ON THE CAMPANATO NEARNESS CONDITION

SALVATORE LEONARDI

We prove a Lax-Milgram type theorem using the concept of nearness between operators.

1. Introduction.

S. Campanato conjectured the possibility to extend the Lax-Milgram theorem to the complete metric vectorial spaces. In this note we give another definition of nearness between operators (see [1], [2], [3]) and by the mean of it we prove the Lax-Milgram theorem holds in complete metric vectorial spaces.

2. Preliminary lemmata.

We are in the following situation:

 \mathcal{B} is a set without a priori structure,

 \mathcal{B}_1 is a metric space with metric δ ,

A, B are operators $\mathscr{B} \to \mathscr{B}_1$.

Lemma 1. (Campanato). If B is injective then \mathcal{B} is a metric space equipped with the metric:

$$d_{\mathscr{B}}(u,v) = \delta(B(u),B(v)).$$

Lemma 2. (Campanato). If \mathcal{B}_1 is complete and B is bijective then \mathcal{B} is complete equipped with the metric (1).

Definition. (Campanato). A is a small perturbation of B if there exists $k \in]0, 1[$ such that

$$\delta(A(u), A(v)) \leq k\delta(B(u), B(v)) \quad \forall u, v \in \mathscr{B}.$$

Lemma 3. (Campanato). If \mathcal{B}_1 is complete, B is bijective and A is a small perturbation of B then there exists unique $u \in \mathcal{B}$ such that

$$A(u) = B(u).$$

3. Lax-Milgram theorem.

Definition. Let \mathcal{B}_1 be a metric vectorial space. We say A is near by B if there exist $\alpha > 0$, $k \in]0, 1[$ such that

$$\delta(B(u) - \alpha A(u), B(v) - \alpha A(v)) \le k\delta(B(u) - x, B(v) - x)$$

 $\forall u, v \in \mathcal{B}, \forall x \in \mathcal{B}_1.$

Theorem. (Lax-Milgram). If \mathcal{B}_1 is a complete metric vectorial space,

$$B:\mathscr{B}\to\mathscr{B}_1$$

is bijective and A is near by B then A is bijective.

Proof. Let $f \in \mathcal{B}_1$. The problem A(u) = f is equivalent to the following one:

$$B(u) - \alpha f = B(u) - \alpha A(u).$$

Put

$$F(u) = B(u) - \alpha A(u),$$

$$G(u) = B(u) - \alpha f \text{ (bijective)},$$

in virtue of Lemma 3 it will be sufficient to prove F is a small perturbation of G. We have:

$$\delta(F(u), F(v)) = \delta(B(u) - \alpha A(u), B(v) - \alpha A(v)) \le k\delta(B(u) - x, B(v) - x)$$

 $\forall u, v \in \mathcal{B}, \forall x \in \mathcal{B}_1.$ Put $x = \alpha f$, we get:

$$\delta(F(u), F(v)) \le k\delta(B(u) - \alpha f, B(v) - \alpha f) = k\delta(G(u), G(v))$$

 $\forall u, v \in \mathcal{B}.$

Remarks. Our definition of nearness between operators gives back the Campanato's one in the case \mathcal{B}_1 normed space. Indeed, provided the further requirement of "invariance under translation" of the metric δ in \mathcal{B}_1 (like that one deduced by a norm), the operator A is near by B (see Definition above) if and only if there exist $\alpha > 0$, $k \in]0, 1[$ such that

$$\delta(B(u) - \alpha A(u), B(v) - \alpha A(v)) \le k\delta(B(u), B(v))$$

 $\forall u, v \in \mathcal{B}$.

Acknowledgements.

The author wishes to thank Professor F. Nicolosi for his constant encouragements.

REFERENCES

- [1] S. Campanato, On the condition of nearness between operators, Ann. Mat. Pura Appl., to appear.
- [2] S. Campanato, Sistemi differenziali del secondo ordine di tipo ellittico, Quaderno # 1 del Dottorato di Ricerca in Matematica, Università di Catania, 1991.
- [3] S. Campanato, Sulla condizione di vicinanza tra operatori, Quaderno # 2 del Dottorato di Ricerca in Matematica, Università di Catania, 1993.

Dipartimento di Matematica, Università di Catania, Viale A. Doria 6, 95125 Catania (Italy)