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A CLASS OF ELLIPTIC OPERATORS IN R3
IN NON DIVERGENCE FORM
WITH MEASURABLE COEFFICIENTS

ORAZIO ARENA - PAOLO MANSELLI

In an open cylinder of R? a linear uniformly elliptic operator in non-
divergence form, with coefficients time independent but measurable only, is

investigated.
Existence and uniqueness results in suitable Sobolev spaces for the

Dirichlet problem are obtained.

1. Introduction.

A linear uniformly elliptic operator in non-divergence form in R? is studied,
with coefficients measurable but depending on two variables only, and existence
and uniqueness results for the Dirichlet problem are obtained in suitable Sobolev
spaces.

The interest of our investigation comes from the fact that, while the theory
of smooth nonlinear elliptic operators had great advances in recent times, the
theory of linear non-smooth elliptic operators in non-divergence form still does
not have a natural class of solutions for which the uniqueness theorem holds.

Actually, "viscosity” solutions (see [5] where a large bibliography can be
found), ”good” solutions (see [1], [2]) seem to be good candidates for natural
solutions of these equations.
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In the latter sense, M.C. Cerutti, L. Escauriaza and E.B. Fabes [1], [2] proved
a uniqueness theorem for elliptic equations with coefficients continuous except
for a countable set having at most one cluster point. The case of a finite number
of discontinuities was due to L. Caffarelli (see [2]). In the same context we point
out the work by N. V. Krylov [8] on the so-called weak uniqueness problem for
elliptic equations.

L. Escauriaza [6] has obtained a uniqueness theorem for elliptic operators
in R* with coefficients depending on (n — 1) variables, continuous in these
variables except by a countable set of points with countable closure.

Our results are partially overlapping with these above mentioned: the
coefficients of our operators in R? depend on two variables but no continuity
assumption is required.

The plan of the paper is the following. First we look for solutions periodic
with respect to the variable which does not appear in the operator’s coefficients.
Then such a requirement is removed and the Dirichlet problem is studied in the

general setting.

Let us now introduce a few notations.

Let B = {x = (x, x3) € R? : |x| < 1} to be the unit ball in R?. Let a”/, b’
measurable functions in B and consider the operators:

S=d'D;j, Ly =b'D;

where D; = 9/0x;, D;; = 8%/9x; dx; (i, j = 1,2) and summation convention
is assumed.
Letnow R = {(x,1) eR®: x e B, 0 <t < 1} an open cylinder in R and

doR = 9B x [0, 1] its lateral boundary.
In R we will study a second order linear uniformly elliptic operator of the

form:

(D) Lu= aij(x)Diju(x, 1)+ bj(x)Djut(x, 1) +u,(x,t) =
= Su + Liu; + uy,

where u; = du/0t.
The uniform ellipticity condition is : there exists a positive constant o such

that
Q)  a=<d!@EE+HPEN+n* <1/a, E+n*=1, x€B.
The Sobolev spaces that will be mainly used in B are:

W2P(B) = {u : ueLP(B), D*ueL?(B)},
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where D?*u = (D;;u) and

W}%O’P(B) ={u:ueW>?(B), ujyp = 0}.

Analogously in R will be used W?(R) and Wfo (R); we will need also
WP (RUBR) = {ue W*P(B x (a, b)), 0 < a < b < 1}. Moreover WP (R)
will be the closure in W22 (R) norm of

{ueC®(B x R), u periodic of period 1, Uppxr = 0}.

In all the inequalities troughout the paper C, will be a constant, not
necessarily the same, depending on « only, C, , will depend on «, p only and
SO on.

2. A priori bounds and existence theorems in W#2 'P(R).

Lemma 1. Let a”, b/ (i, j = 1,2) satisfying (2), S = a" D;j, L, = b’ D;. Let
veZ,Ue W}%O’Z(B) (complex valued) and let

(3) SU +ivL U —v*U = f +ig.
Let z € Wfﬂ’z(B) be the solution of

(4) Sz —av’z=—(f*+¢)'*.

Then:

Q) U] <z inB.

Proof. Letu) =ReU,u® =ImU. Then u’ € W}?*(B) (j = 1,2) and
(6) Su® —yLu® — 2D = f,

@) Su® +vLiu® —1v2y®@ = g.

Let now w = |U|. By evaluating D;w and D;;w in the open set w > 0 we
have a.e. in B:

w3 Sw = wz[u(l)Su(l) + u(z)Su(?) + aijD,-u(l)Dju(l) +
+ aijDiu(z)Dju(z):l +
_ [(ua))zaij Diu® Dju® + 2Oy @i pu D p @ 4

+ @)% D,-u(z)Dju(?‘)].
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Therefore:

w3 Sw = wz[u(l)Su(l) + u(?‘)Su(z)] + (u(z))zaijD,-u(l)Dju(l) +

+ @)% Du® Dy ® — 2uPu @ Dy ® p;u®.

Namely we have that:

wSw = wz[u(l)Su(l) + u(Z)Su(z)] +

.y [u(Z)Diu(l) _ u(”D,-u(2>][u(2> Dju® — u(l)Dju(2>].
Now using (6), (7) and writing for short & = u® D;u® — uWD;u®, we get:

w3 Sw = wz[u(l)f + u(z)g] +viwt +

+vw?b’ [u(l)Dju(Z) — u(z)Dju(l)] + a €;.
Let n = vw?. Then:
w3 Sw = wz[u(l)f + u(z)g] + 1+ bl + aVEE;.
Taking into account (2), it follows that:
w3Sw > wz[u(l)f + u(z)g] + v2w?,

Thus:
) ey

Sw—av’wz —f +—g > —(f*+g)'""

w w

Let us now show that w < z. First observe that z > 0 in B, by Alexandrov-

Pucci’s maximum principle. On the other hand the function w — z is zero on the

boundary of B and not greater than zero where w = 0. Since in the region where
w > 0 one has:

S(w —z) —a?v*(w —2) >0,

again by the maximum principle the function w — z cannot have a positive
maximum there. Therefore w < z, i.e. (5) holds.

We are now able to prove the following a priori estimate.
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Theorem 1. Let u € Wg"z(R). Then:

(&) ]| < CollLu]|

W2A(R) — L*R)

Proof. Let f = Lu.Letusexpand « and f in Fourier series with respect to-the

t variable:
+c0

u(x,t) = Z iy (%) gt

—00
+00 '
fe 0 =) fulx)e™”.
— 00
The functions u, (v € R) are in W}%O’Z(B) and we have:

9 Su, +ivLiu, — viu, = fo a.e.in B.
As u, satisfies the hypothesis of Lemma 1, then
Jun] < |zl

where z, € Wfo’z(B) is the unique solution of the equation:

Sz, — a*viz = —|ful-
Let us recall (see e.g. M. Chicco [3]) that: |

2
ve Z.
lv ZVHLZ(B) a”fVHLZ(B) € ;

" Thus:

Coll Al veZ.

L*(B)

(10) lIv2u, |

LZ(B)

Then, owing to the Plancherel theorem:

(11) lluase ] Call f1]

L2(R) LYR)

From Talenti’s [11] a priori bound, we derive:

v| | L 2 .
v = (llvale(B)Jrl Lasoll 0+ nuvnm)

2
I1D"u, ||
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By interpolation on |v| ||Lu, HL 5) and using again (10), one has:

ID*u,ll , < Collfoll

L*(B) — L*(B)

and by Plancherel theorem:

| Dijull a”f”

LZ(R) LX(R)’
This inequality and (11) give:

(12) [|Aull Call f1I

L2<R) LX(R)’
As u is periodic in the ¢ variable, then:
u .
Il 5y < Colltell

From the last two inequalities and (11) the thesis of the Theorem follows.

Let us now prove a similar apriori bound in L?, for p in a neighborhood
of 2.

Theorem 2. There exist p1(x) < 2 < py(a), such that for any u of class
W# "P(R) with p € [p1(a), pa(x)] the following estimate holds:

< CollLul|.

(13) 1]y = .

Proof. 'We will use the‘complex interpolation result of R. Coifman and others

[4]. |
(i) Let 1 < p < oo. There exists n} (, p) such that if we take [n] < nl(«, p),
p1 between 2 and p, then:

(14) 1Al 0 = CapllA+in@ = ADull s

for every u € W>P1(R).
This fact follows from the inequality (see e.g. [7]):

2
| D" ul] CpllAuf

L#t (R) LP1(R)

and small perturbation techniques.
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(i) There exists n{” (a) such that if n < n{” () and 0 < & < 1 then:

A5 Naul,, < Coll{ll = @ +imlA+EFimLlull ,

for every u € Wj’z(R).
In fact, for every & € [0, 1], the operator (1 — £)A + £L is of the form (1)
with coefficients satisfying (2) and therefore, by Theorem 1, forany u € W,f’z( R)

one has:

lAull , < Cql|{(1 —&)A +EL}ul]

L2(R) — L%(R)’

Thus a perturbation argument gives (15).
Now set no(e, p) = min {né(a, P, ng(a)} and let

Q={&+in, 0<& <1, Inl <nole p)}.

If z=£&+ine @ and f € L*(R) is a simple function, extended periodically
in z to B x R, then the equation:

(16) Lu={1-2A+zLlu=f

has a unique solution in W,f’Z(R); notice that if z = in then L;, has a unique
solution in W,f 'P1(R), p; between 2 and p. |
Let us define: T, f := Au. Then T, f is a measurable function for every
z€ Q. If ||T;]l, denotes the norm of T, as an operator in L?, then
“TZHZ < Ca,p ’ ”Tin”m < ch,p-

(iii) Let us prove now that, if f and g are simple functions, then:

/ (T, F)g dxdt
R

is an holomorphic function inside Q.

x
Let zy an interior point in Q and let v = Y uz(z — 20)* where u; € W *(R)

k=0
and Ly uo= f, Ly ux = (L — A)ug—; (k > 1). Notice that, by (15) :
<
1Auoll < Capllf N
and
HAwl o S CapllL = Ml < CapllAuecll ,
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thus:

lAuell , < CEHI£Il

L¥R) — L*(R)

Therefore, if |z — zo] < C;;, then v e W#Z’Z(R) and L,v = f; moreover :

/(Tzf)g dxdt = /(Av)édxdt = Z(z — z0)f f (Aug)g dxdi.
R R k=0 R

Hence |’ r(Tzf)g dxdt is holomorphic in a neighborhood of z; and so every-
where inside Q.
Now we are in a position to apply the complex interpolation result [4].
Let T, be a linear operator, mapping simple functions, defined in R, into
measurable functions defined in R. Moreover, let:

o = w(a, p) = x2n(a, p))~!

and

1 1 1\ sinhw(l — &) coswn
b(z) = = - — = .
@=5+(;-3) sinh o

Notice, by the way, that b(z) is harmonic in Q,

1 1 1 1 1
bO.m) =5+ (5 = 5) cosen, bl m =5, biE,£n0) = 5.

Let .4 (z) denote the norm of T, as an operator from L!/*® (R) into L/*@(R);
then log 4" (z) is subharmonic.

Observe that, if z = in, then 1/b(z) is between 2 and p;if z = 1+ in,
§ £ino(e, p) then 1/b(z) = 2. As a consequence, log 4 (z) is bounded on 39 Q
by Cq,p; thus: log A (§ +i0) < Cq,,.

So we have that:

0<é<1.

(17) || Aull < Co,pllLiul]

LVB® Ry — LPO R’

Notice that 1 /b(§) is a monotonic function with 1/6(0) = p, 1/b(1) = 2.
Now let us take an operator A of the form (1), with coefficients satisfying
(2), and define:

L=97'A-9"11-%)A, 0<v <1.

L is of the form (1) and satisfies (2) with « replaced by «/2, if ¢ is sufficiently
near to 1.
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Then equation (17) holds with p = 3. and p = 3/2, and « replaced by
a/2.If &€ = ¥, then L = A, so we get two exponents p; and p, (both of them
depending on «/2 only), p1 < 2 < pa, such that:

HAul] < Cqy2,32 || Aul|

LPi1(R) — LPI(R)

|| Aull < Copr3 || Aul

LP2(R) — LP2(R)

The thesis follows.

Remark 1. Theorem 1 and Theorem 2 easily give us an existence and uniqueness
theorem in R for the equation Lu = f of the type (1), with coefficients
satisfying (2), with boundary conditions: uj3r = 0, up—0 = uy=1 = 0 and
Uy = Uy, = 0.

Moreover, by Sobolev imbedding theorems, we have that, if the function f
is of class L?(R) (p around 2), then:

i) we WHi(R),1/q =1/p —1/3 (q is around 6);

(i) for p >3/2ue C%(R), o =2 —3/p (o is around 1/2), and:

(18) CIDull < Capllfll

L1(R) LP(R)

(19) lll o gy < CapllF1,

Remark 2. If one changes R into B x (a, a + 1) theorems 1 and 2 hold with the
same constants and exponents. If we consider B x (a, b), then theorems 1 and 2
hold, but the costants and exponents may change; however, if 1/2 < b —a < 2
(say) there exists C, such that if p;(a/4) < p < pa(a/4), then

2 < 2,p
D%l o < CallLull o VuE WS (B X (@, b)),

From now on we will redefine: p;(x) := max{p;(a/4),3/2}, p(a) :=
pa(a/4).
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3. Uniqueness and existence theorems for the Dirichlet problem with ho-
mogeneous boundary conditions.

Theorem3. Let pi(2) < p < pa(a). Letu € WP (RUBR)NCO(R), uppr = 0,
Lu € LP(R). Then the following estimate holds:

(20) lull < CypllLull

L®(R) — LP(R)

Proof. Let we C®(R), wia,r = 0. Let us show that

(21) 101] oy = C""”(”Lw”u(m + ”w”LWaR\aoR))'

For let a sequence of operators :
L, =a D;; + bl D;3/dt + 8/t

smooth with a/ — a/, b — b/ (i, j = 1,2) ae. in B. We may assume that
the coefficients of L, satisfy (2). Let us solve the problem:

Lyv, = Lyw, v, €W, P(R)NCX(R).

If g =(p + pi1(@))/2, by Remark 1:

(22) “Un” < Ca,p”ann” = Ca,pHan”

L®(R) LI(R)

L2(R)
As L,(w — v,) = 0in R, by the maximum principle:

23 — < .
23) = tnll iy < M0l ol

Then, from (22) and (23):

(24) il < lele(aR\aoR) + CopllLawll , .

On the other hand:

ILnw = Lwlf | <

2 2
ij _ i i__ i 2
< {; 1ﬁua,, N a2 Ijubn b IIqu,p_q(R)}llD Wl
J= J=
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Thus, letting n — oo yields L,w — Lw in L? and so the estimate (24)
easily implies (21), once we recall also that ¢ < p.

Nowlet0O <e < 1/2and R, = B x (g,1 — ¢).

Notice that u € W2?(R,); hence there exist u, € C® (Rg), Unj, = 0 such
that u, — u in W>P(R,). Then, for u,, the estimate (21) holds in R, (recall
also Remark 2). Taking the limit as n — oo, we have:

7] <C (Lu 7 )
I ||L°°(R5)_ ap|l ”LP(RQJFH ”L°°(aRs\aoRs>

Now, letting ¢ — 0 yields R, — R and:

u - ||u ,
]y = ]

| Lue]] — || Lul]

LP(R.) LP(R)

[lue]]

L0 R:\0oR;)
Hence the estimate (20) follows and the Theorem is proved.

In what follows we need next Lemma 2, involving weighted norms.
Let w(t) = t(1 — t). The following result is true.

Lemma 2. Let u € C3(R), upr = 0. Let p € [p1(a), p2(a)]. Then:

212 2
(25) lw™Dull , = CmP(””’ Lull , gt ”u”LP(R)>'

Before giving the line of the proof, let us point out for our purposes
that standard Sobolev spaces techniques allow to get the following weighted
interpolation inequality: for any u € C2(R), upr =0, and for any € > O:

22
< D .
(26) lwDull,, , < ellw?Dull, .+ Copllullzoce

Proof of Lemma 2. Set v = w?u. The function v can be extended outside of R
into B x R as a C? function periodic in ¢, with period 1. By applying Theorem 2
to the function v, writing back the bounds for # and using interpolation inequality
(26), one ends up with (25).

We are now able to show the following theorem.
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Theorem 4. Let L of the form (1), with coefficients satisfying (2). Let p €
[P1(@), p2(a)). Then, if f € LP(R), the problem

27) Lu=f in R

(28) upr =0

has a unique solution u € Wlﬁ’cp (R) N C°(R) and:

(29) Il < CornliLul,
22
(30) D2l < CapliLull,
2-3/p
31) 4G, D] < Capdist((x, 1), 3R) ILall , -

Proof. The uniqueness of the solution follows by Theorem 3. Indeed, if
up € Wl‘:‘)’f (R) and u, € Wzicp (R) -are two solutions of (27) - (28), then
Uy — Uy € Wli’c”(R) N C°(R) vanishes on dR and L(uiy —uy) = 0 a.e. in R.
Thus, Theorem 3 applies and u; — u, = 0.

Let us prove the existence. Let f, e CP(R) and f, — f in LP(R).

Consider a sequence of operators:
L, =aDy; +b'D;3/dt + 8%/81>

smooth and such that a; — a¥/, b} — b7 ae. in B.
We may assume that the coefficients of L, satisfy (2).
Let u, be the solutions of

Lyu, = f, in R

Unyz = 0.
Clearly u, € C*(R) N W2?(R) and, by Theorem 3 as well as Lemma 2:

(32) latn ] < Co,pll Lty

L®@R) — L?(R)’
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(33) |w? D?uy|| < Cypl|Lntty ||

LP(R) LP(R)’

Let us extend f,, as a periodic (in £) function and solve the problem:
LoV, = fu, Uy € W# 'P(R). Actually, the v, functions are smooth in B x R.

From (19), recall that:

”UnHCOr"(R) = Ca,p“fn“Lp(R) , where o=2-3/p.

By a result of C. Pucci [10], since L,(v, — u,) = 0 in R and u,,, = 0,
if (x,t) € R and (&, t) € dR such that dist ((x, ¢), (§, 7)) = dist((x,?), OR),
then: '

o G, ) = 5, ) = (8, T < Cop{dist (G, DR | llunll

and therefore:

[ty (x, )| < |vn(x, 1) —tn(x, 1) — v (§, D) + |va(x, 1) —va (€, T)| <

o
< Cap{dist (Cr. 1), 0B llvnll .,

Thus:

(34) lun(x, )| < Cq,p{dist ((x, 1), 3R)}“|anunHLp(R)-
Observe now that, as L,u, = f, — fin LP(R), ||L, un|| R is bounded.

As a consequence, by (32), there 1s a subsequence of solutlons (let us call it
again u,) such that u, — u € Wloc (R U 9R), u, — u uniformly in every
compact subset of R U R, so u € CO(R). Then u satisfies (29), (30), (31) and

soucC%R),u=0o0ndR.
On the other hand, if ¢ is a smooth function with support in R U 3y R, we

have:

/(Lu — fledxdt = / L(u —u,)pdxdt + / (L — Lyuypdxdt +
R R ' R

+/(fn — fedxdt.
R

Letting n — oo, clearly yields: Lu = f a.e.in R.
The Theorem 4 is so completely proved.
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Remark 3. Let f € L*(R) and let u to be a ”good” solution to the problem
Lu = f in R, uj3g = 0; namely, u is the uniform limit on R of the sequence
{u,} formed by the solutions to L,u, = f in R, u, = 0 on dR, where L,
are regularizations of L of the form (1), with coefficients satisfying (2) and
converging pointwise to those of L on B.

Then, as in Theorem 4, u € Wli’cp(R) (for some p > 2), u € CO%(R) and
Lu= fae inR,upr=0.

Therefore Theorem 3 give us the uniqueness of ”good” solutions to the
Dirichlet problem for L, with no regularity assumptions on its coefficients a'/,
bl.
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