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ABOUT THE NUMBER OF MAXIMAL
SUBSYSTEMS IN S(2, 4, v)

HERBERT ZEITLER

It s of great interest, to find systems S(2, 4, v) with subsystems S(2, 4,
r=s 1 (v — 1))- known as maximal subsystems. Up to now there exist only a
few results-mainly due to Resmini and Shen.

In this paper we prove a new partial result :
Exactly for all v € {121, 40} 4 108N there exists a system S(2, 4, v) with
exactly two, but also a system with exactly four maximal subsystems.

1. What the reader should know.

At first we notify some well-known facts.

Let V be a set of elements, the points with |V| = v and B a collection of k-
subsets, the lines (k € N\ {1}, ¥ < v), such that any ¢-subset (e N, 7 < k) isin
exactly one line. Then (V, B) is called a Steiner system. In short S(z, k, v). In
this paper we consider only the special systems S(2, 4, v).

We call SN = {4, 13} + 12N, the set of admissible numbers or the set of
Steiner numbers. It is known, that v € SN is a necessary and sufficient condition
for the existence of systems S(2, 4, v).

We further need some counting propositions. Each S(2 4, v) contains ex-

actly 12v(v 1) = b = | B] lines and each point cxactly 3(v —1) =r lines.
Here is an example. .
There exists exactly one system with v = 13 points, the projective plane

PG(2,3) =S5(2,4,13).

Entrato in Redazione il 6 dicembre 1993.
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V =(1,2,3,4,5,6,7,8,9, 10, 11, 12, 13)

B ={{13,3,5,9}, {13, 1,6, 8}, {13, 2,4, 7},
{12,1,2,5),{12,4, 8,9}, {12,3,6, 7},
{11,1,7,9}, {11, 4, 5, 6}, {11, 2, 3, 8},
(10,5,7,8}, {10,2,6,9},{10, 1,3, 4},

{10, 11, 12, 13}}.

There is a lot of unsolved problems concerning the systems S(2, 4, v). We
consider only one of them.

2. What we like to known-the problem.

2.1 Definition: subsystem.

A system S(2, 4, w) with point set W and line set C is called a subsystem
of §5(2,4,v) if W C V and C C B. Then we have |W| = w < v.

Sometimes we say that S(2, 4, w) is embedded in S(2, 4, v).

2.2 A theorem concerning subsystems.
Ifa $(2,4, w) is embedded in S(2,4,v) with v,w € SN, w < v, then
necessary we have w < %(v - 1.

After a lot of preparatory work (Brower-Lenz (1981), Wei-Zhu (1989))
Rees-Stinson in 1989 finally succeeded to prove the converse [2], [4], [7], [8],
[107, [11].

Forany v, w e SN with w < %(v — 1) there exists a S(2, 4, v) with a subsystem
S2,4, w).

In thlS paper we are only interested in subsystems with max1ma1 cardinality
w=r=3i@v-1.
3

2.3 The problem.
Forevery ve SN let N(v) be the set of all numbers h € Ny such that there
exist S(2,4, v) with exactly h subsystems S(2, 4, r).

We are looking for N (v), we try to determine this set-that’s the problem.
For Steiner triple systems S(2, 3, v) we succeeded to solve the analogous prob-
lem completely [6], [13]. There we know the total spectrum. In respect of sys-
tems S(2, 4, v) we unfortunately obtained only some poor partial results.
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3. What is already known.

3.1 Resmini (1981) [9], Zeitler (1990) [12].
a) Exactly for all
ve SN’ = {13, 40} + 36N,

there exists a system with at least one S(2,4,r).
b) This means that for all the remaining

veSN" = {16, 25, 28, 37} + 36N,
never existsa S(2, 4, v) with §(2, 4, r). In other words N (v € SN”) = {0}.
3.2 Shen (1992) (communication by letter).

Exactly for all v € SN’ \ {13} there exist systems S(2, 4, v) with exactly
one §(2,4,r).Inother words l e N(ve SN’ \ {13}).

3.3 PG(n,3),neN\{1}.
1t is well-known, that a projective space of dimension n € N \ {1} of order
3 contains exactly v = l(3"+1 1) points and exactly just as many subspaces

of dimensionn — 1 ( hyperplanes) with exactly r = 3 lv—1) = 5 li3n—1) points
each. All the numbers 1 33" — 1), n e N\ {1} are Steiner numbers.
Proof. Complete induction.
n=~2m |
m=1= %(32— 1)=4€eSN.

1
If 5(32'" — 1) = 4 + 124, then we have

1 1
:2-(9-32'" -1 = 5(9(9+24A) —1)=40+ 1081 € SN .
n=2m-+1 .
m=1= 5(33—1)= 13 SN.
1
If -2-(32'"+1 — 1) = 13 + 124, then we have

1 1
50 32t _ ) = 5927 +24%) = 1) = 121 + 108r € SN .
Together with 3.2 now we can write (v # 13):

l n+l — l n+l __
{1, 2(3 D}CN@w= 2(3 1)).
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4. Some definitions and lemmas (needed for proofs). .

4.1 Maximal subsystems and hyperovals.

Definition 4.1.1. A point set H C V is (in analogy to Steiner triple systems)
here called a hyperoval if for each line g € B we have |H Ng| € {0, 3} and if the
cardinality of H is 2r + 1. So we obtain only two classes of lines in respect of
H: O-secants and 3-secants.

Lemma 4.1.2. [12] Ifina S(2, 4, v) a hyperoval H exists then the complemen-
tary subset H = V \ H together with all the 0-secants of H is a subsystem
S(2,4,r). If on the other side the subsystem S(2, 4, r) exists, the complement of
its point set is a hyperoval.

(We mention, that the hyperoval of our lemma may be interpreted as a
resolvable Steiner triple system of order 2r + 1. Resmini and Shen need this
remark for their proofs.)

4.2 Intersection of subsystems.

Lemma 4.2.1. Let S, S, be two subsystems of any order wzth [S1 NS > 2
then the intersection Sy N §2 is also a subsystem.

Proof. 'Two points in S; N S, provide exactly one line . This line is totally in S,
and totally in S, too — therefore also totally in S; N S5.

Lemma 4.2.2. Let S1, S, be two subsystems of any order with S; % Sy then we
have |Si] < 1(1S;] = 1.

Proof. We count all the lines through P € §; \ §;.

Each point Q € §; provides together with P exactly one line. The missing points
of this line are elements of S, \ S;. There exist exactly |S;| lines of this kind. In
S, there are exactly -;—( |S2] — 1) lines throught P. So we obtain

1 ,
151] < §(|52| —1).

Lemma4.2.3. Let S;, S, be two subsystems of any order with Sy ¢ S, S, ¢ S
and |S1 N 83| > 1. Using the notation A = S; N S, we obtain

| |
Al Z (51 +3152] = v).



ABOUT THE NUMBER OF MAXIMAL. .. 239

Proof. 'We count the points of all the lines through P € S, \ S;.

Point P together with Q € §; \ A yields exactly one line. The missing points of
this line are elements of (S; U §;). The number of points in all these lines — P
fixed and not counted —is 3|51 \ A| = 3(|S1| — |A[). Joining the points of S,,
we obtain v > 3(|S;| — |A[) + |5,/ and finally

1
Al = 3 Szl + 31851 = v).

5. Some new results.

We now give some new, but unimportant results — only propositions.

5.1 An “If-Then”-proposition.
Ifina §(2, 4, v) there exist two subsystems Sy, Si; of maximal order r, then
we have:
a) A=SNS #9,
b) A is a subsystem or one point,
) |Al=35(v—4),
d) the necessary condition for this situation is v € {121,40} + 108N, or
v=13.
Proof. a)In case A = {J the point set of S;; is subset of the point set of S; and
because of 4.1 part of a hyperoval H I- This is a contradiction because H; does

not contain any line.
b) Due to 4.2.1 A is a subsystem if |A| > 1 and naturally a point if |A| = 1.
¢) Using lemma 4.2.2 we obtain immediately

1 1
Al<=(Sul— 1) = ~(v —4),
I l53(l 1l —1) 9(v )

because of A C S;;.
Lemma 4.2.3. yields

1 1
|A] = S(ISII, + 318 —v) = §(U —-4).

With both results it follows |A| = é(v —4).
d) If A is a subsystem then we necessary have

1A| = é(v — 4) € {13, 4} + 12N,

and therefore

v e {121, 40} + 108N, .
In the special case |A| = é(v —4) = 1 we obtain v = 13. The only S(2, 4, 13)
is the projective plane PG (2, 3).
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5.2 One more “If-Then”-proposition. ~ “From 3 make 4”.
Ifina S(2,4,v) besides Sy, S;; with A = S; N Sy there exists a further
system Syry of order r with A C Sy, then:
a) there exists still one more system S;y of order r with A C Syv;
b) besides Sy, Si1,S111, Siv no other system Sy of order r with A C Sy exists,
r #4.
4
Proof. a) We claim, that the set (S; U S;; U 8777) U (S; U S;; U Syy7) is a sub-
system S;y of order r and therefore S;y = H;y a hyperoval. Proving this we
have to show either, that S;y is a §(2, 4, r) or that H;y is a hyperoval. We prefer
to do the latter. First of all we count the points of H;y. With

1 1 1
IS\ Al= 2@ -1 -5 -9 =5CQv+1)

we obtain y
|Hyy| = §(20+ D=2r+1.

To prove that H;y really is a hyperoval we check systematically all the possible
situations of lines in respect to H;y. There remain only two classes of lines in
respect of Hyy: O-secants and 3-secants. All other line positions yield contradic-
tions to the fact that a hyperoval never can obtain lines.

b) Now we assume that a system S, # S; of order r # 4 with A C S, ex-
ists, i € {{,I1,111,1V}. Due to the proof of a) every point P € S, \ A must
be element of exactly one point set S; \ A. Then P, together with the points of
A spans up, generates as well Sy, as S; too. Then it follows S, = §;. Thisis a
contradiction to the assumption.

6. Some more results.

6.1 Questions.

All the results in section 5 are indeed completely unsatisfactory.
Are there perhaps further “If-Then”-propositions? We give an example.
Ifina §(2, 4, v) there exist two subsystems Sy, S;; of order r with A = S;NSy;
then there exists a system S;;; of order r with A C Syy; (and due to 5.2 then a
further system S;y)? If yes, we had “From two make three” — this happens in
Steiner triple systems [13].

Much more serious is the argument that only “If-Then”-proposition were
given. May systems of this kind really exist? Are there systems S(2, 4, v) with
2, 3 or 4 subsystems S(2,4,r)?
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The following existence propositions give partial answers to these ques-
tions.

6.2 An existence proposition.

In the following we have to exclude the case v = 40.

Exactly for all v € {121, 148} + 108N, there exist systems S(2,4, v) with
exactly four systems Sy, Siy, Si11, Siv of order r with

1
Al =[S, NS NSNSyl = §(v—4)=a.

Other systems of order r then don't exist.

Proof. To prove a proposition of this kind we need some constructions.
Here a well-known construction [1], the quadrupling procedure is used.
a) The starting system.
We start with a system S(2, 4, r) containing exactly one subsystem S(2, 4, a)
with a = %(r — 1). The point sets respectively are R and A. Due to 3.2 such
systems exist for r € {49, 40} + 36N.
b) Quadrupling (four-leaf-clover).
Now we connect four isomorphic starting systems S;, S;7, S;rr, Srv such that
S(2, 4, a) is the intersection system. |
c) A new system S(2,4,v = 3r + 1).
The points.
Quadrupling yields a point set V with exactly

[Vi=v=4(r —-a)+a=4r—-3a=3r+1.

We have v = 3r + 1 € {148, 121} + 108Nj.
It’s advantageous to denote all the points in V \ A as pairs in the following way
{1,2,...,r—a=q}x{I,II,III,1V}.

Old lines.

All the lines of our systems shall remain lines in the new system. So we have
exactly {3a(a — 1) lines in A (class &) and exactly 4.5r(r — 1) —45a(@ — 1)
lines with exactly one point in A (class B).

New lines.

If we like to obtain a system S(2, 4, v) then

T N NI S
12v(v 1) 3r(r 1)+4a(a D=@F—-a)=gq

lines are still missing. Because of ¢ > 6 there exist two mutually orthogonal latin
sqares L, L, of order q. Now we use the corresponding quasigroups (L1, o) and
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(Ly, 0). Any pointset {xI, yII, (xoy)III, (xoy)IV}withx,ye{1,2,...,q}
is defined to be a new line. In this way we obtain exactly the g% missing lines
(class y). In this way our construction is finished.

It’s immediately to see, that any 2-subset is contained in exactly one line and that
any line is a 4-subset. Therefore we really have a system S(2, 4, v) with four sub-
systems of order r, intersecting in & subsystem S(2, 4, a).

Because of 5.2. (b) there are exactly four such systems with subsystem A.
Now let S, be a subsystem of order r such, that A ¢ S,. Due to 5.1 then
A’ = S, N S is asubsystem S(2, 4, a) of S; with A’ # A.

This is a contradiction. Because our starting system contains exactly one subsys-
tem of order a.

In respect of orders different form v € {121, 148} 4 108Ny and v = 40 the situ-
ation of our Proposition 6.2 can’t never occur, because the necessary condition
5.1 (d) is not fulfilled. So, excluding v = 40 we have an optimal result and we
can write “exactly for all”. -

6.3 One more existence proposition.
In the following proposition we exclude the case v = 40.

Exactly for all v € {121, 148} + 108Ny there exist systems S(2, 4, v) with
exactly two subsystems Sy, S;; of order r.

With this proposition we know that the conclusion “From 2 make 3” is
wrong. This fact is already proved with the construction of a S(2, 4, 148) with
exactly two S(2, 4, 49) given by B. Ganter (communication by letter).

a) Modification of our quadrupling-construction.

We modify the construction in such a way that besides the four maximal systems
Si,i €{l,11,111,1V}oforderr and the system of order a there exists a system
S, of order 13, a projective plane.
Using the intersection lemmas in 4.2 we see that S; U S, yields a line g;. Because
Sx 1s a projective plane any two lines g; must intersect in one point of A. Let for
instance be g; N g;; = {S} and g; N g;;r = {P} with P # S. Then we have
S, P € A and S, P € g;. That’s a contradiction to the fact, that |g; N A| = 1.
Therefore all three and finally all four lines g; intersect in S. Figure 1 shows the
situation.

All the other lines of our projective plane must be of class y. Comparing
figure 1 with the quasigroups (L1, o), (L3, a) used for construction we obtain
two tables, two orthogonal latin squares My, M>, of order 3.
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gr:{S,a,b,ct, g {S,u,v,w}, grr: {S,x,y,2}, grv:{S.d,e, f}.

8rv

Figure 1
M, M,
o u v ow = u v ow
Yy z X a f d e
Xy e f d
c X y z c d e f

If the projective plane exists then the orthogonal squares L;, L, must contain
the orthogonal subsquares M in L; and M, in L,.

K. Heinrich [5] gives a general proof that orthogonal latin squares L*, L3 of or-
der ¢ with orthogonal subsquares M}, M exist, if ¢ > 9. In our special case
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we have g € {33, 27} + 24Ny, therefore 3|q. Now we use the well-known [5]
direct product method for constructing latin squares. Let the orthogonal starting
systems A, A, be of order 3. The “factors” By, B, are also orthogonal and of or-
der %q # 6. Product constructing yields two orthogonal systems LT = Ay x By,
L3 = A, x B, of order g with subsystems of order 3.

We perform the quadrupling procedure once more, but now using the quasi-
groups (L}, o), (L3}, o) for construction. Doing so we finally obtain the system
required in the beginning of a).

b) We kill systems.

Now we Kkill, we destroy two systems of order r. We change the points w and z
in figure 1. The following lines are deleted:

{w,v,u, S}, {w,e,x,a}, {w,y,d,b}, {z,y,x,8}, {z.d,a,v}, {z,e,u, b}
and they are replaced by
{z,v,u, S}, {z,e,x,a}, {z,y,d,b}, {w,y,x,S}, {w,d,a,v}, {w,e, u,b}.

All the other lines in S(2, 4, v) shall be unaltered.

Doing so, the system S(2, 4, 13) as a whole remains a projective plane as before
and the systems Sy, S;v are completely unaltered. Only S;; and Sy, are killed
as Steiner systems.

Exactly as in the proof of 6.2 we conclude, that — excluding v = 40 — the
formulation “exactly for all” is correct again. ' ’

6.4 Corollary.

The case v = 40 is excluded once more.

For all v € {121, 148} + 108Ny there exist systems S(2, 4, v) with exactly
one subsystem S(2,4, r), but also systems S(2, 4, v) without any maximal sub-
system.

If we are looking at 3.2 we see, that the first result in our corollary is not at
all optimal, because there exist systems of other orders with exactly one maximal

subsystem. Certainly also the second result may be vastly improved.
Proof. Changing points in the following way

w—zZ—> fo>w .

or
w—>z—>c—>f->w

the systems Sy;, Syr7, Syv or Sy, Srr, Srrr, Syv are killed.
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6.5 A quick summary.
Using the formulation in 2.3 we can summarize the Propositions 6.2, 6.3
and the Corollary 6.4 in the following way

{0,1,2,4} C N(ve {121, 148} + 108Ny).

That’s not at all a very good result. “Es kreifite der Berg und gebar eine Maus”
(The mountain was in labour and a mouse was born).

7. The special case v = 40.

7.1 Exclusion ? A

In the Proposition 6.2 and 6.3 the case v = 40 is excluded. What’s the
reason for? '
The quadrupling construction presented in 6.2 also works in case v = 40.
Then the system A consists only of one line. But the proof by contradiction for
the existence of exactly four subsystems S(2, 4, 13) can’t be repeated. Because
every starting system contains besides A still 12 subsystems S(2, 4, 4).

7.2 “If-then”. ,

Given the system S(2, 4, 40) constructed with the quadrupling procedure in
7.1 with at least four subsystems S;,i € {I, I1, I11, IV} of order 13 intersecting
in one line A. If another system S, of order 13 exists then we obtain exactly the
situation of section 6.3 a). We need again two orthogonal latin squares L, L, of
order 9 with orthogonal subsquares My, M, of order 3 each.

Proposition 7.3. There exists a S(2, 4, 40) with exactly four systems S;, i €
{I,I1I,111,1V} of order 13. These systems intersect in a line.

Using the notation in 2.3 we can write 4 € N (40).
Proof. In the nice book [3] written by Denes and Keedwell eight mutually
orthogonal latin squares are given which correspond to the so-called Hughes-
plane. We take over two of them L3 and Ls for further constructing. Testing
by trial and error yields that each of these two systems contains exactly one
subsystem of order 3, M3 respectively Ms.
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(L3’ O) . (LS’ D)

o 1234567289 o| 123456789
1123456789 11123456789
21489675231 216 7 4893152
31815342967 31482719536
41361987452 4195712436 8
51798261345 5/869345271
615371946238 61715682943
716 42819573 71296537814
819567232814 813412786295
91274538196 91538961427
M; Ms

o 3 45 o | 2 3 8.

1 3 45 1 2 3 8

3 5 3 4 3 8 2 3 >

9 | 4 5 3 9 3 8 2

Considering the subsquares M3, Ms we see, that they are not orthogonal. So
the system S(2, 4, 40), constructed with (L3, o), (L5, 0) contains exactly four
systems S;,i €{l,11,11,IV} of order 13.

Proposition 7.4. There exists a S(2, 4, 40) with exactly two subsystems S;, i €
{1, x} of order 13. These systems intersect in one line

We can write 2 € N(40). Now the exception v = 40 as well in 6.2 asin 6.3

too is eliminated.
Proof. a) Modification of our quadrupling construction

We construct a S(2, 4, 40) with the quadrupling procedure using two orthogonal
latin squares Ls, L7 out of [3].
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(L3, 0)
o| 123456789
11674893152
21123456789 (Ms, o)
31482719536 ©c1 238
4195712436 8 21238
51869345271 31823
6|7 15682943 81382
712965372814
8538961427
913412786935
(L7,0)
o|123456789
11391524876
21123456789 (M4, o)
31738691425 o| 2338
41815243697 21238
51476982513 31382
6| 249867351 8 1823
7195437816 2
8/6 82715934
91567 139248"

To simplfy the construction we interchanged the first with the second row and
the last with the last but one row in Ls and in L. This is allowed because doing
so0, the orthogonality is not destroyed. Moreover Ms, M7 are the only subsquares
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of order 3 in Ls, Ly and they are orthogonal. The necessary condition in 6.3 a)
is fulfilled. So we obtain a system S(2, 4, v) with exactly 5 subsystems Sy, S;,
ie{l,Il,I111,1V} oforder 13.

Remark. Using the product construction in 6.3 a) we also obtain orthogonal
systems of order 9 with 9 orthogonal subsquares of order 3 each. In this way we
have a system S(2, 4, 40) with exactly 13 subsystems S(2, 4, 13), 13 € N(40).

b) Details :
My maxim is that mathematics really must be done. Therefore I give the con-
stuction in some detail.

The points:
{1,2,3,4,5,6,7,8,9} x {I,I1,1I1,IV}and 10,11, 12, 13.

Starting systems.

The lines:
class: a: A = {10, 11, 12, 13}

class B:
{13, 3i, 5i, 9i, },{13, 1i, 6, 8i},{13, 2i, 4i, 7i},
{12, 14, 2i, 5i, },{12, 4i, 8i, 9i},{12, 3i, 6i, 7i},
{11, 14, 7, 9i, },{11, 4i, 5i, 6i},{11, 2i, 3i, 8i},
{10, 5, 71, 8i, },{10, 2i, 6i, 9i},{10, 1i, 3i, 4i}.
class y, with (Ls, o), (L7, 0)
{xI,yII,xoylIl,xuyIV}withx,ye{l,2,3,4,5,6,7,8,9}.
The new subsystem S, .

The points: 2i, 3i, 8, 11 withi e {I,II,II11,1V}.

The lines -

class B: {11, 2i,3i,8i},ie{l,II,111,1V}

class y with (M5, o), (M7, 0)

{21,211,2111,2IV},{31,311,8111,31V},{81,211,3111,81V},

{21,311,3111,31V)},{31,311,2111,8IV},{81,311,811I,2IV},
{21,811,8111,81V},{31,811,3111,2IV},{81,811,2111I,31V}.

In figure 2 you see a picture with some lines of S;.

i e (I,ILIII, IV}

¢) We kill systems

If we like to obtain our Proposition 7.4 we have to kill subsystems. |
At first we take over the letters ¢, z, w, f from figure 1 to figure 2. Then — exactly
as in 6.3 b) — we change the points w and z, delete 6 lines and replace these lines
by 6 other ones. In this way the systems S;;, S;;; are killed. There remain exactly
three maximal subsystems S;, S;v, S;. :
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81T w

81 ¢

_2IIIz

Figure 2

Now we change points in the following way:
w—>z—> f->w
or
w—>z—=>c—> f—o>w.

We obtain exactly two maximal systems S;, S, or exactly one S,.

7.4 A quick summary to the case v = 40.
Using the notation of 2.3 and the results 3.2, 3.3 we can together with 7.3
and 7.4 write '
{1,2,3,4,5, 13,40} Cc N40)

(In the cases 3,5,13 the correspoding systems have exactly one point and in the
cases 2,4 exactly one line in common.)
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8. What remains to do.

8.1 Find the total spectrum N (v)!

8.2 Calculate N (v) for small orders v, using the computer! What about N (40)?
8.3 Prove the following conjecture:

For all v € {25, 16} + 12Ny there exist systems S(2, 4, v) without any maximal
subsystem S(2,4,r). '
8.4 Try to find N (v) using algebraic instuments, such as Stein-Quasigroups!
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