A REMARK ON MINIMIZATION OF AN ENERGY TYPE FUNCTIONAL

ADELE FERONE

We study the problem of the minimization of the energy type functional

$$\Phi(f) = \int_{\Omega} fGf$$

on a class of function with prescribed distribution function that we denote by $C(f_0)$. We will prove that there exists only one minimizer of the functional considered in the weak closure of $C(f_0)$. We find some conditions that f_0 has to verifie in order to have the minimizer in $C(f_0)$.

1. Introduction.

Let Ω be an open, bounded set of \mathbb{R}^n , $n \geq 1$, and let $f \in L^p(\Omega)$, $p \geq 1$: the distribution function of f is defined by:

(1.1)
$$\mu_f(t) = |\{x \in \Omega : f(x) > t\}|, \quad \text{for } t \in \mathbb{R}$$

where, here and below, |A| denotes the Lebesgue measure of the set $A \subseteq \mathbb{R}^n$.

Let f and g be measurable functions: f and g are equimisurable if they have the same distribution function and this equivalence relation is denoted by $f \sim g$.

Entrato in Redazione il 6 dicembre 1993.

Let $f_0 \in L^p(\Omega)$ and let

(1.2)
$$C(f_0) = \{ f \in L^p(\Omega) : f \sim f_0 \}.$$

Let us consider the following Dirichlet problem:

(1.3)
$$\begin{cases} -\Delta u + \lambda u = f & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

with $\lambda > 0$ and $f(x) \in L^p(\Omega)$, p > 1. If Ω is sufficiently smooth, there is only one solution $u \in W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega)$ of the problem (1.3) ([9]).

For any $f \in C(f_0)$ let $\Phi(f)$ be the functional

(1.4)
$$\Phi(f) = \frac{1}{2} \int_{\Omega} (|Du|^2(x) + \lambda u^2(x)) dx = \frac{1}{2} \int_{\Omega} f \mathcal{G} f$$

where $u = \mathcal{G}f$ and \mathcal{G} is the Green operator for the problem (1.3). The aim of this paper is to study the problem of minimizing (1.4) on $C(f_0)$, where $n . By an easy computation, it is possible to check that <math>\Phi$ is a strictly convex and weakly continuous functional in the weak topology on L^p .

In order to apply the classical variational principles, the minimizer of Φ will be sought in a class of L^p functions larger than $C(f_0)$, closed, weakly compact and convex. This class is $K(f_0)$ consisting of all weak limits in $L^p(\Omega)$ of sequences in $C(f_0)$ (the properties of $K(f_0)$ and of $C(f_0)$ are widely studied in [7], [13], [14], [1]). Then Φ has only one minimizer in $K(f_0)$.

The case $\lambda=0$ has been treated in [6] and [1] where the authors show that, if \hat{f} is the minimizer of Φ and $\hat{u}=\mathcal{G}\hat{f}$, then \hat{f} is a decreasing function of \hat{u} and, only under the assumption that f_0 does not change sign, $\hat{f}\in C(f_0)$. The goal of this paper is to study the case $\lambda>0$. It will be shown that the minimizer \hat{f} in $K(f_0)$ is again a decreasing function of \hat{u} and that \hat{f} cannot change the sign, but a counterexample shows that it is not sufficient to assume that f_0 is one-signed in order to have the existence of the minimizer of Φ in $C(f_0)$.

2. Preliminar results.

From now on, let Ω be an open bounded set of \mathbb{R}^n , sufficiently smooth: if f is a measurable function in Ω , using the definition of distribution function given in (1.1), the *decreasing* and the *increasing rearrangements* of f are respectively defined by:

$$f^*(s) = \sup\{t \in \mathbb{R} : \mu_f(t) > s\}$$
 for $s \in [0, |\Omega|]$
 $f_*(s) = f^*(|\Omega| - s)$ for $s \in [0, |\Omega|]$.

If $\Omega^{\#}$ is the ball of \mathbb{R}^n centered in the origin such that $|\Omega| = |\Omega^{\#}|$ and if C_n is the measure of the unit ball of \mathbb{R}^n , the spherically symmetric decreasing and increasing rearrangements of f are, respectively:

$$f^{\#}(x) = f^{*}(C_{n}|x|^{n})$$
 $f_{\#}(x) = f_{*}(C_{n}|x|^{n})$ for $x \in \Omega^{\#}$.

For more details on rearrangements see, for example, [7], [2], [11], [10].

Let us consider the following order relation in $L^p(\Omega)$: given $f, g \in L^p(\Omega)$ then

$$f \prec g$$
 if $\int_0^t f^*(s) \, ds \le \int_0^t g^*(s) \, ds$ for $t \in [0, |\Omega|]$
 $f \preceq g$ if $f \prec g$ and $\int_{\Omega} f(x) \, dx = \int_{\Omega} g(x) \, dx$.

If $f_0 \in L^p(\Omega)$, let $C(f_0)$ be the set defined in (1.2): if $K(f_0)$ is its weak closure, then ([1], [2], [7], [12], [13], [14]):

Theorem II.1. Let $f_0 \in L^p(\Omega)$, $1 \le p < +\infty$. Then:

- (i) $K(f_0) = \{ f \in L^p(\Omega) : f \leq f_0 \}$
- (ii) $K(f_0)$ is a convex set in $L^p(\Omega)$.

If $g \in L^{p'}(\Omega)$, where p', here and below, is the conjugate exponent of p, consider the following linear functional:

(2.1)
$$(g, f) = \int_{\Omega} f(x)g(x) dx \quad \text{for } f \in L^{p}(\Omega).$$

From the well known Hardy inequality ([10], [7]):

(2.2)
$$\int_0^{|\Omega|} f^*(s) g_*(s) \, ds \le (g, f) \le \int_0^{|\Omega|} f^*(s) g^*(s) \, ds$$

and from Theorem II.1, it follows ([7], [14]):

Theorem II.2. If $f_0 \in L^p(\Omega)$, $1 \le p < +\infty$, $g \in L^{p'}(\Omega)$ then the functional defined in (2.1) has maximum and minimum in $K(f_0)$ and:

(a)
$$\max_{f \in K(f_0)} (f, g) = \max_{f \in C(f_0)} (f, g) = \int_0^{|\Omega|} f_0^*(s) g^*(s) \, ds;$$

(b)
$$\min_{f \in K(f_0)} (g, f) = \min_{f \in C(f_0)} (f, g) = \int_0^{|\Omega|} f_0^*(s) g_*(s) ds.$$

A characterization of the minimum points of the functional (g, f) in $K(f_0)$ is given by the following lemma:

Lemma II.3. Let $f_0 \in L^p(\Omega)$, $1 \le p < +\infty$ and $g \in L^{p'}(\Omega)$. Let \hat{f} be a minimizer in $K(f_0)$ of the functional (2.1): then the following propositions are equivalent:

- (i) \hat{f} is the unique minimizer;
- (ii) there exists a decreasing function ϕ such that $\hat{f} = \phi \circ g \sim f_0$;
- (iii) supp $df_0^* \subseteq \text{supp } dg_*$.

Proof. The proof is essentially contained in [4], [8], [1]. More precisely:

- $(i) \Longrightarrow (ii) \text{ is in } [4], [8];$
- $(ii) \Longrightarrow (iii)$ is a trivial consequence of:

$$f_0^*(s) = \phi \circ g_*(s)$$
 for $s \in [0, |\Omega|[$;

(iii)
$$\Longrightarrow$$
 (i) is similar to that one in remark (iii) of pag. 195 of [1].

This section ends with the variational condition at a minimizer of the functional Φ defined in (1.4) ([1], [5]):

Lemma II.4. Let $f_0 \in L^p(\Omega)$, $n : if <math>\hat{f}$ is the minimizer of Φ in $K(f_0)$ then \hat{f} is the unique solution of the variational inequality

$$\int_{\Omega} (f - \hat{f}) \mathscr{G} \hat{f} \ge 0 \quad \text{for } f \in K(f_0).$$

Proof. The proof is similar to that one in [1] in the case $\lambda = 0$. We prove it for completennes. Denote by U the convex set in $W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega)$ consisting of the solutions u of (1.3) when f varies in $K(f_0)$. Obviously, \hat{u} is the unique solution of the variational inequality

$$\int_{\Omega} [\nabla \hat{u} \cdot \nabla (v - \hat{u}) + \lambda \hat{u} (v - \hat{u})] dx \ge 0 \quad \text{for all } v \in U, \ \hat{u} \in U$$

while \hat{f} is the unique solution of the other variational inequality

$$\int_{\Omega} \{ \mathscr{G}\hat{f} \}(f - \hat{f}) \ge 0 \quad \text{for all } f \in K(f_0), \ \hat{f} \in K(f_0). \quad \Box$$

3. Main result.

Consider the functional defined in (1.4) that is:

(3.1)
$$\Phi(f) = \frac{1}{2} \int_{\Omega} f \mathscr{G} f.$$

and let $n . Since the operator <math>\mathcal{G}: L^p(\Omega) \to W^{2,p}(\Omega)$ is bounded and the embedding $W^{2,p} \hookrightarrow L^{p'}(\Omega)$ is compact, it follows that Φ is a weakly sequentially continuous functional on $L^p(\Omega)$. Moreover Φ is strictly convex and so Φ has a unique minimizer $\hat{f} \in K(f_0)$. Clearly, if

$$\int_{\Omega} f_0(x) \, dx = 0 \,,$$

such minimizer is $\hat{f} \equiv 0$. Then, let us suppose that

If (3.2) is not verified we have to consider $-f_0$. The following theorem holds:

Theorem III.1. Let $f_0 \in L^p(\Omega)$, $n , and let <math>\hat{f}$ be the minimizer of the functional (3.1) in $K(f_0)$ with $\lambda > 0$ and $\hat{u} = \mathcal{G}\hat{f}$. Then:

- (a) there exists at most one $\alpha \in \mathbb{R}$ such that $|\{x \in \Omega : \hat{u}(x) = \alpha\}| > 0$;
- (b) there exists a decreasing function ϕ such that $\hat{f} = \phi \circ \hat{u}$;
- (c) \hat{u} has not internal minimum and $\hat{f} > 0$ a.e. in Ω .

Proof. Since \hat{f} is the minimizer of Φ in $K(f_0)$ clearly it is also the minimizer in $K(\hat{f})$, because $K(\hat{f}) \subseteq K(f_0)$. Hence, from Lemma II.4, \hat{f} minimizes (\hat{u}, \cdot) in $K(\hat{f})$. Assume that \hat{u} has two level set of positive measure, i.e. there exist $\alpha_1, \alpha_2 \in \mathbb{R}, \alpha_1 < \alpha_2$, such that $|A_i| > 0$, i = 1, 2, where $A_i = \{x \in \Omega : \hat{u}(x) = \alpha_i\}$. Since \hat{u} solves (1.3) there exist $\beta_1, \beta_2 \in \mathbb{R}$ such that $\hat{f}(x) = \beta_i$ for a.e. $x \in A_i, i = 1, 2$. But \hat{f} is a minimizer of (\hat{u}, \cdot) so necessarely, β_1 and β_2 have to be rearranged in the opposite way of α_1 and α_2 , then $\beta_1 \geq \beta_2$. Nevertheless (1.3) gives:

$$\beta_i = \lambda \alpha_i$$
 $i = 1, 2$

with $\lambda > 0$, obtaining a contradiction. This proves (a).

If \hat{u} has no level set of positive measure, then (b) follows immediately from Lemma II.3. Otherwise if there exists an $\alpha \in \mathbb{R}$ such that $|\{x \in \Omega : \hat{u} = \alpha\}| > 0$ then, using arguments similar to those in [6], we have

(3.3)
$$\hat{f}(x) \le \lambda \alpha \quad \text{a.e. in } A' = \{x \in \Omega : \hat{u}(x) > \alpha\}$$

(3.4)
$$\hat{f}(x) \ge \lambda \alpha \quad \text{a.e. in } A'' = \{x \in \Omega : \hat{u}(x) < \alpha\}.$$

In fact, suppose that (3.3), for example, is false. Then there is a subset $S \subseteq A'$ such that |S| > 0 and $f(x) > \lambda \alpha$ a.e. in S. Let $T \subseteq \{x \in \Omega : \hat{u}(x) = \alpha\}$ such that |T| = |S| > 0. Then, there is a measure preserving bijection $\pi : S \to T$, i.e. π and π^{-1} are measurable and $|\pi(E)| = |E|$, for every measurable subset $E \subseteq S$. Let

$$\tilde{f}(x) = \begin{cases} \hat{f}(\pi(x)) & \text{if } x \in S \\ \hat{f}(\pi^{-1}(x)) & \text{if } x \in T \\ \hat{f}(x) & \text{if } x \in \Omega \setminus (S \cup T). \end{cases}$$

Clearly $\tilde{f} \sim \hat{f}$ and we have

$$\int_{\Omega} \hat{f} \hat{u} - \int_{\Omega} \tilde{f} \hat{u} = \int_{S \cup T} (\hat{f}(x) - \tilde{f}(x)) \hat{u}(x) dx =$$

$$= \int_{S} (\hat{f}(x) - \hat{f}(\pi(x))) \hat{u}(x) dx +$$

$$+ \int_{T} (\hat{f}(x) - \hat{f}(\pi^{-1}(x))) \hat{u}(x) dx =$$

$$= \int_{T} (\hat{f}(x) - \hat{f}(\pi^{-1}(x))) (\hat{u}(x) - \hat{u}(\pi^{-1}(x))) dx > 0$$

which is impossible since \hat{f} minimize (\hat{u}, \cdot) relative to $K(\hat{f})$. In a similar way, it is possible to show that (3.4) holds.

Let $\hat{f}_{A'}$, $\hat{f}_{A''}$, $\hat{u}_{A'}$, $\hat{u}_{A''}$ be the restriction of \hat{f} and \hat{u} to A' and A''. Since $\hat{u}_{A'}$ and $\hat{u}_{A''}$ have not level sets of positive measure, from Lemma II.3, there exist two decreasing functions $\phi_1: (\alpha, +\infty) \to (-\infty, \lambda\alpha)$ and $\phi_2: (-\infty, \alpha) \to (\lambda\alpha, +\infty)$ such that $\hat{f}_{A'} = \phi_1 \circ \hat{u}_{A'}$ and $\hat{f}_{A''} = \phi_2 \circ \hat{u}_{A''}$.

So, from (3.3) and (3.4), it follows that there exists a decreasing function ϕ such that

$$\hat{f} = \phi \circ \hat{u} .$$

This complete the proof of (b).

Suppose that \hat{u} has a positive absolute maximum M at the point $x_M \in \Omega$. From (3.5), $\hat{f}(x) = \phi(\hat{u}(x))$, where ϕ is decreasing: then the function $\phi(t) - \lambda t$ is decreasing in the range of \hat{u} . Now, it is easy to prove that

(3.6)
$$\phi(\hat{u}(x)) - \lambda \hat{u}(x) \ge 0 \quad \text{for a.e. } x \in \Omega.$$

In fact, if $|\{\hat{u}(x) = M\}| > 0$ then (3.6) follows by the fact that, from (1.3), $\phi(M) - \lambda M = 0$ and by the monotonicity of the function $\phi(t) - \lambda t$. Otherwise,

if $|\{\hat{u}(x) = M\}| = 0$ suppose, ab absurdo, that there exists $t_0 < M$ such that $\phi(t_0) - \lambda t_0 < 0$: then $\phi(t) - \lambda t < 0$ for $t > t_0$. Let $V = \{x \in \Omega : \hat{u}(x) > t_0\}$: clearly V is a neighbourhood of x_M and $-\Delta \hat{u} = \phi(\hat{u}) - \lambda \hat{u} \le 0$ for a.e. $x \in V$. By the Bony maximum principle, [3] \hat{u} cannot have a maximum in V unless it is constant, obtaining a contradiction. Hence (3.6) holds.

Another way to get the same result is the following. By Bony maximum principle [3]:

$$\lim_{x \to x_{\mu}} \inf \operatorname{ess} \Delta \hat{u} = l' \le 0$$

so, there exists a sequence $\{x_n\}_{n\in\mathbb{N}}\subseteq\Omega$ such that

$$x_n \to x_M$$
 and $\lim_n [\phi(\hat{u}(x_n)) - \lambda \hat{u}(x_n)] = -l'$.

So, $\phi(M^-) - \lambda M \ge -l' \ge 0$ and then (3.6) holds.

Therefore \hat{u} verifies:

$$\begin{cases} \Delta \hat{u} \le 0 & \text{in } \Omega \\ \hat{u} = 0 & \text{on } \partial \Omega \end{cases}$$

which implies, by the weak maximum principle [9], that \hat{u} cannot have internal minimum that is $\hat{u} > 0$, and then, from (3.6), $\hat{f}(x) = \phi(\hat{u}(x)) > 0$ a.e. in Ω .

An immediate consequence of this theorem is contained in the following

Corollary III.2. Under the assumption of the Theorem III.1, if there exists $\alpha \in \mathbb{R}$ such that $|\{x \in \Omega : \hat{u}(x) = \alpha\}| > 0$ then $\alpha = \max_{\Omega} \hat{u}$.

4. A counterexample.

From Theorem III.1, it follows that the minimizer \hat{f} of the functional Φ defined in (1.4) do not change the sign, so, if f_0 is not one-signed, clearly Φ has not a minimum in $C(f_0)$.

Suppose that $f_0 > 0$ a.e. in Ω ; in [6] it has been shown that, if $\lambda = 0$ and f_0 is one-signed the minimum exists in $C(f_0)$. Our goal, in this section, is to show that the result just exposed is not true for $\lambda > 0$. This is due to the fact that $\hat{u} = \mathcal{G}\hat{f}$ is the solution of (1.3) with $\lambda \neq 0$ and so it can be costant on a set of positive measure. It follows that the linear functional

$$(\hat{u},\cdot)=\int_{\Omega}f\hat{u}\qquad f\in K(f_0)$$

can have minima that are not in $C(f_0)$. (This case cannot happen for $\lambda = 0$).

Suppose, in fact, that Ω is a ball centered at the origin: from the uniqueness of the minimum \hat{f} of Φ in $K(f_0)$, it follows that \hat{f} , and then \hat{u} , are spherically symmetric. From Theorem III.1 since $\hat{f} > 0$, it follows that \hat{u} is radially decreasing. Furthermore, summarizing the results of the previous sections, only two cases are possible:

- (a) \hat{u} does not have any level set of positive measure and then $\hat{f} = (f_0)_{\#}$;
- (b) there exists only one set S, |S| > 0, where \hat{u} is constant and, from Corollary III.2, S must be a ball centered at the origin: however, we still have $\hat{f} = (\hat{f})_{\#}$ not necessarily in $C(f_0)$.

Now, we exhibit an example when the minimizer of Φ on $K(f_0)$ is not a rearrangement of f_0 .

Let n = 1 and $f_0(x) = |x|$, and let us consider the following problem:

(4.1)
$$\begin{cases} -u'' + u = f & \text{in }]-2, 2[\\ u(2) = u(-2) = 0. \end{cases}$$

with $f \in K(f_0)$. If \mathcal{G} is the Green operator for the problem (4.1) let

$$\Phi(\hat{f}) = \min_{f \in K(f_0)} \frac{1}{2} \int_{-2}^{2} f \mathcal{G} f$$

and let $\hat{u} = \mathcal{G}\hat{f}$. Suppose that $\hat{f} \in C(f_0)$. Taking into account (a), (b) and the fact that $f_0 = (f_0)_{\#}$ we still have $\hat{f} = f_0$ and the minimum of Φ would be

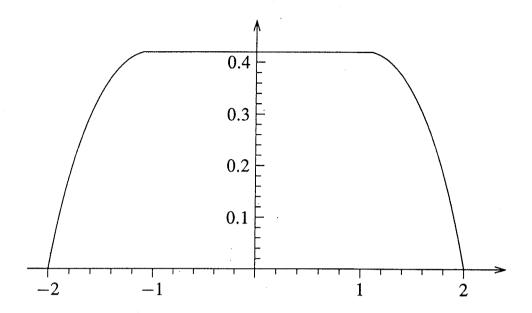
(4.2)
$$\Phi(f_0) = \frac{1}{2} \int_{-2}^{2} f_0(x) u_0(x) dx \approx 0.711379.$$

In order to prove that $\hat{f} \notin C(f_0)$, we will show that $\hat{f} \neq f_0$. Let us consider the family of functions f_r , with $r \in (0,2)$ defined by

$$f_r r(x) = \begin{cases} \frac{1}{2r} \int_{-r}^r f_0(\tau) d\tau & \text{if } |x| < r \\ f_0(x) & \text{if } r \le |x| < 2. \end{cases}$$

Clearly, $f_r \in K(f_0)$, for all $r \in (0, 2)$. Numerically, we found that

(4.3)
$$\min_{r \in (0,2)} \Phi(f_r) \approx 0.705664$$



and this minimum is attained for $\tilde{r} \approx 0.96124$. Comparing (4.2) and (4.3) we have the counterexample. We finally observe that the numerical calculation evidence that $u_{\tilde{r}} = \mathcal{G} f_{\tilde{r}}$ is constant in $(-\tilde{r}, \tilde{r})$ (see figure).

REFERENCES

- [1] A. Alvino P.L. Lions G. Trombetti, On optimization problems with prescribed rearrangements, Nonlinear Analysis, T.M.A., 13 (1989), pp. 185–220.
- [2] C. Bandle, *Isoperimetric inequalities and applications*, Monographs and Studies in Math., Pitman, London, 1980.
- [3] M. Bony, Principe du maximum dans les espaces de Sobolev, C. R. Acad. Sc. Paris, 265 (1967), pp. 333-336.
- [4] G.R. Burton, Rearrangements of functions, maximization of convex functionals, and vortex ring, Math. Ann., 276 (1987), pp. 225–253.
- [5] G.R. Burton, Variational problems on classes of rearrangements and multiple configuration for steady vortices, Ann. Inst. H. Poincarè Anal. Non Lin., 6 (1989), pp. 295–319.
- [6] G.R. Burton J.B. McLeod, Maximisation and minimisation on classes of rearrangements, Proc. Roy. Soc. Edinburgh, 119 (1991), pp. 287-300.
- [7] K.M. Chong N.M. Rice, *Equimisurable rearrangements of functions*, Queens Papers in Pure and Applied Math., No. 28, Queen's University, Ontario, 1971.

- [8] E. Giarrusso D. Nunziante, Comparison theorems for a class of first order Hamilton-Jacobi equations, Ann. Fac. Sci. de Toulouse, 7 (1985), pp. 57-73.
- [9] D. Gilbarg N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1977.
- [10] G.H. Hardy J.E. Littlewood G. Polya, *Inequalities*, Cambridge Univ. Press, 1984.
- [11] B. Kawhol, *Rearrangements and convexity of level sets in PDE*, Lecture notes in mathematics No. 1150, Springer-Verlag, Berlin-New York, 1985.
- [12] L. Migliaccio, Sur une condition de Hardy, Littlewood, Polya, C. r. hebd. Sèanc. Acad. Sci. Paris, 297 (1983), pp. 25–28.
- [13] J.V. Ryff, On the representation of doubly stochastic operators, Pacific J. Math., 13 (1963), pp. 1379–1386.
- [14] J.V. Ryff, Extreme points of some convex subsets of $L^1(0, 1)$, Proc. Amer. Math. Soc., 18 (1967), pp. 1026–1034.

Dipartimento di Matematica e Appl. "R. Caccioppoli", Università di Napoli, Complesso Monte S. Angelo, 80126 Napoli (Italy)