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A REMARK ON MINIMIZATION
~OF AN ENERGY TYPE FUNCTIONAL

ADELE FERONE

We study the problem of the minimization of the energy type functional

(f) = fQ £Gf

on a class of function with prescribed distribution function that we denote by
C(fp). We will prove that there exists only one minimizer of the functional
considered in the weak closure of C(f(y). We find some conditions that fo has
to verifie in order to have the minimizer in C(fp).

1. Introduction.

Let  be an open, bounded set of R”, n > 1, and let f € LP(RQ), p > 1:
the distribution function of f is defined by:
(1.1) pur(t) ={xeQ: f(x) >}, forteR

where, here and below, |A| denotes the Lebesgue measure of the set A C R”.
Let f and g be measurable functions: f and g are equimisurable if they
have the same distribution function and this equivalence relation is denoted by

f~e.
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Let fo € L?(£2) and let
(1.2) C(fo) ={f €LP(Q): f~ fo}.
Let us consider the following Dirichlet problem:

{ —Au+Aiu=f inQ
u=20 on 9§2
with A > 0 and f(x) € LP(R2), p > 1. If 2 is sufficiently smooth, there is only

one solution u € W>7 () N WS'P(Q) of the problem (1.3) ([9]).
For any f € C(fy) let ®(f) be the functional

(1.3)

14 o) = / (DuP () + At (x)) dx = /fgf

where u = ¢ f and ¥ is the Green operator for the problem (1.3). The aim of
this paper is to study the problem of minimizing (1.4) on C(fp), where n < p <
+o00. By an easy computation, it is possible to check that & is a strictly convex
and weakly continuous functional in the weak topology on L7,

In order to apply the classical variational principles, the minimizer of &
will be sought in a class of L? functions larger than C(fp), closed, weakly
compact and convex. This class is K (fp) consisting of all weak limits in L7 ($2)
of sequences in C(fp) (the properties of K ( fp) and of C(fp) are widely studied
in [7], [13], [14], [1]). Then ® has only one minimizer in X (fp).

The case A = 0 has been treated i in [6] and [1] where the authors show that,
if f is the minimizerof ® and i = ¥ f then f isa decreasmg function of i and,
only under the assumption that f does not change sign, f € C(fo). The goal of
this paper is to study the case A > 0. It will be shown that the minimizer f in
K (fy) is again a decreasing function of # and that f cannot change the sign, but
a counterexample shows that it is not sufficient to assume that fj is one-signed
in order to have the existence of the minimizer of ® in C(f).

2. Preliminar results.

From now on, let €2 be an open bounded set of R”, sufficiently smooth: if f
is a measurable function in §2, using the definition of distribution function given
in (1.1), the decreasing and the increasing rearrangements of f are respectively
defined by:

f*(s) =sup{t eR: us(t) > s} for s € [0, |22|[
f() =712 —5) for s €]0, |€2|].
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If Q* is the ball of R” centered in the origin such that |Q| = |Q*| and if C,
is the measure of the unit ball of R”, the spherically symmetric decreasing and
increasing rearrangements of f are, respectively:

R = A Calx™)  fi®) = fu(Culxl®)  forx e QF,

For more details on rearrangements see, for example, [71, [2], [11], [10].
Let us consider the following order relation in L?(2): given f, g € L?(2)
then

f=<g if /f*(s)dsg/g*(s)ds for tre€[0,|R2]]
0 0

fﬁg if f<g and /f(x)dx:/g(x)dx.
Q Q

If fo € LP(2),let C(fp) be the set defined in (1.2): if K (f;) is its weak closure,
then (1], [2], [7], [12], [13], [14]):
Theorem II.1. Let fy € LP(R2), 1 < p < +00. Then:

@) K(fo) ={feL?(Q): f =X fo}
(i1) K (fo) is a convex setin L?(Q2).

If g € L” (Q), where p’, here and below, is the conjugate exponent of p,
consider the following linear functional:

@.1) @)= [ feemdr  forferr@.
From the well known Hardy inequality ([10], [7]):

121 ' 121
(2.2) A 7 (s)gx(s)ds < (g, f) < A Fr(s)g*(s)ds

and from Theorem II.1, it follows ([7], [14]):

Theorem IL2. If fo € LP(Q), 1 < p < 400, g € L? () then the functional
defined in (2.1) has maximum and minimum in K (fy) and:

1€

() fg}ag]go)(f, g) = jmax )(f, g) =, A fo(5)g*(s)ds;

2

(b) fgéi(l}o)(g, f)=fgéi(r}o)(f, g) = A S5 ()8« (s)ds.
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A characterization of the minimum points of the functional (g, f) in K (fp)
is given by the following lemma:

Lemma IL3. Let fy € LP(Q), 1 < p < +ooand g € L” (). Let f be a
minimizer in K (fo) of the functional (2.1): then the following propositions are
equivalent:

1) f is the unique minimizer; '
(i1) there exists a decreasing function ¢ such that f dpog~ for

(iii) suppdfy < suppdgs.
Proof. The proof is essentially contained in [4], [8], [1]. More precisely:

(i) = (ii) is in [4], [8]; .
(1) = (iii) is a trivial consequence of :

fos) =¢ogs) forsel0,|Q[;

(iii) == (i) is similar to that one in remark (iii) of pag. 195 of [1]. O

This section ends with the varational condition at a minimizer of the func-
tional & defined in (1.4) ([1], [5]):

Lemma IL4. Let fo € LP(Q), n < p < +o0: if f is the minimizer of ® in
K (fo) then f is the unique solution of the variational inequality

fQ(f —DEF=0  forfeK(fy).

Proof. The proof is similar to that one in [1] in the case A = 0. We prove it for
completennes. Denote by U the convex set 'in W2P() N WO1 'P(Q) consisting
of the solutions u of (1.3) when f varies in K (fp). Obviously, # is the unique
solution of the variational inequality

/[Vﬁ-V(v—ﬁ)-}-)\ﬁ(v—ﬁ)]dsz forallveU, ielU
Q

while f is the unique solution of the other variational inequality

/Q{%f}(f——f)zo forall f €K (fo), feK(fy). O
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3. Main result.
Consider the functional defined in (1.4) that is:

1
a1 B(f) = —Z—/Qf%f.

and let n < p < +o00. Since the operator & : LP(Q) — W2P(Q) is bounded
and the embedding WP —> L7 (Q) is compact, it follows that ® is a weakly
sequentially continuous functional on L? (£2). Moreover @ is strictly convex and
so @ has a unique minimizer f € K(fp). Clearly, if

/ fox)dx =0,
Q
such minimizer is f = (. Then, let us suppose that

(3.2) f folx)dx > 0.
Q

If (3.2) is not verified we have to consider — fo.
The following theorem holds:

Theorem IIL.1. Let fy € L7(S2), n < p < 00, andAlet f be the minimizer of
the functional (3.1) in K (fo) with A > 0and u = ¥4 f. Then:

(a) there exists at most one a € R such that |[{x € Q : u(x) = a}| > 0;
(b) there exists a decreasing function ¢ such that f = ¢ o ii;
(¢c) U has not internal minimum and f > 0 a.e. in 2.

Proof. Since f is the minimizer of ® in K (fo) clearly it is also the minimizer
in K( f ), because K ( f ) € K(fy)- Hence, from Lemma I1.4, f minimizes (&, -)
in K( f ). Assume that # has two level set of positive measure, i.e. there exist
o, 0 €R, oy <o, such that |A;] > 0,i = 1,2, where A; = {x € Q : ii(x) =
a;}. Since # solves (1. 3) there exist ﬂl, B> € R such that f (x) = B; for a.e.
x€eA;,,i =1,2.But f is a minimizer of (&, -) so necessarely, 8; and B, have
to be rearranged in the opposite way of «; and «;, then B; > B,. Nevertheless
(1.3) gives:
ﬁ,‘ = A,d,' i = 1, 2

with A > 0, obtaining a contradiction. This ﬁroves (a).

If 4 has no level set of positive measure, then (b) follows immediately from
Lemma II.3. Otherwise if there existsan e € R such that [{x €e Q: # = «a}| > 0
then, using arguments similar to those in [6], we have

(3.3) f)<rae aeinA ={xeQ:i(x) > a}
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(3.4) fE)=r aeinA’={xeQ:i(x) <a}.

In fact, suppose that (3.3), for example, is false. Then there is a subset S C A’
such that |[S| > Oand f(x) > Aw ae.in S.Let T C {x € Q : ii(x) = «} such
that |T| = [S| > 0. Then, there is a measure preserving bijection & : § — T,
i.e. w and 7w ~! are measurable and |7 (E)| = |E|, for every measurable subset
E CS.Let

i fr@) ifxes

F&x)=1 fr~Y(x)) ifxeT

f@) if xeQ\(SUT).

Clearly f ~ f and we have
f fa - / Fai= [ (F&) - Fapie)ds =
Q Q sSuTr
— fs (F) = Fr@)ia) dx +
+ /T P = Fr= @) dx =
— /T P = Fa @)@ — a1 (x) dx > 0

which is impossible since f minimize (&, -) relative to K ( f ). In a similar way,
itis pos31ble to show that (3.4) holds.

Let fy, fAu i 4, U 4 be the restriction of f and # to A’ and A”. Since it 4/
and 44+ have not level sets of positive measure, from Lemma I3, there exist
two decreasing functions ¢ : (a +00) = (—o0, Aa) and ¢, : (—o0, @) —
(Aa, +00) such that fA’ ¢1 0 uA: and fA” =¢,0 Upr.

So, from (3.3) and (3.4), it follows that there exists a decreasing function ¢
such that

(3.5) f=¢oi.

This complete the proof of (b).

Suppose that 4 has a positive absolute maximum M at the point x3; € Q.
From (3.5), f (x) = ¢ (i(x)), where ¢ is decreasing: then the function ¢ (t) At
is decreasing in the range of . Now, it is easy to prove that

(3.6) d@l(x)) —ri(x) >0 fora.e. x € Q.

In fact, if |{#(x) = M}| > O then (3.6) follows by the fact that, from (1.3),
¢ (M) —AM = 0 and by the monotonicity of the function ¢ (z) — Az. Otherwise,
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if {#(x) = M}| = 0 suppose, ab absurdo, that there exists fp < M such that
¢ (to) — Mg < O:then ¢p(t) — At <Ofort > . Let V={xeQ:a(x) > ty):
clearly V is a neighbourhood of xj; and —A#l = ¢(2) — Al <Oforae.xeV.
By the Bony maximum principle, [3] # cannot have a maximum in V unless it
is constant, obtaining a contradiction. Hence (3.6) holds.

Another way to get the same result is the following. By Bony maximum
principle [3]:

lim inf ess At =1 <0

X~>Xprr

s0, there exists a sequence {x,},eny C €2 such that

Xn —> XM and li'{n[d) (U(xp)) — AMa(x,)] = =1,

So, p(M~) — AM > —!’ > 0 and then (3.6) holds.
Therefore & verifies:

{AﬁSO in
u=0 ondQ

which implies, by the weak maximum principle [9], that # cannot have internal
minimum that is # > 0, and then, from (3.6), f(x) = ¢ (i(x)) > 0 a.e. in Q.
O

An immediate consequence of this theorem is contained in the following

Corollary IIL.2. Under the assumption of the Theorem II1.1, if there exists ¢ € R
suchthat {x € : 4(x) = a}] > 0 then o = mszza.xz'i.

4. A counterexample.

From Theorem III.1, it follows that the minimizer f of the functional ®
defined in (1.4) do not change the sign, so, if fp is not one-signed, clearly ® has
not a minimum in C( fy).

Suppose that fp > 0 a.e. in €2; in [6] it has been shown that, if A = 0 and
Jfo is one-signed the minimum exists in C(fy). Our goal, in this section, is to
show that the result just exposed is not true for A > 0. This is due to the fact that
n=9 f is the solution of (1.3) with A £ 0 and so it can be costant on a set of
positive measure. It follows that the linear functional

@)= /Q fi fek(fo)
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can have minima that are not in C(fy). (This case cannot happen for A = 0).

Suppose, in fact, that €2 is a ball centered at the origin: from the unique-
ness of the minimum f of @ in K (fo), it follows that f and then i, are spher-
ically symmetric. From Theorem III.1 since f > 0, it follows that & is radially
decreasing. Furthermore, summarizing the results of the previous sections, only
two cases are possible: :

(a) @ does not have any level set of positive measure and then f = (fo)#;

(b) there exists only one set S, |S| > 0, where # is constant and, from CorollAary
II1.2, S must be a ball centered at the origin: however, we still have f =
( f )# not necessarily in C(fp).

Now, we exhibit an example when the minimizer of ¢ on K(fp) is not a
rearrangement of fj.
Letn = 1 and fy(x) = |x[, and let us consider the following problem:

—u't+u=7f in]—2,2(
.1 {u(2) =u(—2) =0.

with f € K(fp). If ¢ is the Green operator for the problem (4.1) let

®) zfgll(l(ljlro)z./. 195

andletu = ¢ f . Suppose that f € C(fo). Taking into account (a), (b) and the
fact that fy = (fo)s we still have f = f; and the minimum of ¢ would be

2
(4.2) O(fo) = % / 2 Fo(x)uo(x) dx ~ 0.711379.

In order to prove that f ¢ C(fo), we will show that f # fo. Let us consider the
family of functions f,, with r € (0,2) defined by

1 r
Fron =) 27 | fodT it ixl<r

fox) Cifr < x| <2.
Clearly, f. € K(fy), for all r € (0, 2). Numerically, we found that

43) min ®(f,) ~ 0.705664
o re(0,2)
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III||I-IIIIII|I]_]III[

and this minimum is attained for 7 ~ 0.96124. Comparing (4.2) and (4.3)
we have the counterexample. We finally observe that the numerical calculation
evidence that u; = ¢ f7 is constant in (—7, 7) (see figure).
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