). Then

mF €Im gy (n) for every F € S,.
Proof. See [7], proof of Theorem 6; see also [6], Lemma 1. O

Lemma 1.5. Let R = k[x,, ..., x,] andlet M be a graded R-module. Then the
Jollowing are equivalent:
1) for every r-uple my,..., m, € M, satisfying m;x; = m;x; for i,j =
1,. rthereexzstsanmeMn 18t mx;=m;fori=1,...,r.
2) Tor K (M, K1 = 0

Proof. The proof is an easy generalization of [3], Lemma p.141; see also [6],
Lemma 2. U
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2. The main result.

Let C C P" be acurve (i.e. a 1-dimensional locally C.M. equidimensional

subscheme) and let I' = C N H be its generic hyperplane section.
Let § = k[xg,...,x,], R = k[xi1, ..., x,] be the homogeneous coordinate

rings of P" and H respectively anddenote by _Z¢, _Zr theideal sheaves of C and
I" in Opr, Oy respectively. Moreover let M = H 1( _Z¢) be the Hartshorne-Rao

module of C.
Consider the graded S-modules K, Q given by the exact sequence

3) v 0O->K-—->M-1)>M—->Q0—->0

where ¢y : M(—1) — M is given by the multiplication by H. From the exact
sequence

4 . 0—> Zc(-1)—> fc— Ir—0
we get a long exact sequence

(5) 00— HX #c)(-1) > H)( Zc) > H)(Ir) >
- M(~1) > M — H}(_#r) - H>(_Zc)(=1) = -

from this we see that O is the kernel of the map H}(_#r) - H2(_Zc)(-1).

Theorem 2.1. Let C,T" as before and let J = Hf( Fr) C R be the homo-
geneous ideal of I". Let t > 0 be an integer and assume that (J Qg k), = 0
forn >t +1ie J is generated in degree < t; then the map H'( Hr) —
H*( Fc(t — 1)) is injective.

Proof. With the above notations we have to prove that Q, = 0. If we apply the
functor * we obtain an exact sequence:

0= 0" = M* —> M*(1) = K* —> 0

and we prove that (Q;)* = 0.

Let o € (Q))* C HY(_Zc(0))*, then aH = 0 in H'(_Zc(t - 1))* By
Lemma 1.3, if we denote by & the image of o in H( SFr(t + 1))* we have
ax; =0foreveryi=1,...,r

Now let 8 € H(€y(t + 1))* a preimage of @ in the map

¥ (HY(Or)* — (H2(_7r))*
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we have Bx; =0 mod I fori = 1,...,r, where [ = Ker . From the exact
sequence 0 — J — R — R/J — 0 we see that I ~ (R/J)*.

Let F; € (R/J)* of degree —¢ such that x; = F; in (R,)* fori =1, ... . r.
We have Fix; = Fix; for every i,j = 1,...,r. By hypothesis we have
(J ®r k)1+1 = 0, hence by Lemma 1.5

Tor X ((R/T)*, k)—rr—1 = Tor R((1)*, k) iy =~
~ (J @r k) (=1)—r—1 =0

and by Lemma 1.4 there exists F € (R/J)* of degree —t—1 such that Fx; = Bx;
in R*fori =1,...,r. We want to show that this implies & = 0: in fact since
t+1>1wededuce B = Fel =Kery,hence@ = ¢ (F) = 0.

Since @ = 0 from the exact sequence (4) we see that @ = vyH with y €
H'(_Zc(t+1))* and y H? = 0. We continue as above, with 7 € H( Ir(t+2)*
and let & be a preimage of ¥ in H(0y (¢ + 2))*. We have dx;x; =0 mod 1,

fori,j = 1,...,r, hence there are elements F;j € I of degree —t such that
Fij = éx;x; in (R;)*. Since (J Qg k)11 = (J @& k)i4+2 = O there exists F € 1
of degree —r — 2 such that Sxixj = Fx;x; foreveryi,j = 1,...,r. Since

t +2 > g2 this implies F = § and hence ¥ = 0. Continuing in this way we get
the result since H!(_Zc(n)) =0 forn > 0. 0O

Let C be a curve and I its generic hyperplane section; we set
e(C) = max{n | H*(_Zc(n)) # 0}
and
&(I') = max{n | H'(_#r(n)) # O}.
From the exact sequence (5) we see easily that e(C) < ¢(T") —~ 1.

Corollary 2.2. Let C be a curve and assume that T is generated in degree
<e). Then e(C) = ¢(I') — 1.

Proof. Follows from Theorem 2.1. O]

3. An application to curves in P3.

In this section we consider the case of a reduced and irreducible curve
C C P? and we give conditions on the Hilbert function of I" in order to apply
Theorem 2.1.
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We recall that I verify the uniform position property (U.P.P.) and this
implies that the Hilbert function of I' is of decreasing type (see [2]). If we
consider the difference function

AH(.n)=HT,n)—HT,n—1) =h,
it has the form
{1,2,...,ha_1 =a,...,a,hb,hb+1,...}

where @ > hy > hpys > .... We note that e(I") = max{n | h, # 0} — 1.
On the other hand the following lemma gives bounds on the minimal number of

generators of I'.

Lemma 3.1. Let I' C P? be a set of d points with the UP.P.; denote by «; the
number of minimal generators of I" in degree i, and let a, b be as before. Then

we have
o, = —AHT,a) , op=—AH®,b)

max{—A3H(,i),0} <a; < —A2HT,i)—1  for i>b.

Proof. See [4], Prop.1.4. (]

Proposition 3.2. Let C C P? be a reduced and irreducible curve not lying on
a quadric surface. Assume that the Hilbert function of the generic plane section
I" of C satisfy hy =2, heyy =1. Thene(C) = — 1.

Proof. Set h._1 = c. Two cases are possible:

1) ¢c<2.Ifc =1thend = 4 and C lies on a quadric. If ¢ = 2, then since
H (T, n) is of decreasing type we see that d is even and A(I", n) is of the form
{1,2,2,...,2,1}. By 0.1 we see that C lies on a quadric.

2) ¢ > 2. In this case we have:

A’HT,e)=2—-c , A’HT,e+1)=-1,
AHT, e +2) =—1 , AHT,s+3)=0
AHT,e+1)=c—-3 , A*H,e+2)=0,
AHT,e+3)=1 , A*HT,e+4)=0

from which it follows, by Lemma 3.1, that o; = 0 fori > e. O
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Remark 3.3. Proposition 3.2 gives some conditions on the Hilbert function of
I" for curves with low speciality. For example consider an integral curve C of
degree 18: Proposition 3.2 implies that for every integral curve C, not lying on
a quartic surface, with e(C) < 4 the Hilbert function of I has the form ho=1,
hy=2,hy=3,h3=4,hs =5, hs = 3.

In particular one is lead to conjecture that for integral non special curves
1.e. with e(C) < 1, (in particular smooth rational curves), the Hilbert function
of the generic plane section is maximal. More precisely we can conjecture the
following.

Conjecture 3.4. Let C be an integral non special curve of degree d and let
s = min{n | HY( Fc(n)) # 0}. Then the Hilbert function of the generic plane

section of C is the following:
min{(‘}?),q} for i<s—1
min {(*3)+G—s+1)s,d) for i>s

H(F,i):{

We examine Conjecture 3.4 for low values of s: for s = 1, 2 it is trivial
since the Hilbert function H (T, n) has no choice.

s = 3. Let a as above; it is @ = 3 for d > 5 by Laudal’s Lemma: in this
case H (I, n) has the above form unless I" is a complete intersection (3, k) but,
by 0.2, C itself is a complete intersection (3, k), hence e(C) =k—1 > 2.Hence

for s = 3 the conjecture is true.
s =4.Itisa = 4 ford > 10. If d < 10 there is one open case when

AH(T, n) has the form {1, 2, 3, 3, 1}. If d > 10 we have four cases to examine:

i) I' is a complete intersection (4, k), but in this case C is a complete
intersection (4, k), hence e(C) = k > 3.

ii) AH(T, n) has the form {1,2,3,4,...,4,2, 1}, but in this case, by Propo-
sition 3.3, itis e(C) =& — 1 > 3.
iii) AH(T, n) has the form {1,2,3,4,...,4,3, 2}. In this case d = 4t + 3,
¢t > 2 and we want to prove that C is is aritmetically Cohen-Macaulay, hence
e(C) =&e(’) — 1 =1+ 1. Using Lemma 3.1 we see that Jr has a minimal free

resolution :
0— R(—t—4)°—> R(—t—3)®R(—t — 1)@ R(—4) = Jp — 0

hence, by 0.1, C is contained in a complete intersection (4, ¢t + 1). Thus C is

linked to a line. ’
iv) AH(T, n) has the form {1,2,3,4,...,4,3, 1} and this is an open case.
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