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L; OF A VECTOR MEASURE

GUNNAR FE. STEFANSSON

Let (2, ¥) be a measurable space, X a real Banach spaceand v : Q —
X a countably additive vector measure. ;

We define a £-measurable function f : € — R to be weakly v-
integrable if it is x*v-integrable for each x* € X*. We show that the space
w-L1(v), the space of all weakly v-integrable functions, is a Banach space
containing Lj(v) as a closed linear subspace (the space Li(v) was defined
by I. Kluvanek and G. Knowles [5], for measures taking values in a locally
convex topological vector spaces X, and studied in details by G.P. Curbera
[2] and [3], for Banach space valued measures).

We give necessary and sufficient conditions for L(v) to equal w-Lj (v).
Also we show that in certain cases, v-integrability (resp. weak v-integrability)
can be viewed in terms of integrability in the sense of Pettis (resp. Dunford).
Finally, we show that when v is of bounded variation, we can approximate v
by measures u, (in variation norm), where L (v) is order isomorphic to an
abstract L-space.

1. Introduction.

Assume (€2, X) is a measurable space, (X, 7) alocally convex linear topo-
logical vector space and v : ¥ — X a vector measure. In this setting, Lewis [6]
defines a real-valued X -measurable function f to be v-integrable if

(1) f is x*v-integrable for each x* € X*, and

Entrato in Redazione il 20 settembre 1993.
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(2) forevery E € ¥ there exists an element of X denoted by f g f dv such that
x* [ fdv = [, fd(x*v) holds for each x* € X*.
Lewis shows that whenever (X, 7) is sequentially complete then f is v-integra-
ble if and only if

(1) thereis a sequence (f,) of simple X -measurable functions which conveges
pointwise to f, and
(2") (g fadv) is Cauchy foreach E € T,

In particular, Lewis’s integral coincides with that of Bartle, Dunford and
Schwartz in their setting, i.e. for Banach-valued measures [1].

Adopting Lewis’s integral, Kluvaneck and Knowles [5] define the analogue
of the Lebesgue space of integrable functions.

A v-integrable function f is said to be v-null if its indefinite integral is
(identically) the zero vector measure, and two v-integrable functions f and g
are said to be v-equivalent or to be equal v-almost everywhere (v-a.e.) if the
indefinite integral of |f — g| is v-null. A set E € X is said to be v-null if its
characteristic function is v-null.

Every t-continuous semi-norm p on X defines a semi-norm on the space
L (v) of all v-integrable functions via the application

f > 2 % sup {/ﬂ Fldlxt] 2t e U;} |

Where Uy is the polar of the set Up = {x € X : p(x) < 1}. The above semi-
norms turn L (v) into a locally convex linear lattice. The quotient space of L(v)
modulo the subspace of all v-null functions is denoted by L;(v).

For (X, ) is sequentially complete, Kluvanek and Knowles show that v-
essentially bounded functions are v-integrable, Lo, (v) C L;(v), and that con-
vergence theorems of the type of Beppo Levi and Lebesgue hold.

G. Curbera [2] shows that when v is Banach-valued, the space L(v), de-
fined by Kluvanek and Knowles, is an order continuous Banach lattice with weak
unit. In [3] he studies a priori conditions on the vector measure in order to guar-
antee that the resulting L, is an abstract L-space.

The purpose of this note is to show how, in case of Banach-valued measures,
Lewis’s integral can be presented in terms of operators. Introducing integrable
functions this way suggests a natural extension of the space L;(v) to a Banach
space we have chosen to call w-L;(v). The element of w-L;(v) appear briefly
in [6], are said to have generalized integral. We show that for certain measures
v the space L;(v) (resp. w-L;(v)) is isomorphic to a subspace of Pettis (resp.
Dunford) integrable functions.
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2. Notation and terminology.

Throughout this paper X denotes a Banach space and X* its dual. The unit
ball of X (resp. X*) is denoted by By (resp. Bx+) and the natural image of X in
(X*)* = X** is denoted by X.

The variation of a real-valued and countably additive measure A is denoted
by the symbol [A|. If v is an X -valued vector measure and

lim v(E)=0
IM(E)—>0
we say that v is A-continuous and write v < A. In that case, A is called a control
measure for v. By a theorem of Rybakov [4], Theorem IX.2.2, there exists x* in
X* such that v < |x*v|. We then call |x*v| a Rybakov control measure for v.

Let (2, 3, A) be a finite measure space. A function g : & —> X is called
weakly A-measurable if for each x* in X* the real-valued function x*g is A-
measurable. g is said to be strongly A-measurable if it is weakly A-measurable
and A-essentially separably valued; that is, if there exists a set £ € ¥ with
A(E) = 0 and such that g(£2 — E) is a (norm) separable subset of X.

g is said to be determined by a subspace D of X (with respect to a proba-
bility measure A) if for every x* in X*,

x*|p =0 implies x*g =0; A-ae..

A weakly A-measurable function g is called Dunford integrable (with re-
spect to A) if x*g in L;(X) for every x* in X*. In that case, the operator X* —
Li(A), x* — x*g is bounded and thus, for each E in ¥ the mapping

x’f‘t—>‘/x*gd)»,
E

defines an element of X** and is called the Dunford integral of g over E. We
denote the Dunford integral of g over E by D- f £ & dA. The function g is said
to be Pettis integrable if D- [, gd} isin X for all E in X.

If g is strongly A-measurable there exists a sequence (¢,) of simple func-
tions such that || g(w) — ¢, (w) || tends to zero a.e.-A. If the sequence (Jlg — @, 1)
converges to zero in L1(A) the function g is called Bochner integrable. In that
case, the sequence ( f g PndA) is Cauchy in X for all E in ¥ and its limit is the
Bochner integral of g over, E, (B)-(f; gdX).

The symbol L;(x, X) denotes the vector space of all (equivalence classes
of) Bochner integrable functions. When equipped with the norm

el = f gl da
Q
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then Li(A, X) becomes a Banach space.
The symbol P;(A, X) denotes the vector space of all (weak equivalence
classes of) Pettis integrable functions g : £ —> X. For such function g define

lell, = sup [ Ix*gld.
Q

x*€Bys

Then (Py(A, X), |-l P) is a normed linear space; not necessarily a Banach space.

If g is Pettis integrable its indefinite integral, ¥, : E +> (Pettis)- [ g &dAis
a countably additive vector measure and the function g is called a Pettis density
for ¥, withrespectto A. In general, the indefinite integral of a Dunford integrable
function A is countable additive iff the set {x*h : x* € Bx«} is arelatively weakly
compact subset of L1(A), and Pettis integrable functions are known to have this

property.

3. Integration.

Let (£2, X, A) be a complete probability space and let v be a A-continuous
vector measure taking values in X.

d
Lemma 1. The mapping S : X* — Li(A), x* —» S(x*) = (;f)»v) is bounded.
Moreover, it is weak*-to-weak continuous.
Proof. Forany g € Lo(A) and x* € X*,
gS(x,*)dk' < “g”oo'/ |S(x*)| dA
Q Q
= |lglloo * [x*V](R2)
*
= llglloo - | = v{ () - Ix*|
[lc*|

< llglleo - VISR - Ix™II.

Hence, || S|l is bounded by ||v||(2).

To prove weak*-to-weak continuity, assume (x}) is a net in BX. that con-
verges weak™* to zero. Then (x*v) converges setwise to zero; thatis, x*v(E) — 0
for each E € X. Then S(x}) is anetin L;(A) bounded by ||v|[(£2) and

f $S(x*)dr — 0
E
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for all E € ¥ and all simple functions ¢.
Fix h € Lo(2) and let ¢ > 0. Choose a simple function ¢ such that
lh — @] < €. Then find & such that IfE ¢S(x})dA| < & for all @ > «g. Then,

for ¢ > «p,

l f hS(x*) dxl < f (h — $)S(?) dA’ + } f qSS(x;)dA}

=<e- Vi) +e
=e-(viC)+D. O

Proposition2. If f : Q — Ris A-measurable and f€Li(x*v) forall x* € X*,
then the operator
d(x*v)

dA

Tf X - Ll()\.), x* > f

is bounded.

Proof. Indeed, if x; — x* and T¢x} — h;., then for some subsequence (x,*,‘j)
of (x;),

dxyv)  d(x*v)
_.>

A-a.e.
() an dx e
by Lemma 1, and
d(x;v) .
(%x) T = fon,- —> Rys A-a.e..

But () certainly implies that

d@Ly)  d(x*v)
——— >

= T¢x* A-a.e.
dx a7 e
which, in view of (x%), shows that Trx* = h,.. An appeal to Banach’s closed
graph theorem shows that T is continuous. O

Corollary 3. (compare [4], Lemma I1.3:1) If f is as in Proposition 2 then for
each E € X there exists an element x}* € X** such that

x5 (x*) = /1:: fdx*v)

for all x* € X*,
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Proof. Let Ty be as in Proposition 2. If Iz : L1(A) — R denotes integration
over E€ X, Ig(h) = [, hdA, then Ig o Ty : X* — R is an element of X™**,

d(x*v)

IEon(x*)sz dx:/fd(x*v).

Denote Ig o Ty by x O -

In view of Corollary 3 we extend Lew1s s deﬂmtlon of integrability as fol-
lows (compare [4], Definition II. 3.2):

A ¥ -measurable function f : € — R is said to be weakly v-integrable if
f is x*v-integrable for all x* € X*. In that case, the weak v-integral of f over
aset E € ¥ is an element sz* € X** such that

xp(x*) =‘/Efd(i*v)

for all x* € X* and we write w- [, fdv to denote the element xz*. In the case

w- [ fdvisin X c X* forall E € %, then f is called v-integrable and we
write | g f dv instead of w- f efd v to denote the v-integral of f over E € X.

The following theorem characterizes v- 1ntegrab111ty in terms of the operator
Ty of Proposition 2.

Theorem 4. Assume v and A are as before, and f and Ty as in Proposition 2.
The following statements are equzvalent

(a) f is v-integrable.
(b) Ty is weak*-to-weak continuous.

Proof. (a) => (b) Assume f is v-integrable and fix E € . For any x* € X*,
d(x*v)

T (xe) (x* >—/ Ty d)»—-/f dx:/ fdxty),
E

ie. Tf (xg) = fE fdx € X for all E € ¥. Hence Tf (@) € X for all sxmple

functions ¢. Since the simple functions are dense in Lo, (A), Tf (Leo(A)) C X.
Consequentely Ty is weak*-to -weak continuous.
(b) = (a) If T is weak*-to-weak continuous then T*(xg) is in X but

T*(xg) = w- f; fdv. Hence w- [ fdv € X and f therefore v-integrable.
O

Remark. Characterizing v-integrability in terms of the operator Ty as above
provides us with a very simple proof of the following known result.
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Proposition 5. Let v and A be as above
() If f € Loo(X) then f is v-integrable.
(i1) If f is v-integrable, g is A-measurable and |g| < | f| almost everywhere,
then g is v-integrable.

Proof. (1) If f € Loo(A) then f corresponds to a bounded (and hence, weakly
continuous) linear functional on L{(A). The mapping

d(x*v)
Er
/‘d(x v) /fd(x v)

a weak*-to weak continuous mapping followed by a weakly continuous map-
ping.

(11) There exists a set Eg of measure zero such that | f (w)| < |g(w)| for all
w € X — Ej. Define a function 4 as follows: h(w) = g(w)/f (w) if w ¢ Ey and
f(w) # 0 and define & to be zero otherwise. Then & € Lo, (A) and as f in (i),
h defines a bounded (and hence weakly continuous) linear functional on L{().

The mapping d)
x*v

A

/ T

d(x*v) d(x V)
[ Y / nr 25D gy

a weak*-to weak continuous mapping (by v- 1ntegrab1hty of f) followed by a
weakly continuous mapping. u

is a composition,

1s a composition

Corollary 6. Ty is weak®-to-weak continuous if and only if Ty is weakly com-
pact.

Proof. Necessity is clear. We prove sufficiency.
Since {f d(x*v)/dA : x* € Bx.} is a relatively weakly compact subset of
L1(2), itis uniformly integrable with respect to A; that is,

lim sup/
A.(E)~—>O X*EBXt E

Uniform integrability of {f d(x*v)/dp : x* € By}, in turn, implies that the
indefinite integral of f, vr is countably additive.

d(x*v)

dr=0.
dXr

f
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Let E be any set in . We want to show that v¢(E) € X. For integers
n = 1,23...1et F, = {weQ :n—-1 < |f(w)] < n}. Then (F,)
is a pairwise disjoint sequence in £ and Q = NF,. By countable additivity,
Vr(E) = Zve(E N Fy). But {ue(A N F,) : A€ X} C X for all n. Hence
Vf(E) eX. O

We now proceed to illustrate a relation between the above integral and inte-
grals of vector valued functions, the Pettis, the Dunford and the Bochner integral.
We will need the following characterization of Pettis integrable functions.

Proposition 7. ([9]) Assume g is Dunford integrable with respect to a probabil-
ity measure . The following statements are equivalent:

(a) g is Pettis integrable.

(b) g is determined by a subspace D of X and the operator X* — Li(}),
x* > x*g is 0 (X*, D)-to-weak continuous.

(c) g isdetermined by a subspace D of X which is weakly compactly generated
and the set {x*g : x* € By} is relatively weakly compact.

Proposition 8. Assume v has Pettis density g with respect to a probability mea-
sure A. Then for any real-valued Ah-measurable function f,

(a) f is weakly v-integrable if and only if f - g is Dunford integrable,
(b) f is v-integrable if and only if {x*(f - g) : x* € Bx-} C L{(u) is relatively
weakly compact if and only if f - g is Pettis integrable.

Proof. If v has Pettis density g with respect to A then v <« A and for any x* in
X*,
*

d(x*v)_x
a e

and hence,
d(x*v)

f,dk

for any A-measurable function f. It follows that f is weakly v-integrable if and
only if f - g is Dunford integrable, proving (a).

Since g is Pettis integrable it is determined by a weakly compactly gen-
erated subspace D of X. Clearly, every multiple f - g is determined by the
same space D and is therefore Pettis integrable if and only if {x*(f - g) =
f d(x*v)/dA : x* € By} is relatively weakly compact (by Proposition 7) if and
only if f is v-integrable (by Lemma 6). O

=f &g =x*(f2)
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4. The space Li{(v).

When the linear topological vector space X is a Banach space, the topology
on L(v), as defined by Kluvanek and Knowles, becomes a norm topology; it is
generated by the single (semi-)norm || - ||,, where

Iflly = sup {/ |fldlx™v] : x* GBX*}

Note that || f|l, = [|Tf|| where Ty is as in Proposition 2. Extend this norm to
include the weakly v-integrable functions by defining

If1l = 1Tl

If we define two such functions f and g to be weakly v-equivalent if the indefi-
nite integral of | f — g| is the zero vector measure we get a linear space of equiv-
alence classes that we will be denote by w-Ly(v).

Theorem 9. (w-L{(v), || - ||v) is a Banach space containing L1(v) as a closed
linear subspace.

Proof. Let (f,)bea ||-||,-Cauchy sequence in w-L;(v). Then (f,) is a Cauchy
sequence in each of the spaces L1(|x*v]), x* € X*. Let A = |x}v]| be a Rybakov
control measure for ||v| and let

fo=limf, in Ld).
Find a subsequence (f,;) a set Eg with A(Ep) = 0 such that
o (W) > f(w) forall w¢E,.
Fix any x* € X*. If
fo=limfy in Li(lx*v)),

then
fx* = hlm fni

and we can find a subsequence ( f,,,,j) of f,, and a set E,. with |x*v|(Eyx) = 0.
such that " ‘

S, (W) = fre(w) forall w ¢ Es. |

The set Eq U E,+ is of |x*v|-measure zero, and off this set the following state-
ments hold b

foy @) = fiew) and  fo, W) = fo(w).
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Thus
hrlznfn = fx* = fO in L1(|X*V|) .

Since x* was arbitrary, it follows that fy € L1(Jx*v|) for all x* € X* and hence,
fo€w — Li(v). Evidently,

tim | fo — full = 0.

To show that L;(v) is a closed subspace of w-L;(v), assume each f, is an
element of L;(v). Let v, be the indefinite integral of f, and v the indefinite
integral of fy. Then (v,) is a sequence of X-valued measures and since

Vi (E) = vo(E)l < I fu — Sollv = O

holds for all E € X, it follows that vy is X-valued and hence, fy is v-integrable.
O

In [2] it is shown that L{(v) is an order continuous Banach lattice, and
weakly sequentially complete whenever the Banach space in which v takes its
range has no copy of cg. The space w-L;(v) is a o-complete Banach lattice but
in general, not order continuous. In fact, order continuity of w-L(v) coincides
with weak sequential completeness of w-Lj(v) as shown in the following theo-
rem which generalizes [2], Theorem 3.

Theorem 10. The following statements are equivalent:
(a) w-L{(v) is order continuous.
(b) w-Li(v) = Lq1(v).
(c) Li(v) is weakly sequentially complete.
(d) w-Ly(v) is weakly sequentially complete.

Proof. (a) = (b). Assume w-L{(v) is order continuous and let f € w-L1(v).
We can assume f > 0. Find an increasing sequence (f,) of simple functions
such that

Offnffn+15"'§f

and

fn—> f a.e..

Then (f,) is order bounded and by order continuity, converges in norm. Evi-
dently the limit is f. But the f,’s are simple and therefore, belong to Li(v)
which is closed. Hence, f = lim, f, € L1(v).

(b) = (c). This is basically Curbera’s argument. We prove that a norm
bounded increasing sequence in L;(v) converges in norm since in Banach lat-
tices it is equivalent to weak sequential completeness ([5], Theorem 1.c.4). To
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that end, let (f,) be norm bounded and increasing. We can assume the f,’s are
all nonnegative. For any x* € X*, (f,) is a norm-bounded, nonnegative and in-
creasing sequence in L;(|x*v|) and therefore converges (in Li(]x*v}])) to some
fir € Li(Jx*v]). If A = |xjv| is a Rybakov control measure for v, let fy be
the limit of (f,) in L1(A). As in the proof of Theorem 9, f € L,(Jx*v}) for all
x*e X* and fy = fi» [x*v|-a.e.. Hence the sequence (f,) converges in each
of the spaces Li(|Jx*v]) to fo. Then foew — Li(v). But w — Li(v) = Ly(v),
so fo € L1(v) which is order continuous. Being order bounded and increasing,
the sequence ( f,) converges in norm to fp. »

(¢) = (b). Assume L;(v) is weakly sequentially complete. Then every
norm bounded increasing sequence converges in norm. Let f € w-L{(v). We
can assume f is nonnegative. Find a sequence ( f,) of simple functions such that

0§fn5fn+l _<..‘"'5f

and

fn—> f a.e..

Then (f,) is norm bounded (]| f,|| < || f|l for all n) and increasing in L;(v),
and by weak sequential completeness of L (v), the sequence converges in norm.
The limit must be f, which implies that f is integrable. Since f was an arbitrary
element of L;(v), it follows that w-L1(v) — L;(v).

(b) = (). This is clear. ' '

(a) = (d). If w-L(v) is order continuous then w-L(v) = Li(v) and
hence, w-L(v) is weakly sequentially complete.

(d) = (c). Since Li(v) is closed. O

In [3] Curbera proves that L;(v) is (order isomorphic to) an abstract L-
space if and only ifevery element f in L;(v) belongsto L (|v|) in which case the
two spaces are order isomorphic. In [7], Theorem 4.2, Lewis characterizes those
elements of L;(v) that belong to L(|v]) as those whose indefinite integrals are
of bounded variation; that is, an element f in L;(v) belongs to Ly(|v|) if and
only if the measure -

Vf:E")X;EH'/;de

is of bounded variation.

Lemma 11. Let v be a vector measure and A a probability measure such that
v <K A. The following two statements are equivalent:

(a) v is of bounded variation.

(b) The set {d(x*v)/dX : x* € Bx«} is an order bounded subset of L1()).
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In that case,

|v|(E)=fhdx,
E

where h = lub {|d(x*v)/dA| : x* € Bx+}

Proof. (b) => (a). Assuming the set {d(x*v)/dA : x* € By} is an order bounded
subset of L1(A), let A = lub {|d(x*Vv)/dA| : x* € Bx+}. If E any element of X,
then for any x* € Byx, ‘

d *
X (E)| < K V|(E) = f V| < / hda,
gl di E
and hence, |
WE) = sup [x*v(E)] < f e
x*€Bxx i E

Let ;v be any finite partition of 2 into measurable sets. Then

Y Ivl SZ/AhdszﬂhdA,

Aem Aern

and consequently

Vi) = sup Y V(A < fghdx.

T Aerm

(a) = (b). View the measure v as a measure into X**. Since the measure is
of finite variation, a direct consequence of a representation theorem of A. Ionescu
Tulcea and C. Ionescu Tulcea [10] provides us with an X**-valued function f
such that |

(i) f(-)x* belongs to L;(A) for all x* in X*.
(i) Forany E in ¥ and any x* in X*,

x*v(E):/fx*dA.
E

The function f is called a weak*-density for v with respect to A. By [9],
Lemma 2.6, there exists a countable partition 7 of € into measurable sets such
that for any E in 7 the set {(f(-)x*)4g : x* € By-} is a bounded subset of
Loo()). Denote by «g the least upper bound of {(f(-)x*)xg : x* € Bx+} and
letk =) kg .ForanyAeX and Eem

|x*v(EﬂA)|_<_,/ Ifx*ldks_f kdh.
ENA

ENA
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It follows that

d
lvl(EﬂA):/ |—”|dx5/ kdA
Ena dA - ENA

~dv|
—_— < -
N (0) < k(w) a.e.-A.

and consequently,

On the other hand we have that for x* in Bx»

d
i) = [ 1l < i) = [ Gan.
E E dA
dlvl . d|v|
Hence, | f(w)x*| < d_)»(w) a.e.-A, which implies that x (w) < ﬁ(a)) a.e.-A.
d
Hence « and d_:] are equal almost everywhere. Evidently 2 = «. O

Corollary 12. Assume v is of bounded variation, A a finite measure and v <
L. Then a v-integrable function f belongs to Li(|v|) if and only if the set
{f d(x*Vv)/dX : x* € Bx+} is an order bounded subset of L1(A). In that case,

v, (E) = f 1£1dlvl.
E

Proof.  f belongsto Li(|v]) if and only if the measure vy is of bounded variation
by [7], Theorem 4.2, if and only if {d(x*v¢)/dA : x* € By} is an order bounded
subset of L;(A) by Lemma 11. For any x* in X*,

d(x*v)
) dxr.

x*vg(E) = /E f

It follows that d(x*v)/dA = f d(x*v)/d and the validity of the first claim
follows. ' '
Let h be the function

d(x*v)
dA

dpl
dr -

h =1ub H

:x*éth} =

Since
1ub {'d(x Vf) d(x*v)

dA

:x*eBx‘}zlfI;h

:x*eBX.} = lub {.f
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it follows that for any E € &,

IvfI(E)=/;!f|-hd)\=fElf|dlvl- 0

Proposmon 13. Assume v has a Bochner integrable density g with respect to
A. The correspondence

Uifr—>f-g

Ls an isometry mapping w-L1(v) into the space of Dunford integrable functions.
Furthermore
U(Li(v)) = U(w-Li(v)) NP, X)

and
U(Li(Iv])) = U(w-Li(v)) N Li(A, X)

Proof. The equation

Iflly = sup /lf 46:7v)

Xx*€Byx

A= sup /If(x*g)ldk= If - gl

x*€B,x

together with Theorem 4 prove the validity of the first two claims.
The equations

| _ dly|
o M- lel ==

gl = ——

together with Corollary 12 prove the last claim. g

Remark. When the vector measure v is represented by a Bochner integrable
function g as above the spaces w-L(v), L1(v) and L( [v|) correspond to multi-
ples of f-g of g that are Dunford-Pettis, and Bochner-integrable. Consequently,
L1(v) is order isomorphic to an abstract L-space if and only if f - g is Bochner
integrable whenever it is Pettis integrable. It follows from Theorem 10 that if
L (v) is order isomorphic to an abstract L-space then L;(v) can not be a proper
subspace of w-L1(v) and consequently, in the setting of the above proposition,
L1(v) is order isomorphic to an abstract L-space if and only if f - g is Bochner
integrable whenever it is Dunford integrable.

If the function g is only Pettis integrable to begin with it still holds, that f
is weakly v-intgrable (resp. v-integrable) if and only if f - g is Dunford (resp.
Pettis) integrable, but to give a precise description of L;(|v|) is not possible.
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Let’s assume the measure A is a Rybakov control measure for v; thatis A =
|z%| for some z}, € Bx~. Further, assume that the measure v is X**-valued and find
an X**-valued weak*-density g for v with respect to A = |zjv|. Since every v-
integrable function f must belong to L1(Jx*v]) for all x* € X*, every element
of Li(v) belongs to Li(1). On the other hand, if the set {x*g : x* € Bx+} is not
only order bounded in L;(1) but also bounded in L (1) then every function in
Li(})) is v-integrable.

If an X**-valued function g is such that the set {x*g : x* € Bx+} is a
bounded subset of Lo, (A) we say that g is weak*-bounded.

Lemma 14. If v has a weak*-bounded weak*-density g with respect to a Ry-
bakov control measure A, then L1(v) is order isomorphic to an abstract L-space.

Proof. Let g be a weak*-bounded weak*-density for v with respect to a Ry-
bakov control measure A and let S be the operator S : x* > d(x*v)/dX as
in Lemma 1. By statement (i) in the proof of Lemma 11, Sx* = gx*. Since §
is weak*-to weak continuous, the adjoint, $* maps L (A) into X. Since g is
weak*-bounded S* extends to a bounded operator defined on L;(A). This means
that every element of L;()) is weakly v-integrable. By the density of Lo (2)
in Li(A), S*(L1(3)) is in X which implies that the elements of L;(A) are v-

integrable as well.
Clearly, every v-integrable funcion f belongs to L1(1) and hence, L1(v)

is order isomorphic to Li(}). 1

Theorem 15. Let v be a vector measure of bounded variation. For every € > 0
there exists a vector measure | such that for every E € &

IV(E) — w(BE)l < [v—nl(E) < ¢

and L1(w) is order isomorphic to an abtract L-space.

Proof. Let A be a Rybakov control measure for v and let g be a weak™-density
for v with respect to A. As in the proof of Lemma 11, find a countable partition
{Aq, A, ..., A,, ...} of  such that for each n, the function g - X4 is weak*-
bounded. Let «, denote the least upper bound of {g(-)x*)x A x* e Byx+} and
letk = ), k,. Then k = d|v|/dA.

Let ¢ > 0 be given. Find ng such that

(2 — U A,,; <e.

n<ng

Let
Ao=|J A, and go=g-x, -

n<ng
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If we let u be the measure whose weak*-density is go then
(1) wE)=v(ENAg) forall EeX
(i) dlul [dr =k - x Ao and consequently

[(E) = v(E)|l < |u — v|(E)

forall E € X. _
Since the weak*-density for 1, gg is weak*-bounded the result now follows

from Lemma 14. O
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