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DUALITY PROBLEM FOR MULTI-OBJECTIVE
FRACTIONAL PROGRAMMING PROBLEMS USING
THE TWO CONCEPTS (DUAL SPACE AND SUBGRADIENT)

EBRAHIM A. YOUNESS

The problem dual to a multi-objective fractional programming problems
is defined by using the concept of dual space of the objective space and using
the concept of subgradient. Some assumptions considered in recent works are
relaxed in our proposed approach.

1. Introduction.

Recently, some duality results have been obtained for minimax fractional
programming problems, involving several ratios in the objective functions [10],
[8], and for multi-objective convex programming problems using the concept of
ordering convex cones defined on the objective and decision spaces [7].

Crouzeix, et al. in [5] have shown that the minimax fractional program can
be solved by solving a minimax nonlinear parametric program. Also, Ibrahim, et
al. and Youness in [6], [10] solved the multi-objective fractional programming
problems by solving a nonlinear parametric program.

The purpose of this paper is to develop duality for multi-objective fractional
program using a hybrid parametric program based on those considered in [6],
[10] and [8].
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2. Problem formulation, notations and definitions.

Consider the multi-objective fractional programming problem:

(Po) {mi“ fi(x)/g;j(x) subject to
0 ={xeR"hx)<0, r=12,...,¢},

‘where fikx),gix), j = 1,2,...,m are real valued functions, convex and
concave, respectively, gj(x) >0, j =1,2,...,m,and A, (x), r =1,2,..., ¢
are convex real valued functions.

Definition 1. A point x* € M is said to be an efficient solution for problem (P),
if there is no x € M such that

fi)/gix) < i) /gi(xY), j=12,...,m,
with strict inequalitydfor at least one j.

To establish the efficiency conditions and duality we shall make use of
problem (Py) defined in [7] :

(Pq) {Inlnf:,(x) djgj(x) subjectto
{xeR"h,(x) <0, r=12,...,4¢},

Where d; > 0, j = 1,2, ..., m are auxiliary parameters.
If we assume that fj(x) > Oforallx € M,j = 1,2...,m then the
following results are established:
(1) If x* is an efficient solution for problem Py then there exists d* >0 such
that x* is an efficient for problem Py«.
(i1) If there exists (x*, d*) such that:
a) x* is an efficient solution for Py-,
b) fi(x*) —digi(x*) =0, j=1,2,....m
then x* is an efficient solution for Py. .
Now, we shall prove the equivalence between the parametric multi-obje-
ctive programming problem (P4) and the following parametric multi-objective
program :

min g; subject to

(EPy) M’ = ((x,d, g) cR™?" - ,f,(x) digi(x) <gqj, j=12..

h.(x) <0, r—1,2,...,£}

It is clear that, if (x, d, g) € R**?" is feasible for (EPy), then x € R” is feasible
for (Pg) and if x € R" is a feasible for (Py), then there exist d and ¢ in R™ such
that (x, d, g) € R*?" is feasible for (EPy).
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Lemma 1. If (%,d, q) € M’ is EPy-efficient, then % is Py-efficient.

Proof. Since g € R” is nondominated point corresponding to X € R?, A, (x) <
0,r=12,...,¢ Then

B —digi®)<g, j=12,....m
Let x be not efficient solution for_(Pa), then there is xeM suéh that

@& —digi(®) < i) ~digi® =g, j=1,2...,m

. with strict inequality for at least one j. Therefore, there is § € R™ such that
g < ¢q;,J = 1,2,..., m with strict inequality for at least one j which leads to
a contradiction. ' '

Lemma 2. Let, for given d,X € M be an efficient solution for (P4), then
(%, d, §) eR"™™ with §; = f;(X) — d;g;(%) is EPg-efficient.

Proof. Since g; = fi(x) —djgi(x),j = 1,2,.... mand h,(x) < 0,r =
1,2,...,¢,then (x,d,q) € M'. Let (x,d, q) be not EP4-effcient, then there
exists (¥, d, g) € M’ such that

i) —digi(X) =4 <4 = fi(®) —djg;(x), j=12,....m

with strict inequality for at least one j, which contradlcts the efﬁc:1ency of x for
(P4). Hence the result. : '

Remark. Lemma 1, Lemma 2, statements i) and ii) and the assumption that
fi(x) > 0 for each x € M show that x* € M is an efficient solution for Py
with corresponding objective value @, j = 1,2...m <= (%, d~, *) is
EP}-efficient with objectives value equal to zero, i.e., d=0,j=12,...,m.

3. Duality using subgradient concept.

Under the assumptions in the remark, the dual problem of the primal prob-
lem Py depends upon the dual problem of the parametric program (EP4) which
equivalent to the problem (Pq) that used to solve the program (Pp). There are
many ways of formulating the dual program to the program (Pg) in the case of
single objective with differentiablity of the objective and the constraint functions
[7], [8]. Also, [8] formulated a dual program of multi-objective programming
problem by using the notion of subdifferentiability. In this paper we introduce a
modifications in the presented works by researchers in [7], [8] to deal with our
main problem and to relax some assumptions imposed.
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Definition 2. Let f(x) be a real valued convex function defined on R". A vector
v € R" is called a subgradient of f at xy if

f&) = flxo) 2 v(x —x)  VxeR"
Let us denote to the set all sul;gradients of f at xy by af (xp).

Now, we formulate the dual program (DEPy) to the program (EPy) as fol-
lows:

max fj(u) —d;jg;(u) subjectto

(DEPy) N ={ueR": Oed{fj(u)— ijgj(u)},
0€dh,(w), j=12,....mr=12,...,¢}

Theorem 1. (Weak duality theorem) For a given d € R™, let (£, d, §) e R*+?"
be a feasible point of (EPg). Then for u, € N,

g; = fi() —d;jg; ().

Proof. From the feasibility of (x, d, g) for (EP4), we have
fi®) —digiX)<¢q;, j=12,...,m.
Since { fitx)—dgj (x)} are convex functions, then from Definition 2 we have
(& —dig®} = {fi@) —digi@®} = v; (& — ),
for all v; € 9{ f; (%) — d;g; (1)}. So,
g = i) —digi@), j=12,....m

since, € N, i.e. 0 d{ f;(@) — d;g; (@)}

Theorem 2. (Strong duality theorem) If, for given d e R?, (¥,d,q) € M’ and
q is efficient for problem (EPg) with §; = f;(X) —d;g;(X). Then X is an efficient
solution for (DEPy).
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Proof. Since (x,d, q) € M’, then
[ix) —digi®) <g;, j=12,...,m.
But, fo; u € N, we have
(%) fi(u) —djgi(u) < g;
and, from definition (2).
(%) h,(u) <0;

which implies (4, d, g) € M'.
Now, we shall prove that x € N. For this purpose, let x ¢ N, then

{fiw) —digi)} = { /i) — djgi®} + vj(u — %),

vi#0, j=12,....m, u#x.

Thus there are two cases: ,
(i) vywu—x)>0,j=1,2,...,m and hence

fi(w) —digi(u) > fj(x) —d;gj(x) = g;

and this contradicts the result (x).

m
(i) viu—x) < 0,j = 1,2,...,m and hence ) w;j(v;(¥ — X)) < 0,
j=1 .
w; > 0. But, from the weighting problem, we have X is a minimizer point of

> wi{fj(x) — djgj(x)} on M. But in [7] there is a theorem states that ¥ is
j=1

a minimizer point of f(x) on S if and only if v(x — X) > O foreachx € §

and v € 3f (). Therefore ) w;(vj(u — %)) > 0. Thus < v;, (¥ — X) < O is

j=1

impossible. |
Finally, we shall prove that X is an efficient solution for problem (DEP,).

Let us suppose x not efficient solution for (DEPd), then there is & € N such that:
fiw) —digi(w) = fi(x) —djgi(x), j=12,....,m

with strict inequality for at least one j, which implies (iZ, d, §) ¢ M’ contradicts
(xx). Hence X is an efficient solution of (DEPy).
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Theorem 3. (Converse duality theorem) For given d, let u* € N be an efficient
solution of (DEPy), then there exists g* € R™ with q = fj(u*)—d;jgj(u*) such
that (u*, d, q*) is a feasible point of (EPy) and g* is nondomainated.

Proof. Let u* € N, then for any (x,d, q) € M’, we have
By (x) = hy(u*) + v, (x —u®) Vv, €dh @), r=1,2,...,¢

'and hence
hr(u*) <0, r=12,...,L

Since qJ’-* = fj(u*) —d;g;(u*), then (u*, d, ¢*) is a feasible point for (EPy), and
g* is nondominated since if it does not nondominated then there is (%, d, §) € M’
such that g; < g} = f;(w*) — d;g;(w*) which contradicts Theorem 1.

4. Duality using the dual space concept.

In order to establish the duality for problem (Py) with another approach,
(the dual space of the objective space), we shall make use of problem (EPg) and
seek the following notations and definitions:

Let X be a vector space over R, and Y and Z are topologlcal vector spaces
over R partially ordered by the convex cones Dy and Dz, respectively. Let M
be a nonempty convex subsetof X, andlet (f —dg): M — Y andh: M — Z,
where (f —dg) and h are convex m and £, vector valued functlons, respectlvely,
as considered in problem (Pp). :

Definition 3. ([7]) Let S be a nonempty subset of Y. An element y € Y is called
a minimal element of S, if ({y} — Dy) N S = {7}, and ¥ is called a maximal
element of S, if ({7} + Dy) NS ={y}

Deﬁmtlon 4. A space of all linear maps t from Y into Y is called the dual space
of Y and denoted by Y*.

Definition 5. ([7]) The ordering cone of the topological dual space y* of Y is
given by
o Dy.={teY*:t(y) 20 VyeDy}

and the quasi-interior of Dy« given by

Dy.={teY*:t(») >0 VyeDy\{0}.
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Definition 6. ([7]) Let S be a nonempty subset of Y. An element j €Y iscallled
a properly minimal element of S, if y € S and there exists a t € Dy+ with

1(y) <t(y) Vyes.

Note that, every properly minimal element of a set is also a minimal element
of this set, but the converse is not true in general. A properly maximal element
of a set can be defined in a similar way.

Now, we reformulate the problem (EPy4) as follows:

V={geY:—h(x)eD, —(f(x) —dgx) —q) € Dy}.

This is the primal problem. The dual problem is formulated similar to the dual
problem in [7] as follows:
={fw) —dgw)eY, ueR" :3t* € Dy:, v* € Dz« with
'(q) + v*h(x) Z " (f(w) —dg@))  VxeM]
The proof of the following theorem and two lemmas are similar to the proof
of Theorem 2.1 and Lemma 2.2 in [7].

Theorem 4. (Weak duality theorem) For given d € R, let V be a nonempty
and f() —dg(i) € W, u €¢R", then there exists a t € Dy with

t(f(u) —dg@)) <t(g) VgeV.

Lemma 3. For givend eR*, let g€V and f(u) — dgu) € W, then

fw)—dgw) —q ¢ Dy \ {0}.

Lemmad. If f(i) —dgu) e W, for givend e R”, u € R" and g € V such that
f@) —dg(u) = q, then f(u) — dg(u) is a maximal element of W and q is a
minimal element of V.

The proof of the following theorem (strong duality theorem) does not de-
pend on the stability assumption imposed by J. Jahn in [7].

Theorem S. (Strong duality theorem) If ¢ € V is a proper minimal element of
V with t* € Dy such that t*(§) < t*(q) for each q € V, then § is a maximal
element of W.
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Proof. Let g €V be a proper minimal element of V with ¢* € Dy+ such that
1*(q) <t*(q) VqeV.
Consequently, there is some ¥ € M with § = f(X) — dg(%), and
(f(B) — dg(®) <1'(@) VqeV.
Without loss of generality, we can write
(f(x) —dg(X) <" (f(x) —dg(x)) VxeM
or the system

{ t*(f(x) —dg(x)) —t*(f(X)y—dg(x)) <0
v*h(x) <0

has no solution x € M. Therefore, from generalized Gourdan theorem [9], there
exists (p, k) > 0 such that

ple*(f(x) —dg(x)) — t*(f (X) — dg(®)] + kv*h(x) = 0
or
pr*(f(x) —dg(®) < pr*(f(x) — dg(x)) + kv*h(x) VYxeM.

But pr* and kv* are, again, linear maps from Y into Y and from Z into Z,
respectively. Hence f(X¥) — dg(¥) € W and from Lemma 4 it is a maximal
element of W.

Theorem 6. (Converse duality theorem) If V N W # ¢, then every proper
maximal element f (i) — dg(it) € W, for given d € R™, is a properly minimal
element of V. '

Proof. Since f(#) — dg(i) is a proper maximal element of W, then there is
t* € Dy. such that

P(f (@) —dg (i) = *(f ) —dgm) V f(u) — dg(u)- eW, ueR™
Let f(#) — dg(i) does not belong to V, then
—[(f(x) —dg(x)) — (f(@) —dg(@))]¢ Dy VxeM

or
©(f @) — dg(@) < *(f(x) —dg(x)) Vi*€Dy, xeM,



DUALITY PROBLEM FOR MULTI-OBJECTIVE. .. 201

which leads to a contradiction since V N W # ¢. Therefore f (i) —dg(@) e V.
If f(u)—dg(u) does not proper minimal element of V, then there is g € V such
that

1*(q) < t*(f(@) —dg(@) VYt*e Dy

which contradicts the weak duality theorem. Therefore f (i) —dg(it) isa proper
minimal element of V.
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